Gradient Flows on a Riemannian Submanifold
for Discrete Tomography

Matthias Zisler', Fabrizio Savarino!, Stefania Petra?, and Christoph Schnérr!

Tmage and Pattern Analysis Group, Heidelberg University, Germany
2Mathematical Imaging Group, Heidelberg University, Germany

Abstract. We present a smooth geometric approach to discrete tomog-
raphy that jointly performs tomographic reconstruction and label as-
signment. The flow evolves on a submanifold equipped with a Hessian
Riemannian metric and properly takes into account given projection con-
straints. The metric naturally extends the Fisher-Rao metric from la-
beling problems with directly observed data to the inverse problem of
discrete tomography where projection data only is available. The flow
simultaneously performs reconstruction and label assignment. We show
that it can be numerically integrated by an implicit scheme based on a
Bregman proximal point iteration. A numerical evaluation on standard
test-datasets in the few angles scenario demonstrates an improvement of
the reconstruction quality compared to competitive methods.

1 Introduction

Discrete tomography [9] denotes the problem to reconstruct piecewise constant
functions from projection data, that are taken from few projection angles only.
Such extremely ill-posed inverse problems are motivated by industrial applica-
tions, like quality inspection. Regularization of such problems essentially rests
upon the fact that the functions to be reconstructed only take values in a finite
set of labels £ := {c, ...,cx } C [0, 1]. This is similar to the common image label-
ing problem in computer vision, with the essential difference that the function u
to be labelled is only indirectly observed. Specifically, after a standard problem
discretization resulting in the representation u € RY, projection data b given by

Au=b st. w, €L, Vi=1,...,N (1)

are observed, where the matrix A is underdetermined but known. The task is to
reconstruct u subject to the labeling constraints u; € L, Vi.

Related Work. A natural class of approaches are based on minimizing
convex sparsifying functionals of u (e.g. total variation) subject to the affine
subject constraints (1), but without the labeling constraints [14,8,7]. Unless
sufficient conditions for unique recovery are met, in terms of the number of
projection measurements relative to the complexity of the discontinuity set of u
[7], the performance of the necessary rounding post-processing step is difficult to
control, however. Likewise, a binary discrete graphical model from labeling was
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adopted by [10], and a sequence of s-t graph-cuts was solved to take into account
the affine projection constraints. An extension to the non-binary case (multiple
labels) seems to be involved. The authors of [15] minimize the ¢y-norm of the
gradient directly by a dynamic programming approach, but do not exploit the
set L of feasible labels for regularization.

Approaches that aim to enforce the labeling constraints by continuous non-
convez optimization include [18, 12, 20, 21]. Unlike our approach proposed below,
that limits the degrees of freedom by restricting the feasible set to a Riemannian
submanifold, these approach work in the higher-dimensional ambient Euclidean
space and hence are more susceptible to poor initializations and local minima.
A step towards alleviating these problems was recently done by [19], where a
different regularization strategy was proposed based on the Kullback-Leibler
(KL) divergence.

Further approaches that define the state of the art include [16,4]. The au-
thors of [16] proposed a heuristic algorithm that adaptively combines an energy
formulation with a non-convex polynomial representation, in order to steer the
reconstruction towards the feasible label set. Batenburg et al. [4] proposed the
Discrete Algebraic Reconstruction Technique (DART) algorithm which starts
with a continuous reconstruction by a basic algebraic reconstruction method,
followed by a thresholding operation. These steps, interleaved with smoothing,
are iteratively repeated to refine the locations of the boundaries. This heuristic
approach yields good reconstructions in practice, but cannot be characterized
by an objective function which is optimized.

We regard [4, 16, 20] as state-of-the-art approaches in our experimental com-
parison.

Contribution. We present a novel geometric approach to discrete tomogra-
phy by optimizing over a Riemannian submanifold of discrete probability mea-
sures with full support. Our work is motivated by the recent work [3], where the
ordinary labeling problem (with directly observed data) is solved by a Rieman-
nian gradient flow on a manifold of discrete probability measures that represent
label assignments. By restricting the feasible set to a submanifold, equipped with
a natural extension of the Fisher-Rao metric, we extend this approach to discrete
tomography. The resulting gradient flow takes into account the projection con-
straints and simultaneously performs reconstruction and label assignment. We
show that this flow can be numerically integrated by an implicit scheme requires
to solve a convex problem at each step. A comprehensive numerical evaluation
demonstrates the superior reconstruction performance of our approach compared
to related work.

Basic Notation. Functions like log and binary operations (multiplication,
subdivision) are applied component-wise to vectors and matrices, e.g., vw =
(...,v;w,...)T. The KL-divergence is defined by KL(z,y) = (z,log(x/y)) + (y—
x, 1) for both vectors and matrices with non-negative entries, where (-, -) denotes
the Euclidean scalar product. Weset 1 = (1,1,...,1)T and [n] = {1,2,...,n} for
n € N. The linear operator vec(-) maps matrices to vectors by stacking columns.
Finally ® denotes the Kronecker product.
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2 Approach

We briefly summarize the approach [3]. Then we extend this approach in order
to additionally take into account the affine subspace constraint: We construct a
smooth Riemanian gradient flow, for any smooth objective function, restricted
to the relative interior. Finally, we specify an objective function that is used for
the experimental evaluation.

Smooth Geometric Label Assignment. Each label ¢, € L is represented
by a vertex of the probability simplex e, € RX, and the set of feasible label
assignments to all pixels corresponds to the set of row-stochastic matrices with
full support, denoted by W C RfﬁK . In [3] a smooth geometric approach for
labeling is proposed, where W is turned into a Riemannian manifold using the
Fisher-Rao (information) metric [5]. For a given image u € RY, the distance
between each pixel u;, ¢ € [N] and each label ¢, € L, k € [K] is measured
and collected by a distance matrix D;i. Next this matrix is projected onto the
tangent space TV ~ Ty W = {T € RV*K | T1x = On} by subtracting pixelwise
the mean of D, ie. II(D) = D — +D1k1%. The projection II(D) in turn is
mapped to the manifold W by the so-called lifting map

exp: Wx TN W, (W, V) = expy (V) ':Lev (2)

: 5 ) w ' <W eV> ’
to obtain the likelihood matrix L = expy, (I1(D)). Next, spatial regularization
is performed by computing Riemannian means of the row vectors L; within a

spatial neighbourhood N () for each pixel ¢ € [N]. It is shown in [3] that these
means admit the closed-form solution

mg({L(W);}jeni)
(my({L(W)j}jen)) 1x)’

my({LW);} jenrn) = [ LOW); ™.
JEN(7)
3)

Finally, a labeling in terms of W € W is determined by maximizing the cor-
relation (W, S(W)). The optimization is carried out on the manifold YW by an
explicit Euler scheme for integrating the Riemannian gradient flow (assignment
flow).

Tomographic Assignment Flow. We now consider the situation where
the image data are only indirectly observed through the projection constraints
(1). To this end, we extend the approach [3] using techniques developed by [2],
in order to restrict the smooth Riemannian flow to assignments that respect the
projection constraints.

Our starting point is the observation that the Riemannian metric used in [3]
is induced by the Hessian of the convex Legendre function

S(W)i =

h(W) := (W, log(W) — 1x1%), (4)

with domain restricted to the relative interior of W = {W € RY*®: Wil =
1x}. In order to take into account the projection constraints (1), we introduce
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the assignment operator
P W RN, W Pe(W) = (In @ ch)vec(W) = We, (5)

that makes explicit the reconstructed function v = We in terms of the given
labels ¢ and the assignment W. Based on this correspondence and (1), we extend
the set W to
- NxK A(In®cT
F:{W:R+X ,Bvec(W):(lb)}, B:( ;N%é)). (6)
The following non-degeneracy property is crucial for the smooth geometric con-

struction below. The proof exploits the structure of B and properties of the
Kronecker product. We omit details due to the page limit.

Lemma 1 (rank of B). The matriz B has full row rank by construction, if the
measurement matrix A has full row rank.

Our next step is to extend the manifold W to a manifold F, based on the
extension of W to F. We adopt the convex Legendre function h(W') from above
and take as its domain the linear manifold M = Rf_fK . Then the Hessian
V2h(W) = & (componentwise inverse) smoothly depends on W € M and
defines the linear mapping
. DNXK NxK —
H(W) RY*XH® 5 RYX s U*—)H(W)U— (Uij/Wij)ie[N],je[K]' (7)
Based on the canonical identification of the tangent spaces Ty M ~ RVXE for
linear manifolds, the mapping H (W) defines the Riemannian metric

(U = @EHW)U, V), VYWeM, UV eRVEK (8)

Given some smooth objective J(W), the corresponding Riemannian gradient
field restricted to M is given by

Vad (W) = HW) 'VJ(W). (9)

Next we consider the smooth submanifold F := rint(F) = M N F of M with
tangent space Ty F ~ N (B). The metric on M induces a metric on F, and the
Riemannian gradient field of J(W) restricted to F is given by

Vudip(W) = Py (HW) v I(W)), (10)

where P%(B) is the (-, -)H -orthogonal projection onto the nullspace N'(B). Since
the matrix B has full rank due to Lemma 1, this projection reads

PP (HW) 'V I(W)) = vec ' [(I-(BDEEBT) "' BDIE) (D)~ vec[V I (W)]],
(11)

where Df, = Diag[vec(H(W))]. The vector —VyJz(W) for W € F is the

steepest descent direction in N'(B). Furthermore, minimization of an objective J
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on the Riemannian manifold (7, (-,-){};) amounts to find the solution trajectory

W (t) of the dynamical system

W(t)+VuJz(W(t) =0, W(0)=W"eF, (12)

with initial condition W° € F.
Objective Function. We adopt and modify the approach of [3] sketched in
Section 2, for our purpose. Defining the distance matrix D(W) := %(HPE(W)l -

ck||%)i€[N]’k€[K], with the assignment operator P, (W) given by (5) and a scal-

ing parameter p > 0, we compute a similarity matrix S (W) as described in
connection with (3). Based on S(W), we define the objective function

J(W, W) =KL (W, S(W)'*), a>0. (13)

Minimizing J with respect to W encodes two aspects. Firstly, the discrete assign-
ment distributions comprising W should be consistent with the spatially regu-
larized similarities S(W), that correspond to the lifted distances D(W) between
the reconstructed function PL:(W) and the labels c. Secondly, since W appears
as first argument of the KL-distance, W matches the prominent modes of the
discrete distributions comprising S(W) (cf. [11]), and hence enforces unique la-
belings. The damping parameter « enables to control this “rounding property”.

Since the assignment W is not given beforehand, we pursue an iterative
strategy and set W = WF to the current iterate, in order to compute W*+!
by minimizing (13). In the next section, we formulate this process in a more
principled way as a fixed point iteration, that properly discretizes and solves the
continuous flow (12).

3 Optimization

In this section we want to find a solution trajectory of the initial value problem
(12) associated with the steepest Riemannian gradient descent of the convex
objective function J in (13) on the smooth manifold F. Following [2], we refor-
mulate (12) as a differential inclusion for a time interval (T, Ths) corresponding
to the unique maximal solution of (12) and obtain

%Vh(W(t)) +VJ(W() e N(B):, W) eF, W) =w’ecF, (14
with h given by (4). Since J is convex, an implicit discretization yields the itera-
tive scheme: VA(WH 1) — VA(WE) + 1, VI (WETY) € N(B)*1, Bvec(WFH) =y
and W9 € F, where py, is a step-size parameter. These relations are just the opti-
mality conditions of the Bregman proximal point method with the KL-divergence
as proximity measure

A 1
W ¢ argmin J(W, W) + i KL(W,W") st. Bvec(W) =y. (15)
k

NXK
WeRL
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Algorithm 1: Iterated Primal Dual Algorithm

Init: choose the barycenter for W° € G, dual variable Q° € R™ and 7,0 > 0
Parameters: selectivity p > 0, discretization o > 0, trust region pr > 0

while not converged do
Warmstart for PD: W° = W* W = T, (WF), Q° = Q"***, n =1
while not converged do
W™ = argmin KL(W, W) + (W, PL(ATQ™)) + 1 KL(W,W™) (17)
wew T
n . n n 1 n
Q" =argmin(Q,b— AP@W" T W) + Q- Q"2 (18)
Q

n+<n+1
| ke—k+1, WrFewr
Output: W*

We solve (15) for fixed W* by an iterative algorithm to perform an implicit
integration step on the flow (12). In order to update the fixed W in J(W, W)
defined by (13), we set W = W*. Inserting into (15) and combining the KL-
divergences as a multiplicative convex combination with respect to the second
argument yields the fixed point iteration

k1 . oy 12— foyy it
W € arg min KL(W, (WF) ™ (S(WF)) 1+ ) sit. AP (W) =b, (16)
Wew

= Mk(Wk)

where the constraints W ¢ RNXK and Bvec(W) = y are rewritten as W € W
and AP (W) = b. Regarding convergence of the fixed point 1terat10n (16), we use
a non-summable diminishing step-size parameter px = 55557 HAPz:(W") B with
limy oo pr = 0. Hence the operator 1, becomes T}, — Id for & — oo and
the influence of the objective function J vanishes. When the iteration converges,
then (16) reduces to the KL-projection onto the fixed feasible set F. A rigorous
mathematical convergence analysis of the iterations (16) is left for future work.

Solving the Fixed Point Iteration. Algorithm 1 solves equation (16)
iteratively using the generalized primal dual algorithm [6]. The primal update
step (17) can be evaluated in closed form

W = argmin KLOW, W) + (W, PE(ATQ™) + - KLOW. W™ (199)
wew T

_ (W) ()7 exp(— HTPATM ) (19b)
(W)™ (W)™, exp(— 175 PE(ATQM)))




Gradient Flows on a Riemannian Submanifold for Discrete Tomography 7

The dual update step (18) admits a closed form as well,

QM = argénin@, b— APL(2W"™H — W) 4 %IIQ - Q"3 (20a)
= Q" + o (APL(2W™H — W) —b). (20b)

Parameter Selection. For the step-size parameters 7 and o of the iterated
primal-dual algorithm, we adopt the parameter values of [6, Example 7.2] and
set 7 = /K /L3, for the primal update and o = 1/v/K for the dual update.
This choice implies that the condition o7||AP.()||?> < 1 for convergence holds,
with the operator norm || AP (-)|| = sup) ., <1 |[A(In®@c")z[2 = max; [[(A(Iy®
¢T));ll2. This reflects the fact that the negative entropy is 1-strongly convex with
respect to the Li-norm when restricted to the probability simplex.

4 Numerical Experiments

We compared the proposed approach to state-of-the-art approaches for dis-
crete tomography, including the Discrete Algebraic Reconstruction Technique
(DART) [4], the energy minimization method of Varga et al. [16] (Varga), and
the layer-wise total variation approach (LayerTV') [20].

Setup. We adapted the binary phantoms from [17] to the multi-label case,
shown as phantom 1,2 and 3 in Figure 1. Phantom 4 is the well-known Shepp-
Logan phantom [13]. We simulated noisy scenarios by applying Poisson noise
to the measurements b with a signal-to-noise ratio of SNR = 20 db. The geo-
metrical setup was created by the ASTRA-toolbox [1], where we used parallel
projections along equidistant angles between 0 and 180 degrees. The width of the
sensor-array was set 1.5 times the image size, such that every pixel is intersecting
with at least one single projection ray.

Implementation details. The subproblems of Algorithm 1 were approxi-
mately solved by the generalized PD algorithm [6]. For the multiplicative updates
(19b), we adopted the renormalization strategy from [3] to avoid numerical is-
sues close to the boundary of the manifold, that correspond to unambigous label
assignments. The outer iteration was terminated when ||APz(W*) — bl|2 < 0.1.
For the geometric averaging (cf. (3) and (13)), we used a 3 x 3 neighborhood
for the smaller phantom 1 and 5 x 5 for all others. In order to reconstruct from
noisy measurements, we modified the proposed approach by using the squared
Lo-reprojection error as relaxed dataterm, so that the objective (13) reads

T, W) = KL (W, SOF)1) + L AP(W) ~ b3, a>0, (1)

which is smooth and convex in W as well. In this case, the fixed point iteration
(16) is applied to the modified objective (21) and the dual update step (18) of
algorithm 1 is additionally rescaled, i.e. Q"™ = (Q" + o (AP, (2W" T —Wn) —
b))/(1 + o) compared to (20b).
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Regarding DART we used the public available implementation included in
the ASTRA-toolbox [1], whereas for Varga [16] and LayerTV [20] we used our
own implementations in MATLAB. We used the default parameters of the com-
peting approaches as proposed by the respective authors. However, since the
test-datasets differ in size, we slightly adjusted the parameters in order to get
best results for every algorithm and problem instance.

Results. Figure 1 summarizes the numerical evaluation of the approaches for
increasing (but small) numbers of projections, in the noiseless case (filled mark-
ers) and in the noisy case (non-filled markers), with Poisson noise SNR = 20
dB. Each test-dataset is depicted in the leftmost column, followed by the relative
pixel error and runtime. The proposed approach achieved perfect reconstructions
with a small number of projection angles in the noiseless case. Only LayerTV
needed one projection less at phantom 3 and 4. LayerTV however tends to re-
turn non-integral solutions when the regularization parameter is large and then
requires a special rounding strategy to obtain a meaningful reconstruction. In
noisy scenarios, LayerTV performs better due to use of inequality projection
constraints, followed by the proposed method that outperforms both DART and
Varga. Figure 2 shows the poor “implicit data terms” generated by the tomo-
graphic constraints in case of phantom 2, to illustrate the severe ill-posedness of
these inverse problems (see the caption for more details).

Considering the runtime (right plots from figure 1), DART is the fastest
approach followed by Varga. The proposed approach and LayerTV are clearly
consuming more runtime to return more accurate solutions. In the noiseless and
with a sufficient projection angles, the proposed approach is faster. We point out
that the proposed approach could be easily parallelized using graphics cards. In
figure 3 and 4 the visual results are displayed for the phantoms 2 and 3,

5 Conclusion and Future Work

We presented a novel smooth geometric approach for jointly solving tomographic
reconstruction and assignment. We derived a suitable Riemannian structure on
the feasible set in order to optimize a smooth objective function on a manifold
that respects the projection constraints. The Riemannian gradient flow combines
tomographic reconstruction and labeling in a smooth and mathematically sound
way.

Our future work will include a rigorous mathematical convergence analysis of
the fixed-point iteration (16) and of the stability of the corresponding Rieman-
nian gradient descent flow (12), that entails iterative updates W = W¥* of the
objective function J(W, W) Such issues are not covered by standard convex pro-
gramming. A promising extension of the proposed approach concerns the ability
to handle inequality constraints, in order to further improve the performance in
scenarios with high noise levels.
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1. Evaluation of the approaches for the different test-datasets and increasing (but

small) numbers of projections angles, in the noiseless case (filled markers) and in
the noisy case (non-filled markers), noise level SNR = 20 dB. The relative pixel
error and runtime is displayed. The proposed approach gives perfect reconstructions
with a small number of projection angles in the noiseless case and also returns good
reconstructions in the presence of noise, compared to the other approaches. The single
competing approach, LayerTV, uses a special rounding strategy to obtain meaningful
solutions (phantom 3 and 4) and a dedicated data term to cope with Poisson noise.
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Fig. 2. “Implicit data terms” generated by the tomographic constraints, in terms of
the reprojected dual variable ATQ (scaled to [0,1] and inverted) after convergence, for
WeberMulti 2 and an increasing number of projection angles. The proposed approach
achieves a perfect reconstruction from 4 projection angles only. The missing information
is effectively compensated by geometric label assignment and spatial coherence due to
geometric averaging.

Proposed Proposed LayerTV LayerTV DART DART Varga Varga

noiseless noise case noiseless noisecase noiseless noise case noiseless noise case

Fig. 3. Experimental results for phantom WeberMulti 2.
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Fig. 4. Experimental results for phantom WeberMulti 3.
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