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Abstract. We introduce and study the unsupervised self-assignment
flow for labeling image data (euclidean or manifold-valued) without spec-
ifying any class prototypes (labels) beforehand, and without alternating
between data assignment and prototype evolution, which is common in
unsupervised learning. Rather, a single smooth flow evolving on an el-
ementary statistical manifold is geometrically integrated which assigns
given data to itself. Specifying the scale of spatial regularization by ge-
ometric averaging suffices to induce a low-rank data representation, the
emergence of prototypes together with their number, and the data label-
ing. Connections to the literature on low-rank matrix factorization and
on data representations based on discrete optimal mass transport are
discussed.

1 Introduction

The assignment flow introduced by [3] is a smooth dynamical system for image
labeling. Its state is given by discrete distributions (assignment vectors) assigned
to each pixel, like in established discrete graphical models [13]. These states
evolve on probability simplices equipped with the Fisher-Rao metric in order to
minimize locally a distance to class prototypes, commonly called labels. Label
assignments emerge gradually as the flow evolves and are spatially regularized
by geometric averaging over local neighborhoods. Convergence analysis for a
particular multiplicative update scheme was reported in [4].

Due to its smoothness and the wide range of sparse numerical updates that
can be derived by geometrically integrating the assignment flow [22], this ap-
proach provides an attractive alternative to established discrete graphical models
for image labeling [13], that rely on convex relaxations for large-scale problems,
which do not scale well with increasing problem size or increasing numbers of
labels. The evaluation of graphical models using the assignment flow has been
demonstrated recently [12].

A common problem of supervised image labeling concerns the specification
of labels beforehand, that is to determine prototypical features that properly
represent different data categories into which given image data should be classi-
fied in a spatially coherent way. As a remedy, the adaption of labels during the
assignment process was proposed recently [23]: Starting with an ‘overcomplete’
dictionary of prototypes (labels) that is efficiently computed beforehand using
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conventional metric clustering, prototypes evolved on a corresponding feature
manifold while being coupled to the assignment flow.

While this approach largely compensates the lack of prior knowledge of ad-
equate labels, it does not directly address the fundamental question: How may
prototypes emerge directly from the data during the assignment process without
any prior coding using conventional clustering? This paper describes our first
step towards a completely unsupervised approach to image labeling.

Contribution. Our approach is to apply the supervised assignment flow
(Section 2) to the self-assignment of the given data (Section 3). This gives rise
to a factorized affinity matrix that is parametrized by the assignments and con-
verges to a low-rank representation of the data, solely induced by the scale of
the spatial regularization performed by the assignment flow. This process also
defines the formation of feature prototypes (labels) and a proper number of
classes.

Related work. Our work utilizes information geometry and relates to the
current dynamically evolving literature on clustering using low-rank matrix fac-
torizations, and on data representation using discrete optimal mass transport.
These relations are discussed in Section 4 after presenting our novel approach.

We conclude with experiments in Section 5. In order to illustrate one-to-one
the content of the preceding sections, our implementation does not involve any
further changes of the assignment flow. In particular, we did not change and
adapt the numerics in order to exploit the low-rank structure for large problem
sizes right from the beginning. We leave such aspects for future work and used
small and medium problem sizes for our experiments, to be able to apply the
assignment flow directly to the self-assignment of given data, and to study how
labels emerge in a completely unsupervised way.

2 Assignment Flow: Supervised Labeling

We summarize the assignment flow for supervised image labeling introduced by
[3]. Let G = (I, E) be a given undirected graph with vertices i ∈ I indexing
data FI = {fi : i ∈ I} ⊂ F given in a metric space (F , d). The edge set E
specifies neigborhoods Ni = {k ∈ I : ik = ki ∈ E} ∪ {i} for every pixel i ∈ I,
together with positive weight vectors wi ∈ rint∆|Ni|, where ∆n ⊂ Rn denotes
the probability simplex.

Along with FI , prototypical data (labels) GJ = {gj ∈ F : j ∈ J} are given
representing classes j = 1, . . . , |J |. Supervised image labeling denotes the task to
assign precisely one prototype gj to each datum fi in a spatially coherent way.
These assignments are represented at each pixel i by probability vectors

Wi ∈ S := rint∆|J|, i ∈ I (1)

on the relative interior of the simplex ∆|J|, that together with the Fisher-Rao
metric gFR becomes a Riemannian manifold denoted by S. Collecting all assign-
ment vectors into a strictly positive, row-stochastic matrix

W = (W1, . . . ,W|I|)
> ∈ W = S × · · · × S ⊂ R|I|×|J| (2)
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defines a point on the assignment manifold W. Image labeling is accomplished
by geometrically integrating the assignment flow (the r.h.s. is defined below)

Ẇ = ΠW

(
S(W )

)
, W (0) = 1W , (3)

that evolves from the barycenter W (0) towards pure assignment vectors, i.e. each
vector Wi approaches the ε-neighborhood of some unit vector at some vertex of
S and hence a labeling after trivial rounding.

In order to explain the rationale behind (3), we need the following maps based
on the affine e-connection of information geometry [2] in place of the Levi-Civita
connection on the tangent bundle of the manifolds S andW: With tangent space
T0 = TpS independent of the base point p ∈ S, we define

R|J| 3 z 7→ Πp(z) =
(

Diag(p)− pp>
)
z ∈ T0, (4a)

S × T0 3 (p, v) 7→ Expp(v) =
e
v
p

〈p, e
v
p 〉
p ∈ S, (4b)

S × S 3 (p, q) 7→ Exp−1p (q) = Πp log
q

p
∈ T0, (4c)

S × R|J| 3 (p, z) 7→ expp(z) = Expp ◦Πp(z) =
pez

〈p, ez〉
∈ S, (4d)

where multiplication, subdivision and the exponential function e(·) apply compo-
nentwise to strictly positive vectors in S. Corresponding maps ΠW ,ExpW , expW
in connection with the product manifold (2) are defined analogously.

The vector field defining the assignment flow on the right-hand side of (3) is
defined as follows. Given the metric d, data FI and labels GJ , distance vectors

Di = (d(fi, g1), . . . , d(fi, g|J|)
)>

are defined at each pixel i ∈ I and mapped to
the assignment manifold by

L(W ) = expW
(
− 1

ρD
)
∈ W, Li(Wi) = expWi

(
− 1

ρDi

)
=

Wie
− 1
ρDi

〈Wi, e
− 1
ρDi〉

, (5)

where ρ > 0 is a user parameter for normalizing the scale of the data. These
likelihood vectors represent ‘data terms’ in conventional variational approaches,
and they are spatially regularized in a way conforming to the geometry of S, to
obtain

S(W ) = Rw(L(W )) ∈ W, Rwi (W ) := ExpWi

( ∑
k∈Ni

wik Exp−1Wi
(Wk)

)
. (6)

The assignment flow (3) is well-defined based on (6). In addition, following [3],
it may also be interpreted from a variational perspective as approximate Rie-
mannian gradient ascent flow Ẇ = ∇WJ(W ) with respect to the correlation
functional J(W ),

∇WJ(W ) = ΠW (∇J(W )), J(W ) = 〈W,S(W )〉, (7)

based on the approximation of the Euclidean gradient ∇J(W ) ≈ S(W ), which
is justified by the slow dynamics of S(W (t)) due to averaging (6), relative to the
fast dynamics of W (t).
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3 Approach: Label Learning through Self-Assignment

In this section we generalize the assignment flow to completely unsupervised
scenarios. Specifically, we do not assume a set of prototypes GJ to be given.
Rather, we initially set GJ = FI and consider each datum both as data point
fi ∈ FI and (its copy) as label fi ∈ GJ . Consequently, the distance matrix of (5)
is now defined as

D =
(
d(fi, fk)

)
i,k∈I . (8)

Integrating the assignment flow then performs a spatially regularized
self-assignment of the data, based on which the set GJ evolves and forms proto-
types in an unbiased and unsupervised way.

We regard these prototypes as latent variables denoted by gj ∈ GJ , to be
distinguished from fi ∈ FI which are both data points and labels.

3.1 Rationale

Due to initially setting GJ = FI , we have J = I and the row-stochastic as-
signment matrix (2) is quadratic: W ∈ W ⊂ R|I|×|I|. Adopting from [3] the
interpretation of the entry Wij as posterior probability of assigning label fj
conditioned on the observation fi,

Wij = P (j|i), j ∈ J, i ∈ I, P (i) =
1

|I|
, i ∈ I (9)

together with uniform prior probabilities P (i) due to the absence of any super-
vision, Bayes’ rule yields the probability of observing datum fi conditioned on
the label fj ,

P (i|j) =
P (j|i)P (i)

P (j)
=

P (j|i)P (i)∑
l∈I P (j|l)P (l)

(9)
=

P (j|i)∑
l∈I P (j|l)

(9)
=

Wij∑
l∈IWlj

(10a)

=
(
WC(W )−1

)
ij

with C(W ) := Diag(W>1|I|), (10b)

that is by normalizing the columns of W . Since the rows of W are normalized by
definition, this symmetry reflects our ansatz to form prototypes from the entire
given data set FI .

Next we introduce and compute the probabilities of self-assignments fi ↔ fk
by marginalizing over the labels fj , j ∈ J ,

Aki(W ) :=
∑
j∈J

P (k|j)P (j|i) (9),(10)
=

∑
j∈J

(WC(W )−1)kjWij = (WC(W )−1W>)ki.

(11)
The resulting (self)-affinity matrix

A(W ) ∈ R|I|×|I|+ , A(W ) = A(W )>, A(W )1|I| = A(W )>1|I| = 1|I| (12)

is nonnegative, symmetric and doubly stochastic. It represents the mutual influ-
ence of the features at all pixels, as a function of the assignment matrix W .
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As a consequence, we propose to replace the objective (7) used in the su-
pervised case which maximizes the correlation of assignments and a spatially
regularized representation of the affinity between data and prototypes, by the
objective function

min
W∈W

E(W ), E(W ) = 〈D,A(W )〉, (13)

which in the present unsupervised scenario minimizes the correlation between the
data (distance) matrix D (8) and the self-affinity matrix A(W ): whenever the
feature distance between pixel i and k is large, the affinity probability Aik(W )
between this pair of pixels should decrease, subject to mass conservation (12).

The latent (hidden) prototypes GJ that emerge from the data FI are implic-
itly determined by the column-normalized assignment matrix (10) that mini-
mizes (13): entries (P (i|j))i∈I signal the relative contribution of each data point
i to forming the prototype gj . How gj is actually computed depends on the
nature of the feature space F whose properties only matter at this point: a cor-
responding weighted average has to be well-defined. In the simplest case, the
space F is Euclidean and prototype gj , j ∈ J is defined as the convex combina-
tion of all data points fi, i ∈ I with the probabilities P (i|j), i ∈ I as coefficients,
i.e.

gj =
∑
i∈I

(
WC(W )−1

)
ij
fi. (14)

Of particular interest is the capability of this process to represent given data
by few prototypes. Our approach accomplishes this in a natural way, solely
depending on the scale at which spatial regularity is enforced in terms of the
neighborhood size |Ni| for geometric averaging (6).

3.2 Computational Approach

We explain our approach as adaption of the supervised assignment flow (7) to
unsupervised scenarios.

The vector field on the right-hand side of (7) involves the geometrically and
spatially averaged likelihood vectors (5), which in turn result from mapping the
feature distance matrix D to L(W ) ∈ W on the assignment manifold. In view
of the data terms of established variational segmentation approaches (see [6, 15]
for the binary and non-binary case, respectively), we regard D = ∇W 〈D,W 〉 as
Euclidean gradient of such a basic data term.

A natural way to adapt the assignment flow to the present unsupervised
setting is to replace this gradient by the Euclidean gradient of the objective
(13), that is we redefine (5) as

L(W ) = expW
(
− 1
ρ∇E(W )

)
∈ W, Li(W ) =

Wie
− 1
ρ∇E(W )i

〈Wi, e
− 1
ρ∇E(W )i〉

, ρ > 0 (15)

with the gradient of (13) given by

∇E(W ) = 2DWC(W )−1 − 1|I| diag
(
C(W )−1W>DWC(W )−1

)>
, (16)
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where diag(·) denotes the vector of diagonal elements of a matrix.
Besides this modification of (5), the remaining formulas (6), (7) do not

change. The unsupervised self-assignment flow, therefore, reads

Ẇ (t) = ΠW (t)

(
S(W (t))

)
, W (0) = exp

1W
(−εD) ∈ W, 0 < ε� 1, (17)

where the initial point is a small perturbation of the barycenter 1W , in order to
break the symmetry of the expression defining the gradient (16) that would result
from choosing W = 1W as initial point. For numerical schemes that properly
integrate flows of the form (17) evolving on the manifold W, we refer to [22].

We point out that the perturbed initialization (17) is not required in the
supervised case in which distances are not averaged: compare L(W ) of (15) with
the supervised version (5). Indeed, comparing again (5) and (15), we may view
the gradient (16) as a time-varying distance matrix

D(t) = D(W (t)) := ∇E(W (t)), D(0) = ∇E
(

exp
1W

(−εD)
)
, (18a)

D(t)ij
(16)
= 2〈Di,W

j
C〉 − 〈W

j
C , DW

j
C〉 with W j

C := (WC(W )−1)∗j , (18b)

that emanates from (8) and takes into account the formation of the latent proto-
types gj , j ∈ J , caused by the self-assignment process (17). The prototypes are

implicitly represented by the normalized column vectors W j
C of the assignment

matrix W , where each component (W j
C)i = P (i|j) (see (10)) represents the sup-

port (affinity) of pixel i ∈ I. Accordingly, distances Dij = d(fi, fj) due to (8)
are replaced in (18) by the time-varying averaged distances

D(t)ij = 2E
[
d(fi,FI)

∣∣gj]− E
[
d(FI ,FI)

∣∣gj], (19a)

where E[d(fi,FI)
∣∣gj] =

∑
k∈I

P (k|j)d(fi, fk), (19b)

of feature fi to all features fk supporting prototype gj .

3.3 Spatially Regularized Optimal Transport

Problem (13) may also be regarded as discrete optimal transport problem [17],
with D as cost matrix, with a transportation plan A(W ) parametrized by the
assignment matrix W , and with marginal constraints (12) implied by the con-
straint W ∈ W of (13).

At first glance, this problem looks uninteresting since a uniform measure
1|I| assigned to all data is transported to another uniform measure (see (12)).
This, however, reflects the fact that our approach is completely unsupervised.
Moreover, since Dii = d(fi, fi) = 0, i ∈ I, the trivial solution A∗ = I would
attain the lower bound 0 ≤ E(W ) = 〈D,A〉 and hence be optimal, if A were not
constrained through the parametrization A = A(W ). And this trivial solution
would correspond to the (useless) situation in which each data point is kept as
prototype, which can only happen if assignment to pixels do not interact at all.
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This trivial situation is ruled out through the spatial interaction of pixel as-
signments in terms of the geometric averaging map (6), which is a key property
of the assignment flow (17). This interaction induces the formation of a (depend-
ing on the spatial scale: much) smaller subset of prototypes as latent variables
and in turn a low-rank factorization of the affinity matrix (12), because many
components j of the diagonal matrix C(W ) in (11) converge to 0. Rewriting the
objective (13) as

〈D,A(W )〉 (11)= 〈D,WC(W )−1W>〉 = 〈DWC−1,W 〉 (18b)= 〈DWC ,W 〉, (20)

with column-normalized, asymmetric assignment matrix WC , admits the follow-
ing interpretation complementing the discussion of (18) and takes into account
that spatial regularization is ‘built in’ the unsupervised assignment flow (17):

Minimizing (13) through the flow (17) amounts to spatially regularized opti-
mal transport of the uniform measure 1|I| assigned to all data points fi, i ∈ I,
to the positive measure w(GJ(t)),

1|I| = W (t)1|I| → W (t)>1|I| =: w(GJ(t)), (21)

where the latter concentrates on the effective support J(w) ⊂ I of the emerging
prototypes gj(t), j ∈ J . The corresponding cost matrix DWC = DWC(t) of (20)
for determining the transport plan W (t) is given by the initial distance matrix
(8) after averaging these distances with respect to the probability distributions
that correspond to the normalized columns of W (t),(

DWC(t)
)
ij

(10)
=
∑
i′∈I

P (i′|j)(t)d(fi, fi′)
(19)
= E

[
d(fi,FI)

∣∣gj], j ∈ J. (22)

At each point of time t, the assignment matrix W (t) concentrates measure on
those prototypes gj , j ∈ J (implicitly represented by the support of (21)) for
which the average (‘within-cluster’) distances (22) are small.

4 Related Work

The literature on unsupervised learning and clustering is vast. We briefly com-
ment on relations of our new approach to few closely related works from two
general viewpoints: nonnegative matrix factorization and discrete optimal trans-
port – see [7] and [17, 18] as general references.

4.1 Nonnegative Matrix Factorization (NMF)

NMF is concerned with representing a nonnegative input data matrix F ∈ R|I|×d+

(d is the feature dimension) in terms of a product of two nonnegative matrices
G,H ≥ 0. Non-negativity is key for interpreting the factors as weights H and as
a dictionary G of prototypes. In addition, the rank constraint rank(HG>) ≤ k
has to be supplied as user parameter.
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Archetypal Analysis [8] is an early work where the representation of data by
prototypes was proposed. The factorization approach reads

F ≈ HG>F (23)

where both nonnegative factors G> and H are constrained to be row-stochastic,
so that G>F are prototypes formed by convex combinations of data (feature)
vectors that, in turn, are combined in a convex way using the weights H. The
factorization is determined as local minimum by alternating minimization. Al-
ternating updates of data assignment and prototype formation is common to
most algorithms for unsupervised learning.

A major shortcoming of this early work is that the algorithm directly oper-
ates on the data rather than abstracting from the data space through a distance
or a similarity function, as is common nowadays in machine learning. Likewise,
equation (8) shows that we abstract from the data space through distance func-
tions which could simply be induces by Euclidean norms or – when using more
involved data models – by Riemannian distances of manifold-valued features.

Zass and Shashua [21] studied the clustering problem in the form

max
G
〈A(F ), GG>〉 subject to G ≥ 0, G>G = I, GG>1 = 1 (24)

where the data F are represented by any positive-semidefinite, symmetric affinity
matrix A(F ). In particular, they showed that all three constraints together imply
hard clustering which is combinatorially difficult, and that the second orthogo-
nality constraint which accounts for normalization as done with basic spectral
relaxations [19, 16], is the weakest one. Accordingly, they proposed a two-step
procedure after dropping the second constraint: compute the closest symmetric
doubly-stochastic nonnegative approximation of the data matrix A(F ), followed
by a second step for determining a completely positive factorizationGG>, G ≥ 0.
The same set-up was proposed by [20] except for determining a locally optimal
solution in a single iterative process using DC-programming. Likewise, [14] ex-
plored symmetric nonnegative factorizations but ignored the constraint enforcing
that GG> is doubly-stochastic which is crucial for cluster normalization.

These works are close to our approach (13) (the distances Dij to be min-
imized are turned into affinities by (15)), in that A(W ) given by (11), (12) is
a nonnegative, symmetric, doubly-stochastic low-rank factorization whose fac-
tors are not constrained to be orthogonal. Key differences are that we determine
A(W ) = WC(W )−1W> by a single smooth continuous process (17) that may be
turned into a discrete iterative process performing numerical integration tech-
niques [22], and that a numerical low rank is induced by spatial regularization.

4.2 Discrete Optimal Mass Transport (DOMT)

Authors of [5] adopted an interesting viewpoint on the clustering problem: as-
sociating a sample distribution q with the given data and a distribution p with
an unknown subset of the data regarded as prototypes, the problem of deter-
mining the latter is defined as the task to minimize the transport costs between
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q and p, subject to a cardinality (sparsity) constraint on p in order to obtain a
smaller subset of representative prototypes. The combinatorially hard cardinal-
ity constraint is turned into a specific convex penalty, imposed on the transport
map having p as marginal. Since the number of data points in our scenarios is
already large, working in the ‘lifted’ space of transport mappings with quadratic
dimension is computationally infeasible, however.

The recent work [11] provides a related and natural reformulation of the clus-
tering problem based on discrete optimal transport. Prototypes are defined as
Wasserstein barycenters [1, 9] of the assignment distributions, and the squared
Wasserstein distance is decomposed into a sum of within-cluster and between-
cluster distances, analogous to the classical decomposition of the total scatter
matrix associated with patterns in a Euclidean feature space [10]. The authors
promote low-rank transport maps not only to cope with the curse of dimension-
ality but also as an effective method to achieve stability under sampling noise.

The relations to our work are not as direct as the relations to work on NMF
discussed in Section 4.1. On the one hand, the objectives (13), (20) together with
the constraints admit an interpretation as DOMT, and our approach involving
spatial regularization also leads to low-rank transport maps. On the other hand,
averaging for prototype formation is based on the geometry of the Fisher-Rao
metric rather than on the Wasserstein distance. We leave a more detailed dis-
cussion of these interesting aspects for future work.

5 Experiments

We demonstrate the proposed unsupervised self-assignment flow (USAF),
Eq. (17) by depicting the self-assignments of various scenes.

Implementation. The USAF was integrated numerically using the geomet-
ric Euler scheme [22] with step-size h = 1.0, together with the renormalization
strategy from [3] with ε = 10−10, termination criterion (average entropy ≤ 10−3)
which ensures almost unique assignments. Default values are ρ = 0.1 (scale nor-
malization), a |N | = 3 × 3 neighborhood with uniform weights wi for spatial
averaging and the `1-norm for the distance matrix of (5). We restricted the prob-
lem size to 64 × 64 pixels, since exploiting numerically the low-rank structure
for larger problem sizes is beyond the scope of this paper. Finally, for Euclidean
data, the self-assignments are ui =

∑
j∈JWijgj , i ∈ I with gj due to (14).

Parameter influence. Figure 1 illustrates the influence of the only two user
parameters on the self-assignment (labeling) of prototypes the emerge from the
RGB input data. We observe that increasing the spatial scale (averaging) or the
selectivity parameter reduces the number of prototypes.

Comparison with supervised assignment flows (SAF) [3] and un-
supervised assignment flows (UAF) [23]. We adopted the implementation
from [3, 23] and determined first the effective number k of protoypes using USAF,
given by rank(W ), and then used k-means to determine also k prototypes for
both (SAF: prototypes are fixed) and (UAF: prototypes may evolve). The com-
parison (Figure 2) shows that decoupling prototype formation and spatial infer-
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ρ = 0.01 ρ = 0.1 ρ = 0.5

input |N
|=

3
×

3
|N
|=

5
×

5
|N
|=

7
×

7

Fig. 1. Unsupervised image labeling through self-assignment of RGB data, depending
on |N | and ρ. Increasing either value decreases the number of prototypes.

ence (SAF and UAF) leads to labelings that mix spatial scales in a way that is
difficult to control. The self-assignment returned by (USAF: keeping the default
value ρ = 0.1 fixed), on the other hand, clearly demonstrates that prototype
formation is solely determined by spatial scale, i.e. by a single parameter.

Manifold valued data. Figure 3 shows S1-valued orientation data (panel
‘angular’) extracted from the fingerprint image using the structure tensor. The
USAF returns a natural partition in terms of prototypical orientations extracted
from the data itself, just based on the spatial scale at which the USAF op-
erates. This happens without extra costs, since USAF separates data from the
assignment manifold and hence manifold-specific operations are not needed. Pro-
totypes on the manifold may be computed, of course, as weighted Riemannian
means using the probabilities of (10).

6 Conclusion

We presented a novel geometric flow for completely unsupervised image label-
ing. A clear probabilistic interpretable stochastic factorization of the self-affinity
matrix constitutes a low-rank representation of the input data, whereas the com-
plexity (number of effective prototypes) is exclusively induced by spatial regu-
larization, which is performed in an geometric and unbiased way. Experiments
demonstrated the approach on Euclidean and manifold valued data.

In future work, we plan to exploit the low-rank structure by globally re-
stricting the complexity of the solution, which immediately enables handling
large problem instances.

Acknowledgement. Support from the German Science Foundation, grant GRK
1653, is gratefully acknowledged.
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input (SAF)[3] (UAF) [23] (USAF)

Fig. 2. Comparison of supervised (SAF), unsupervised (UAF) and self-assignment
(USAF) flows. The right-most column depicts the prototypes GJ returned by the USAF,
solely determined by the spatial scale, as the corresponding labeling (partition) reflects.
By contrast, both SAF and UAF mix spatial scales due to prespecified prototypes.

original angular data (USAF) overlay

0 π
4

π
2

3π
4

π

Fig. 3. Manifold valued data. S1-values angular data are extracted as input data
from a fingerprint image. The USAF, operating with 5 × 5 neighborhoods, returns
|GJ | = 6 prototypes and a natural labeling (partition) on W, without any operation on
the data manifold F , due to the separation of F and W. Nevertheless, the partition
does reflect the geometry of F : orientations 0 and π are identified, for example.
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