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Abstract. In [2], a smooth geometric labeling approach was introduced
by following the Riemannian gradient flow of a given objective function on
the so-called assignment manifold. The approach evaluates a user-defined
data term and performs spatial regularization by Riemannian averaging
of the assignment vectors. In this paper, we extend this approach in
order to impose global convex constraints on the labeling results based on
linear filter statistics in the label space. The smoothness of the approach
is preserved by using logarithmic barrier functions to handle the new
constraints. We discuss how suitable filters can be determined from
example data of a given image class, and we demonstrate numerically the
effectiveness of the constraints in several academic labeling scenarios.
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1 Introduction

The discriminative power of filter statistics for object detection and classification
is well known [7, 8] and has been widely explored in the literature. The generative
power of filter statistics for representing image structure, on the other hand,
has been less explored during the recent years. The present paper focuses on
a mathematically sound and numerically tractable approach to impose filter
statistics on labelled image structure.

Early seminal work on generative aspects of filter statistics includes [14]
and [10] and many references in these papers. In the former case, heavy-tailed
empirical filter statistics are imposed on the variational problem of learning
the parameters of a Gibbs-Boltzmann distribution. In the latter case, several
hundred filter constraints form nonlinear submanifolds (level sets) onto which a
given image has to be projected. While both works impressively demonstrate the
generative power of filter statistics, exploiting these statistics as prior knowledge
for inference and reproducibility of results has remained a challenge from the
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viewpoint of algorithm design and numerical optimization. This assessment
also applies to current mainstream research with a focus on the engineering of
deep networks [13], without denying the remarkable quality of corresponding
experimental results.

Contribution. The present work conforms to this research direction but
deviates in the following aspects:

1. We focus on filter statistics in label space rather than in image space. The
simplest constraint, for example, imposes lower and upper bounds on the
area occupied by some label, without specifying the corresponding locations,
of course. More general constraints arise from replacing the ‘identity filter’ by
linear filters learned offline through a simple generalized eigenvalue technique,
and imposing similar linear statistical constraints. While such statistical
moments can be taken into account as constraints using graphical models, in
principle, this would again lead like [14] to maximum-entropy distributions
in Gibbs-Boltzmann form [5], that are intractable regarding both learning
and inference, due to the global nature of these constraints. In fact, a recent
assessment of approaches to inference with discrete graphical models [6]
revealed the limited capability of established state-of-the-art solvers in this
respect, i.e. to handle cliques of large size of the underlying graph.

2. We focus on a numerically tractable and reproducible way to incorporate such
constraints into an algorithm for image labeling. To this end, we adopt the
recent approach [2] to image labeling based on simple geometric averaging
induced by the Fisher-Rao metric on the so-called assignment manifold,
i.e. the relative interior of a product of probability simplices, whose vertices
represent discrete decisions as is common with graphical models and convex
variational relaxations. A key aspect of the approach [2] is that the usual
two-step procedure of (i) solving the LP relaxation [12] by some iterative
method, and (ii) projecting back the solution to the set of integral solutions,
is combined into a single smooth process that converges to integral solutions
(labelings). The objective of the present paper is to show that filtered label
statistics can be taken into account in a straighforward and comprehensible
way by using standard log-barrier constraints [9, 4] and geometric numerical
integration [11].

Organization. Section 2 sketches the works [2, 11] on which the present paper
is based. Section 3 details our contribution: learning filters for label statistics
and taking corresponding empirical constraints into account during inference
for image labeling. We do not focus on any specific application in this paper.
Rather, the proof-of-concept experiments discussed in Section 4 are supposed
to demonstrate how statistics gathered by linear filters of small support can
enhance image labeling, represent primitive shape information and support spatial
pattern formation, by extending the geometric non-convex approach [2] through
corresponding convex constraints.

Basic Notation. Functions and binary operations are applied component-
wise to vectors and matrices, i. e. for u, v ∈ Rn we have

√
u = (

√
u1, . . . ,

√
un)>,

u ·v = (u1v1, . . . , unvn)> and similar for eu, log(u) and u
v . We set [n] = {1, . . . , n}



and 1n = (1, . . . , 1)> ∈ Rn as well as 1m×n = (1m, . . . ,1m) ∈ Rm×n. By 〈·, ·〉 we
will denote the Euclidean inner product on Rn or the Frobenius inner product
on Rm×n. For a matrix W ∈ Rm×n we will denote the i-th row by Wi ∈ Rn and
the j-th column by W j ∈ Rm. Elements of a sequence are indexed with an upper
script index enclosed in brackets, for example, W (k) ∈ Rm×n.

2 Image Labeling on the Assignment Manifold

We briefly summarize the smooth label assignment approach introduced in [2].
This approach will be extended in the next section in order to handle global
constraints imposed on labelings.

Given an image with m pixels and a set L = {l(1), . . . , l(n)} of n predefined
labels, the task is to assign each pixel i ∈ [m] one label in L. The labeling problem
can be formulated as finding an optimal assignment matrix in

W∗ =
{
W ∈ Rm×n : Wi ∈ {e(1), . . . , e(n)} ⊂ Rn, ∀i ∈ [m]

}
, (2.1)

where each label l(j) ∈ L is represented by a vertex e(j) ∈ Rn of the probability
simplex. In [2], a smooth geometric approach was presented which is defined on
the assignment manifold

W :=
{
W ∈ Rm×n>0 : 〈Wi,1n〉 = 1, ∀i ∈ [m]

}
⊂ Rm×n>0 , (2.2)

that is the set of all row-stochastic matrices with full support. This is a smooth
manifold with tangent space at W ∈ W given by

T := TWW =
{
V ∈ Rm×n : 〈Vi,1n〉 = 0, ∀i ∈ [m]

}
. (2.3)

The assignment manifold W is turned into a Riemannian manifold by equipping
it with the Fisher-Rao metric

gWW (U, V ) = 〈 U√
W
, V√

W
〉 for U, V ∈ TWW, W ∈ W (2.4)

with componentwise multiplication (and subdivision) of vectors and matrices
(with strictly positive support).

Input data for the assignment approach are pixel neighborhoods N (i) =
{j ∈ [m] : i ∼ j}, i ∈ [m] defined by the adjacency relation (edges) of an
underlying graph, and a distance matrix D ∈ Rm×n whose components Dij

store the application-specific distance between the image data observed at pixel
i ∈ [m] and label l(j) ∈ L. The goal is to find an assignment W ∈ W which
is spatially consistent with respect to neighborhood assignments, on the one
hand, and reflects the data represented by the distance matrix D as closely
as possible, on the other hand. This is accomplished by computing a curve
W (t) ∈ W, t ≥ 0 on the assignment manifold that converges to an integral
solution and locally minimizes a functional J(W ) which accounts for the given
data and regularization.



The ingredients for defining a corresponding sequence

W (k) = W (tk), W (0) = W (0) = C :=
1

n
1m×n (2.5)

are the barycenter C of W, an approximation of the exponential mapping of W
given by

expW : T → W, expW (V )i =
Wi · eVi

〈Wi, eVi〉
, ∀i ∈ [m], (2.6)

and the orthogonal projection onto the tangent space (2.3)

ΠT : Rm×n → T , ΠT (D) = D − 1

n
D1n×n. (2.7)

The data D is taken into account by the likelihood matrix

L(W ) = expW
(
ΠT (−D)

)
∈ W, (2.8)

whereas regularization is performed by computing approximate Riemannian
means of the assignment vectors {L(W )j}j∈N (i) over spatial neighborhoods N (i),
for each pixel i ∈ [m]. We refer to [2] for details.

We adopt the general numerical scheme suggested by [11],

V̇ (t) = −ΠT
[
∇J
(
W (t)

)]
, W (t) = expC

(
V (t)

)
, V (0) = 0, (2.9)

which enables to apply standard algorithms for integrating the flow V (t) on the
tangent space T so as to determine a minimizing path W (t) on the manifold W .
For example, combining the simplest integration method, i. e. explicit Euler steps,
with smooth rounding to an integral solution leads to a sequence (2.5) given by

W
(k+ 1

2 )
i =

W
(k)
i · e−h∇Wi

J(W (k))

〈W (k)
i , e−h∇Wi

J(W (k))〉
, (2.10a)

W
(k+1)
i =

W
(k)
i ·W (k+ 1

2 )
i

〈W (k)
i ,W

(k+ 1
2 )

i 〉
, i ∈ [m]. (2.10b)

We explain in the subsequent section how global labeling constraints can be taken
into account within this framework.

3 Label Assignment with Global Constraints

This section details the class of global constraints that we impose on label
assignments (Section 3.1), how linear filters defining these constraints are learned
offline using basic techniques of numerical linear algebra (Section 3.2), and finally,
in Section 3.3, how these constraints are taken into account using the assignment
approach of Section 2.



3.1 Global Constraints

In order to incorporate some prior knowledge about the labelings, we consider
linear p × p filters h ∈ H ⊂ Rp

2×n operating on assignment matrices W ∈ W:
For each label j ∈ [n], we have a p× p filter hj ∈ Rp

2

in the usual sense, and the
filter operation is given by

h ∗W :=
∑
j∈[n]

hj ∗W j , (3.1)

with the common convolution of the ‘label images’ W j , j ∈ [n] with a p× p filter
on the right-hand side. The space of filters H will be specified in Section 3.2. To
avoid complications at and close to the boundary of the image region, we only
take into account filter results (h ∗W )i at interior pixels i where the p× p filter
support (centered at i) does not overlap with the boundary.

The filter result (h ∗W )i at a pixel i ∈ [m] depends on the assignment within
a p×p neighborhood of i and hence reflects the local spatial relation of the labels.
Our objective is to control label assignments by constraining the filter results for
a set

{h(k) ∈ H : k = 1, . . . ,K} (3.2)

of K filters in order to take into account statistical prior information about the
local geometry of labelings. Motivated by [3], where the `1-norm of the filter
results of a grayscale image was considered in connection with non-smooth sparse
regularization, we consider here the `2-norm of filter results which conforms to
our smooth geometric label assignment scheme of Section 2.

Specifically, we consider global convex constraints of the form

clow ≤ 1
mW

>1m ≤ cup, (3.3a)

‖h(k) ∗W‖`2 ≤ d(k), k = 1, . . . ,K, (3.3b)

where the parameter vectors clow, cup ∈ Rn impose lower and upper cardinality
bounds for the assignment of each label of L = {l(1), . . . , l(n)} to the range of
pixels [m], whereas the parameters d(k) of (3.3b) constrain the output energy of
each filter h(k), k ∈ [K]. To ensure that the region of feasible assignments W has
a non-empty interior, we require

clow < cup, 〈clow,1n〉 < 1 < 〈cup,1n〉 and d(k) > 0, k ∈ [K]. (3.4)

As alternative to the `2-norm defining (3.3b), we also used a smooth approxima-
tion of the `1-norm denoted by

‖x‖`1ε =
∑
i∈[m]

|xi|ε, |xi|ε =
√
x2
i + ε2 − ε. (3.5)



3.2 Learning Filters

We discuss how to choose filters for given classes of labelings and corresponding
example data. First of all, we restrict the space of all possible p × p filters in
order to eliminate some redundant degrees of freedom. To this end, we consider
the decomposition of the space of all filters

Rp
2×n = H0 ⊕H1 ⊕H2 (3.6)

into subspaces given by3

H0 =
{
h ∈ Rp

2×n : hi = hj , mean(hj) = 0, ∀i, j ∈ [n]
}
,

H1 =
{
h ∈ Rp

2×n : 〈hi,1n〉 = 0, ∀i ∈ [p2], mean(hj) = 0, ∀j ∈ [n]
}
,

H2 =
{
h ∈ Rp

2×n : hi = hj , ∀i, j ∈ [p2]
}
.

(3.7)

These spaces are orthogonal to each other with respect to the Euclidean inner
product. The space H2 consists of all filters h that are constant for each label,
i.e. hj = cj · 1p2 with cj ∈ R for each j ∈ [n]. The space H0 consists of all
zero-mean filters, which do not distinguish between the labels. For any filter
h ∈ H0, we have h ∗W = h1 ∗

∑
jW

j = h1 ∗ 1m = 0 for all W ∈ W, i.e. the
subspace H0 does not represent any useful information for our purpose.

Thus, we can choose either H = H1 or H = H1 ⊕H2 as the actual space of
filters. Our choice is

H = H1, dimH = dimH1 = (p2 − 1)(n− 1) (3.8)

for two reasons. Firstly, we use this framework for segmentation, where larger
homogenous regions occur (e. g., background). Filters which return a small `2-
norm for such labelings have (approximately) a zero-mean and therefore belong
to H1. Secondly, we will use an inner point method for optimization, which
requires a feasible initialization. In case of zero-mean filters, we can simply use
homogenous assignments as initial assignment. As a result, we do not need an
additional initialization process on which the final result might depend. This
conforms to the philosophy to start the assignment process without any bias at
the barycenter C ∈ W – cf. (2.5).

For learning the filters, we assume that sets I+, I− ⊂ W∗ for favorable and
unfavorable label assignments are given. We are looking for filters h ∈ H such
that ‖h∗W‖`2 is smaller for W ∈ I+ than for W ∈ I−. For simplicity, we choose

meanW∈I+ ‖h ∗W‖2`2
meanW∈I− ‖h ∗W‖2`2

< 1 (3.9)

as criterion for filters h ∈ H, which leads to a generalized eigenvalue problem.

Specifically, let {e(i)
H : i = 1, . . . ,dimH} be an orthonormal basis of H and

3 Notation: Filters h are matrix-valued (image vectors × labels) with rows hi and
columns hj . Superscripts in brackets h(k) index members of a collection of filters.



consider the map

M :W → RdimH×dimH, M(W )ij = 〈e(i)
H ∗W, e

(j)
H ∗W 〉`2 . (3.10)

Then we have
meanW∈I+ ‖h ∗W‖2`2
meanW∈I− ‖h ∗W‖2`2

=
x>A+x

x>A−x
(3.11)

with A± = meanW∈I± M(W ) and h =
∑
i xi e

(i)
H . As a consequence, a set of

linearly independent filters satisfying the criterion (3.9) is given by the generalized
eigenvectors of the matrix pencil (A+, A−) corresponding to eigenvalues less than
1. The filters corresponding to eigenvalues greater than 1 might also focus on
useful features as can be seen, for example, in Fig. 4.7 (d), where the last
16 filters correspond to eigenvalues greater than 1. These filters can be used
additionally, since they further restrict the assignment and therefore may prevent
some assignments, which were not taken into account by I−.

Having determined a set of filters as generalized eigenvectors, we normalize
them in a post-processing step so as to meet the condition h ∗W ∈ [−1, 1]m for
all W ∈ W, i.e.

‖h‖H = 1, ‖h‖H := max
{
−
∑
i∈[p2]

min
j∈[n]

hij ,
∑
i∈[p2]

max
j∈[n]

hij

}
. (3.12)

3.3 Optimization

In order to take into account the constraints (3.3), we use log-barrier functions
[9, 4] that have been widely applied (e. g., in [1]). Given the parameters in (3.4)
and filters h(k), k ∈ [K], these functions read

Blow(W ) = −
〈
1n, log( 1

mW
>1m − clow)

〉
,

Bup(W ) = −
〈
1n, log(cup − 1

mW
>1m)

〉
,

Bfilter(W ) = −
K∑
k=1

log
(
(d(k))2 − ‖h(k) ∗W‖2`2

)
.

(3.13)

Summing up these functions yields the overall barrier function

B(W ) = Blow(W ) +Bup(W ) +Bfilter(W ) (3.14)

for the constraints (3.3). Complementing the objective function

Jτ (W ) = J(W ) + τ B(W ) (3.15)

with a barrier parameter τ > 0, modifies the flow (2.9) and the sequence (2.5)
accordingly. Within the flow, τ is handled as a monotonously decreasing function
τ : R≥0 → R>0 with limt→∞ τ(t) = 0. The flow is initialized at

Wi(0) = clow +
1− 〈clow,1n〉

〈cup,1n〉 − 〈clow,1n〉
(cup − clow), ∀i ∈ [m]. (3.16)



Since we use zero-mean filters due to (3.8) and (3.7), the initialization (3.16) is
strictly feasible for (3.3).

It remains to specify the gradients of the barrier functions that are required
to evaluate the vector field, which defines the flow by the first equation of (2.9),
with J(W ) replaced by Jτ (W ) due to (3.15). The gradient ∇B(W ) ∈ Rm×n of
the barrier function (3.14) is given by

∇Blow(W )i = − 1

m

1
1
mW

>1m − clow

, ∇Bup(W )i =
1

m

1

cup − 1
mW

>1m
(3.17)

for each pixel i ∈ [m], and by

∇Bfilter(W )j = 2

K∑
k=1

h(k),j ? (h(k) ∗W )

(d(k))2 − ‖h(k) ∗W‖2`2
(3.18)

for any label j ∈ [n] with h(k),j ∈ Rp
2

being the j-th layer (column) of the
k-th filter. Here, ? denotes the cross-correlation operation, i.e. convolution with
the mirrored filter. This convolution is performed on the whole image with
zero-padding.

If the approximated `1-norm (3.5) is used instead of the `2-norm, the barrier
function takes the form

Bfilter(W ) = −
K∑
k=1

log
(
d(k) − ‖h(k) ∗W‖`1ε

)
(3.19)

with the Euclidean gradient given by

∇Bfilter(W )j =

K∑
k=1

h(k),j ?∇‖h(k) ∗W‖`1ε
d(k) − ‖h(k) ∗W‖`1ε

, ∇‖x‖`1ε =
x√

x · x+ ε21
,

(3.20)
where the operations of the latter right-hand side apply componentwise.

4 Experiments

In this section, we investigate the influence of the filter constraints on the labeling
result. We test the new approach on several academic labeling scenarios and
compare the results with those obtained without using these constraints.

Setup. We represent assignments by choosing for each label j ∈ [n] some
color c(j) ∈ [0, 1]3 in the RGB color space. Then an assignment W ∈ W ⊂ Rm×n

is represented by the color image I ∈ Rm×3 given by Ii =
∑
j∈[n]Wijc

(j) ∈ [0, 1]3

for each pixel i ∈ [m].
We consider three different data sets in order to check the effect of constraints

on (a) primitive shape information, on (b) spatial relations (inclusion of regions),
and (c) on the separation of fore- and background each defined by several labels.



The first data set (a) contains binary rectangles and ellipses. Filters of size
3 × 3 were trained for rectangles against ellipses, i. e. all assignments in a set
I+ represent rectangles, while assignments in the complement set I− represent
ellipses. The second data set (b) comprises three labels (white, orange, black)
forming white ellipses overlapped by orange ellipses on black background (see
Fig. 4.2 for illustration). All ellipses have varying radii, orientation and position.
Filters of size 5×5 were used to separate the positive class I+ defined by inclusions
of regions, whereas these topological relations are violated in the negative class
I−. The third data set (c) consists of Voronoi diagrams, with each polygon
labeled by either one of three foreground labels (red, green, blue) and likewise
for the background (black, gray, white). Both foreground and background are
connected and the foreground is located in the center of the image domain. The
negative class I− is defined by randomly labelled Voronoi diagrams.

Implementation details. We solved the gradient flow by the explicit Euler
method. A fixed step size ∆t was used as long as W (tk) fulfilled the constraints.
Otherwise the step size was reduced by backtracking line search. We did no
analysis of the step size but rather used ∆t = 100, which produced satisfying
results. As usual for interior point methods, we used τ(tk) = α−kτ0 with α > 1
for the barrier parameter. In our experiments, α = 1.03 and τ0 = 100 turned out
to be a reliable choice. We terminated the iteration either after 1500 steps or

when both the average entropy − 1
m

∑
i∈[m]

∑
j∈[n]W

(k)
ij logW

(k)
ij dropped below

a threshold εentropy > 0 and τ(tk) dropped below τmin > 0. As in [2], we used
εentropy = 10−3. For τmin, we set 10−10.

Results. (a) For the binary data set (rectangles/ellipses), the filter space H
has dimension 8. We used the four filters corresponding to the eigenvalues less
than 1. Inspecting these filters reveals discrete versions of the partial derivatives
∂xy, ∂xxy, ∂xyy and ∂xxyy. The upper bounds for the filter constraints were set
to d = 2‖h ∗W‖, where W is an assignment representing two rectangles. Fig. 4.1
illustrates that using the filter constraints enables to remove noise, to regularize
the rectangle, and to rectify the ellipse by imposing local shape constraints.

(b) For the second data set, we used all 48 filters obtained by the generalized
eigenvalue problem. The first 24 filters corresponding to eigenvalues less than 1
contribute to separating the orange region from the background. The remaining 24
filters regularize the boundary of the white region (see Fig. 4.3). The upper bounds
for the filter constraints were set to d = maxW∈I+ ‖h ∗W‖. The bounds clow and
cup were set in a similar way. We used the distance matrix Dij = 1

nρ‖W̃i− e(j)‖2,

where the matrix W̃ ∈ Rm×n was obtained by adding white noise (σ2 = 4) to
the ground truth assignment. Fig. 4.4 demonstrates that the constraints improve
notably the results, and that in addition to the filter constraints, cardinality
constraints are essential to reinforce topological structure. In order to demonstrate
the potential of the constraints for spatial pattern formation, we repeated the
experiments with pure noise as input data. Fig. 4.5 demonstrated the strong
regularizing effect of the constraints.

(c) For the Voronoi data set, the filters determined by the eigenvalue problem
can be subdivided into three groups: The first 8 filters (eigenvalues ≈ 0.12)



contribute to separating the three foreground labels from three background labels.
The next 16 filters (eigenvalues ≈ 0.52) regularize the foreground. The last 16
filters (eigenvalues ≈ 1.46 > 1) regularize the background (Fig. 4.7). The distance
matrix and the parameters for the constraints were set as decribed above for case
(b). The results shown by Fig. 4.8 (b), (f), (g) and (h) demonstrate the effect of
the three groups of filters. Repeating the experiments with pure noise as input
data illustrates how spatial patterns are induced by the constraints (Fig. 4.9).

(a) (b) (c) (d) (e) (f) (g)

Fig. 4.1. Representing and enforcing rectangular structure. (a) shows the orig-
inal gray-scale image and (b) shows a noisy version of it, which was used as input data.
(c) and (d) show the labeling results without imposing constraints obtained through
Riemannian averaging over neighborhoods of sizes 3 × 3 and 7 × 7 respectively. (e)
and (f) show the results of the new approach (without cardinality constraints) with
neighborhood size 3× 3 and four filters of size 3× 3, which were trained for rectangles
against ellipses. These 4 filters prefer horizontal and vertical edges. For (e), the `2-norm
was used for filter constraints. For (f) and (g), ‖ · ‖`1ε with ε = 0.1 and ε = 0.01 was
used.

(a) Positive labeling examples in I+. (b) Negative labeling examples in I−.

Fig. 4.2. Illustration of the training sets I+, I− ⊂ W∗
. Positive examples (a) are

defined by topological relations: orange ellipses are completely contained in the white
ones. Negative examples (b) are labelings where this topological relation is violated.



(a) (b) (c)

Fig. 4.3. Illustration of the generalized eigenvalue filters. (a) shows one label
assignment in I+ and one assignment in I−, used to illustrate the filter outputs in (b),
(c). The computed filters of size 5 × 5 can be subdivided into two groups. The first
24 filters h(1), . . . , h(24) respond to the boundary of the orange and black regions, and
they have a large response at the border between the orange and black regions. This
is illustrated by (b) which shows the absolute value of h(1) ∗W . The last 24 filters
h(25), . . . , h(48) mainly respond to the boundary of the white regions. (c) shows the
absolute value of h(48) ∗W .

(a) 100.0% (b) 88.3% (c) 93.2% (d) 92.1% (e) 92.6% (f) 91.3%

(g) 94.5% (h) 93.6% (i) 94.1% (j) 93.9% (k) 93.4% (l) 93.8% (m) 94.0%

Fig. 4.4. Experimental results obtained with and without constraints. (a)
shows the ground truth assignment. A noisy version of this assignment was used as
input data. The percentages of correctly labeled pixels are shown below the images.
The results obtained without constraints are shown in (b)-(d) for neighborhood sizes
3× 3, 5× 5 and 7× 7 respectively. For the results (e)-(m) of the new approach, 3× 3
neighborhoods were used for spatial regularization. For (e), cardinality constraints
were only used. For (f), filter constraints were only used (48 filters of size 5× 5). For
(g)-(m), both cardinality constraints and filter constraints were used. (g) and (h) were
obtained with 24 filters using the `2-norm and the approximated `1-norm ‖ · ‖`1ε with
ε = 0.01 respectively. For (i) and (j), 48 filters were used. For (k)-(m), the distance
matrix was rescaled by a factor 0.01, and 48 filters were used with `2-norm as well as
‖ · ‖`1ε with ε = 0.1 and ε = 0.01 respectively.



(a) (b) (c)

Fig. 4.5. Spatial pattern formation induced by pure noise and convex label
constraints. All experiments were done using a 3 × 3 neighborhood for the spatial
regularization, and using both cardinality constraints and filter constraints based on 48
filters and ‖·‖`1ε with ε = 0.01. Panels (a)-(c) show on the right random spatial labeling
patterns induced by the random noise images on the left. These results demonstrate how
filter constraints favor local shape and topological spatial structure on image labelings
within our geometric approach to label assignments.

(a) Positive labeling examples in I+. (b) Negative labeling examples in I−.

Fig. 4.6. Best viewed in color. Illustration of the training sets I+, I− ⊂ W∗
. Both

the foreground region and the background region of these Voronoi tilings are defined
by three labels: red, green, blue and black, gray, white, respectively. Positive examples
in I+ are defined by approximately square-shaped foreground regions that are simply
connected and centered in the middle of the image domain. Negative examples I−
contain polygons that are randomly labeled and distributed over the image domain.
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Fig. 4.7. Best viewed in color. Illustration of the generalized eigenvalue filters.
(a) shows one assignment in I+ and I−, respectively, used to illustrate the filter outputs.
The computed filters of size 3× 3 can be subdivided into three groups. The first eight
filters h(1), . . . , h(8) regularize the boundary between foreground (red, green, blue) and
background (black, gray, white). (b) shows the absolute value of the filter result h(4) ∗W
as example. Filters h(9), . . . , h(24) regularize the boundaries within the foreground as
illustrated by (c), which shows the absolute value of h(10) ∗ W . Eventually, filters
h(25), . . . , h(40) regularize the boundaries within the background as illustrated by (d).



(a) 100.0% (b) 82.0% (c) 80.8% (d) 66.1%

(e) 87.6% (f) 88.3% (g) 88.0% (h) 87.9%

Fig. 4.8. Best viewed in color. Experimental results obtained with and without
constraints. (a) shows the ground truth assignment. A noisy version of this assignment
was used as input data. The percentages of correctly labeled pixels compared to the
ground truth (a) are shown below the images. Panels (b)-(d) show the results obtained
without constraints using neighborhood sizes 3 × 3, 5 × 5 and 7 × 7 respectively. (e)
is the result for neighborhood size 5 × 5, but with a rescaled (factor 100) distance
matrix. (f)-(h) show the results with constraints using first 8 filters, 24 filters and 40
filters, respectively. These results were computed using 3× 3 neighborhoods for spatial
regularization and the `2-norm for the filter constraints.

(a) (b) (c) (d)

Fig. 4.9. Best viewed in color. Spatial pattern formation induced by pure noise
and convex label constraints. (a) shows a random assignment W using the same
color coding as for the Voronoi polygons. Each panel (b)-(d) shows the result of labeling
a different random input image of type (a). All experiments were done using 3 × 3
neighborhoods, without cardinality constraints, and with filter constraints based on
40 filters and ‖ · ‖`1ε with ε = 0.1. The results demonstrate how the filter constraints
enforce both the scale and the spatial structure of fore- and background regions that
are randomly located due to the pure noise data.



5 Conclusion

We extended the smooth geometric image labeling approach of [2, 11] in order to
incorporate global convex constraints on the labeling result using linear filters in
the label space. This extension was mathematically formulated so as to preserve
smoothness of the overall approach. We showed how filters can be determined by
a generalized eigenvalue problem in order to represent statistical prior knowledge
about local shape and spatial relation. Experimental results demonstrate the
potential of the approach for imposing these constraints onto labelings of noisy
image data.

Our future work will focus on numerical aspects in order to make the ap-
proach more efficient for various applications. This includes, in particular, the
investigation of how filters of small support can be used to represent and enforce
the structure of labelings at multiple spatial scales.
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