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Abstract We present a two-stage approach to the simultascanning device acquires unstructured and noisy point mea-
neous detection and registration of multiple instances-of i surements. The objective is to detect reliably and to deter-
dustrial 3D objects in unstructured noisy range data. Thenine accurately the pose of the object instances in terms
first non-local processing stage takes all data into accourf rigid body transformations for subsequent tasks, such as
and computes in parallel multiple localizations of the abje picking individual objects by a robot.

along with rough pose estimates. The second stage computes In this context, we focus on the following requirements:

a_ccurate regi;trations for_all_det_ected object instanoéss i (a) The approach should not rely on propertiespécific
vidually by using local optimization. _ objects, such as the geometry of flat disks, for instance.
Both stages are designed using advanced numerical tech- Rather, we only require as input a sparse point sample
niques, large-scale sparse convex programming, and second ¢ the object’s surface, obtained from a CAD model if
order geometric optimization on the Euclidean manifolél, re available or by direct measurements if not. This enables
spectively. They complement each other in that conflicting  faviple adaption to novel scenarios by non-experts as
interpretations are resolved through non-local convex pro | ,cqr
cessing, followed by accurate non-convex local optimézati ) Numerous ambiguities due to object symmetries and oc-
based on sufficiently good initializations. , clusion require a non-local contextual first processing
As input data a sparse point sample of the object's Sur-  g¢aq6 in order to reliably detect multiple object instances
face is required exclusively. Our experiments focus on in- o4 rough pose estimates. The latter should be suffi-
dustrial applications w_here multiple 3D object instanaes a ciently accurate to avoid problems with local minima
randomly assembled in a bin, occlude each other, and un- ¢ 5 \hsequent pose estimation which is an intrinsically
structured noisy range data is acquired by a laser scanning ,5n_convex problem.
device. (c) The subsequent numerical pose estimation should ad-
equately take into account the geometry of the mani-
fold of Euclidean transformations so as to minimize the
number of iterations while having a large basin of at-
traction to the correct local minimum.

1 Introduction

1.1 Overview and Motivation

This paper elaborates our conference contribution [11¢tvhi
We focus on computer vision techniques for industrial taskgontains an abridged version of (c) to optimize an objective
as illustrated in Fig. 1. Multiple instances of an arbitrary functional proposed in [12], and additionally presents the
rigid 3D object are randomly assembled in a bin. A lasemon-local first processing stage (b). Our specific contribu-
tions are detailed in Sect. 1.3.
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Fig. 1 Visualization of industrial scenarios motivating our work. Aéa scanner is mounted on a linear axis and records the scenét@nta
multiple objects randomly assembled in a bin. Substantial selfision, noise, and unstructured sparse measurements render thertagime
object detection and registration difficult.

work in order to elucidate the specific properties of our apiarge the region of attraction. A major drawback concerning

proach discussed under (b) and (c) above, and the way thetee representatiorof the problem remains, however, in par-

processing stages complement each other. ticular when dealing with unstructured point sets: explici
correspondences increase both the non-convexity and the

Robust Iterative Registration The problem to register two no n-s_moothness_ O.f th_e objective f_unchon, and gaining in-
point sets amounts to the chicken-and-egg problem of desi'ghtlnto the optimization prob_lem IS h_arr_1pered by the com-
termining simultaneously point correspondences and d rigipl'cated s_tructure of the doma|n of optimization compgsin
transformation. Having solved either problem, the other on bothEuclidean transformations and correspondence.
becomes trivial. Consequently, most approaches proceed in In order to obtain an optimization criteria that avoids
an alternating fashion: given an estimate of the transfermacomputing corresponding points in each iteration, Mitra et
tion, correspondence can be determined followed by imal. [37] as well as Pottmann et al. [42] approximate the ob-
proving the estimated transformation, and so forth. The projective distance by local quadratic functions that repmese
totypical representant is the Iterative Closest Point {I@lP  the distance of certain points to the scene. Another way to
gorithm [8] that is due to its simplicity still a state-ofettart  avoid the explicit determination of correspondence has bee
algorithm [47,49,59]. suggested by Tsin and Kanade [54], Jian and Vemuri [31],
It is well known that this two-step iteration is suscepti- and Wang et al. [56]. By representing point clouds of both
ble to noise and poor initialization, and numerous variantshe scene and the model by mixture distributions, registra-
including [25,43,46] have been suggested in order to erton can be achieved by minimizing the squafediistance



[54,31] or the Jensen-Shannon divergence [56] between twan-line manner. As detailed in Sect. 2, both objectives are
distributions. Compared to [37,42] this avoids exhaustiveaccomplished by convex optimization.
pre-computation of the local distance approximation at the
cost of more expensive function evaluations. L Scale C P oG _
As we prefer this class of approaches due to dealing with arge-scaie Lonvex Frogrammingt-onvex programming
. . . .~ and models pervade most disciplines and current work on
unstructurechoisy point sets, we adopt mixture distributions . L . : o
; L empirical data processing, including reasoning with dicti
to model scene and object measurements in this paper. The * . )
. . paries [14], compressed sensing [20], graphical models and
advantage of the resulting correspondence-independent o, ) . .
S . . S . . inference [55], and machine learning [5]. Discrete and con-
jective function for registration is gained by loosing tlesp . o
. e tinuous graph cuts [10,13] and numerous applications pro-
sibility of closed-form local optimization, however. Mere

o vide prominent examples in the field of computer vision.
over, the intrinsic non-convex nature of the overall prable ) .
. . . - o The relevance of globally optimal inference for model evalu
still prevails, rendering sufficiently accurate initiations

. S ation and the guidance of convex modeling for the relaxation
essential, similar to ICP.

To obtain initial estimat f the obiects’ natur Pf more intricate models can hardly be overestimated. Ac-
0 ovtain Inftial estimates of the objects pose, a hatu acordingly, algorithms for efficiently coping with large fro
approach is to identify parts of the model like cones, tube

. . : . , . lem sizes attract more interest in applied research.
lines, etc., in the scene and to infer objects’ pose accglylin In this paber. we aim at taming the optimization of a
[7,15,34]. Although such approaches can dramaticallytlimi Paper, 9 P

the amount of potential pose estimates, in view of self OC_hlghly non-convex objective function for the registration of

clusions, noise, and the ability to uniformly deal with aylar noisy unstructured point sets by detecting in parallel mult

variety of objects, basing the approach on the accurate d%éi;ﬁjecgfeto?ﬁrtgjrr\:v ::; rgys%glgocfn(\e/set)l(marlfnesr;?n?nipr:eprl??-
tection of a limited number of specific parts is less attragti g step g 9 prog g- By

however. Instead, more recent work [3,16,26,27,32,48] fol_nspect_ln_g and evaluating the_ op_tlma_1l|ty cor_1d|t|on, a dimp
. . and efficiently computable criterion is obtained that can be

cused on the extraction of local salient features from scené " . : : :
plied to any problem instance in order to drastically re-

and model. Feature extraction and correspondence is quii”?l S . : ;
uce the problem size in an on-line fashion. For numerically

difficult to establish, however, if objects exhibit symniesr . L . o
- . : : . Gsolvmg the remaining and still large optimization problem
as commonly occur in industrial settings, and if noisy an - .
we competitively evaluate two different state-of-the-apt

sparsely distributed samples are only available as measure .
mpents y P y proaches to sparse convex programming [9, 39].

Another established line of research in this context con-. We demonstrate thatin this way sufficiently accurate ini-

. ) e . £|alizations are obtained that can be refined in a subsequent
cerns hypothesis generation and verification techniques [ rocessing staae by more sophisticated local geometric oo-
24,58] to obtain rough estimates of the pose [47]. Rece g stage by P 9 P

work [29,57] include accurate data structures to speedaip th|m|zat|on.
recognition process at the cost of exhaustive pre-comiputat
or randomized algorithms [40] along with clustering tech-Geometric Optimization Although there are geometric op-
niques to efficiently explore the corresponding voting gpac timization problems [8] that can be solved with respect to
To this end, we also refer to closely related field of ten-Euclidean transformations in closed form, assuming proper
sor voting, see [44] and the references therein. Due to thimitializations are given, distance measures betweenumaxt
efficient propagation of local correspondence informationdistributions representing unstructured point sets hanest
such approaches are typically superior to standard hypotheninimized using methods of continuous optimization like
sis generation approaches. gradient descent or Newton-like schemes. This task differs
In general, however, these approaches are designed fi@m standard applications because the underlying domain
generate hypotheses abaingleobject instances matching where an optimum has to be computed is a curved space
the scene. Consequently, concerning applications mith ~ (manifold).
tiple object instances, iterative “search and pick” approaches Concerning manifolds related to the orthogonal group
or sequential object removal based on local strategies [34{crassmann and Stiefel manifolds) continuous optimiratio
have to be applied, where every incorrect detection, howmethods are considered in [23]. Adler et al. [1], for ins&&nc
ever, affects the entire subsequent process. proposed a corresponding Newton-like algorithm for human
In contrast, we consider in this work an approach thaspine alignment.
jointly estimates the pose ofiultiple object instances and Pottmann et al. [42] suggested an iterative registration
resolves conflicting hypotheses througbn-local contex-  algorithm based on successive local first- and second-order
tual processing. Furthermore, \aeaptivelyprune the cor- approximations of the manifold of Euclidean transforma-
responding parameter space based on the given data in ordiems at the current iterate. Related problems of computer
to drastically reduce the otherwise huge problem size in awision, including multiple point set alignment and traaiin



were studied e.g. by Krishnan et al. [33], Taylor and Krieg-1.4 Organization

man [51], Benhimane and Malis [4], and Drummond and

Chipolla [22]. We consider the closely related geometric op In Sect. 2, we formulate the problem of multiple rough pose

timization approach [42] in more detail below and work outestimation as a global convex optimization problem. This in

differences to our approach (Sect. 3). cludes the derivation of a criterion for efficient prepraeces
Finally, we refer to very recent work [30, 35, 41] on globaling by inspecting the corresponding optimality condition.

optimization approaches to the pose estimation problems, th  To refine the initial hypotheses, we devise in Sect. 3 two

making the initialization problem obsolete in principle. rgh  different Newton procedures for geometric optimizatiostth

all of them apply Branch and Bound techniques in order to/ield accurate results after short processing times.

explore the pose parameter space, Hartley and Kahl [30] as N Sect. 4, we validate each steps of the overall approach

well as Olsson et al. [41] require explicit corresponderdes Py numerical experiments on synthetic data examples with

scene points to convex model parts, whereas the approach@ound truth. We compare two different state-of-the-art al

Li and Hartley [35] works without point correspondences. 9orithms for solving the corresponding large-scale convex
Concerning our own work, the major problem with theselNitialization problem and assess important propertiés, |

approaches is that run-time scales badly with the probler€ Pasin of attraction of geometric pose estimation.
size, e.g. about 20min. for 200 points. Unfortunately,¢her 1€ applicability of the complete approach to real world

fore, these sophisticated approaches are not currentliy appscenarios is demonstrated in Sect. 5. Numerous experim_ents
cable to realistic industrial settings with hundreds ofpei  SNOW that our two-step scheme accurately detects multiple
object instances along with their pose. We finally discuss

pros and cons of our approach in Sect. 6 and point out further
directions of research.

1.3 Contribution

We introduce a novehitialization and refinemerapproach ~ 1-5 Notation

for the model-based detection and determination of thd rigi ders' . briel e th )
transformations of multiple objects in industrial bin-giitg For rea. ers cqnvenlence, we brie ysummanzet e notation
sed within this work. The space of Euclidean transforma-

scenarios where the scene is represented by noisy, unstrd{? } h h . io al
tured, and sparse point measurements. tions is denoted b§$E(3), where the associated Lie algebra

R : (cf. Sect. 3) reads &5 = se (3). A Euclidean transforma-
Theinitialization stagein terms of a global convex ob- " . ; 3%3 .
iactive function tion in terms of a rotation matrik € R>** and a translation
J vectort € R? is written asY’ = {R,t} € SE(3). A sam-

— describes thgeometrical constraintsf the pose estima- Pl€ Of the Euclidean manifold is given ky = {Y;, j =
tion problem accurately, L...,n} _C SE(3). _

— allows efficient preprocessintechniques derived from Data in terms of scene samples (point measurements)
the optimality conditions as well as application of dedi-°Ptained by a scanning device is denoted{by} c R?,
cated algorithms of convex optimization, and where: = 1,...,m. The object (model) is given by point

_ yields promising performancenaking the approach at- Measurement®) = {v;,vy,...} C R®. An objectO in
tractive for solving real world applications with tight POS€Y" is denoted byOy-.
run-time constraints. Finally, a matrixA = {A;} = (a1,...,a,) € R™*"

is given in terms of its entried,;, or column vectorga; },
At the subsequenefinement staga Newton algorithm ~ respectively.
is individually applied to each detected object that

— fully exploitsthe intrinsicgeometryof the underlying 2 Multiple Object Detection and Pose Initialization by
space of Euclidean transformations, Sparse Convex Programming

— convergences fasb the local optimum, and

— exhibits a sufficientlylarge region of attractiormatch- I this section, we describe the first stage of our approach.

ing the output of the preceding initialization stage. Given point measurements of the scene, we wish to detect in
parallel object instance®y, , | = 1,2,..., and determine
A thorough numerical evaluation demonstrates the porough estimates of their posé%, | = 1,2,..., as input

tential of our approach to meet the accuracy and run-timéor the subsequent registration stage refining these gstima
constraints of the industrial scenario. Additionally, we-b (Sect. 3).

lieve that adopting our approach might be attractive iniothe  To this end, we adopt the basis pursuit approach [14]
related scenarios of computer vision as well. based on convex programming, as illustrated in Fig. 2 for



whered > 0 is a user parameter avd(u;) denotes a local
neighborhood ofu; computed in a preprocessing step, we
define the similarity measurg;; < [0,1] betweenu; and

1
Aij = exp (—Ud(ui, OYJ)) 17” 5 (3)

whereo > 0 controls the sensitivity to noise.

Letz € {0,1}™ collect indicator variables; represent-
ing the presence of object instan€g, in the scene. The
termA,;;x; then indicates how likely observatian belongs
to Oy, . Unique “explanation” for each observation in terms

Fig. 2 Sketch of the sparse signal recovery problem. A given inputof @n objectinstance, as geometry suggests, leads to the con

signal (thick line) is approximated by a linear combination offydew straint

basis functions (dashed lines). The selection of these basisdosct

is accomplished by solving for a sparse coefficient vector by oonvez Ajjej=1, Yi=1,...,m. (4)
programming. In this paper, we model the problem of multiple cbje
detection as a sparse signal recovery problem — see Fig. 3

J
As a small fraction of the measurements is caused by

background, we sum up the squared residual of (4) for each

the original setting, and for our setting in Fig. 3. The “det  ¢.one sample to obtain the objective function

nary” in our case corresponds to a samplef the Euclidean
manifold and the corresponding object instan®gs, Y; |Az —e|?, (5)
S. Formally, this dictionary becomes quite large. Yet, we
will show that by inspecting the optimality condition be- WhereA € R™*", m < n, defines in (4) a large underde-
forehand, the convex optimization problem can be considlermined system and’ = (1,1,...)" denotes the vector
erably reduced such that applying a state-of-the-art solvef Ones.
computes the solution in few seconds only.

The approach delivers a sparse solution that effectivel)é 5s Pri
resolves conflicting object hypotheses due to mutually-over™ parseness Frior
lapping supports. A numerical evaluation of all relevant as

. . . Ruling out conflicting object instances that may have caused
pects will be provided in Sect. 4. g g bl Y

the same observation amounts to penalize the support of so-
lution z to (5) in terms of the (pseudd)-norm [21]

2.1 Objective Function Izllo = [{z;, z; # 0}/, (6)

The distance between a scene painand an objecOy, in  where| - | denotes the cardinality of a finite set. Supplement-
terms of transformed model points (see Sect. 1.5) is given ing (5) accordingly, we obtain the objective function

b
y min h@). ha) = plelo+ Az —e*, @)
d(ui, Oy;) = min Ju; —Yj(vy)]| - 1) ’
wherey > 0 denotes the regularization parameter.
Evaluating this distance function requires a careful imple
mentation to be computationally efficient, like pre-congalit
look-up tables [37] or search trees [46]. An often feasible2-3 Problem Reduction and Relaxation

option is to separate the obje@tinto simple geometric parts o ) ) )
O!, 1=1,2,..., such that the distance can be evaluated irFmdmg the global optimizer of problem (7) is combinatori-

closed form. See Sect. 5.1 discussing further implementd2ly complex[38]and elusive as in our applicationts very
tion aspects. large in general. We therefore consider in this section two

Based on the distance (1), we require that a scene poiﬁjmplifications: F_irstly, by checking the optimality condi
u; votes for an object instana®y, only if its distance is tions corresponding to (7), we can safely remove a substan-

small within a locaheighborhoodUsing indicator variables tial part of the variablegz; },—1, ... Secondly, we solve the
resulting much smaller problem by replacing in (7) the in-

1, it d(ug, Oy;) <0, Yup € N(u;) , @ tricate penalty ternfjz||o by thef;-norm||z||;, which is the
"= 0 , otherwise, “closest” convex function. We detail these two steps next.
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Fig. 3 Extending the principle of sparse signal recovery (see Fig. 2)tproblem oD template matching — here in 2D for illustration — amounts
to approximate the scene (left) by a small subset selected fromedaltgction of candidates (right panel). Again this can beelby convex
programming — cf. figures 2 and 7.

2.3.1 Evaluating the Optimality Condition Then, due to the hypothesis; # 0 andz} € {0,1}, we
finally obtain

Elimination of variablesz; in a preprocessing step is based

on the following —p+2(e"ar) —ar a0, (14)

Proposition 1 Let2* € {0,1}" be a global minimizer of Ccontradicting (8).

the objective functio(x) stated in(7). Then, for allk €

0 R Condition (8) roughly reflects that an object in a spe-
yeeesf, T =

cific pose may be present in the scene only if it “explains”
®) a certain number of points encoded yAlthough unlikely

—n+21"Ta) —ap"ar <0. . .
it 21 ) ook candidates can be removed safely according to Prop. 1, the

Proof Assumer;, # 0. Due to global optimality set of candidates still contains outliers and large posevar
tions, see Fig. 4. Thus, the subsequent convex optimization
h(z) > h(z") , (9) stepis essential.

Nonetheless, as we will see in Sect. 5, Prop. 1 provides
holds true for allz € {0,1}", in particular forz given by  the basis for drastically reducing the number of unknown
z; = x}, Vj # k, andz = 0. By insertingz into (9) and  variables efficiently, because the evaluation of (8) only re
insertingh from (7), we obtain quires simple vector operations.
uli@lo + 1A% = el3 > plla"llo + [|Az” el . (10) 5 3.2 Relaxation and Convex Optimization
By constructiong* andz are equal except for a single entry.

Thus, (10) simplifies to A straightforward approach to optimizing problem (7) is to

devise a greedy strategy. However, this would require about
O(mkn?) function evaluations, wherg is the number of
model instances. Even after a substantial reduction of the
(11)  number of free variables according to Prop. 1, such a proce-
dure would be too inefficient to meet industrial time restric
tions, in particular a& is unknown.

A more reasonable strategy to tackle (7) is to use the
convexsparse regularizeffz ||, instead of the non-convex

Since4;; > 0, the left hand side of (12) is upper bounded penalty||z[|o [21,53], and to relax the integer constraine
by {0,1}" tox € [0,1]":

—uxy +2(eap)xy — 2xhan " Azt 4 ay Tagzial >0,

and dividing byz; gives

—u+2(e"ay) — 2a " Azx* + ap "agay >0 . (12)

az min f@),  f@)= e+ Az —elf.  (@5)

—pu+2(e"ay) —ap " apzy 2€[0,1]"



where u(i) denotes theinknowncorrespondence function
assigning model points to measured scene points. Rather
than solving alternatingly for the transformation parame-
ters R, ¢ and correspondencés.(i)} [8,46], which suffers
from the pronounced non-convexity of the objective func-
tion (16), a smoothing procedure is advisable.

To this end, we apply a standard device well known from
clustering (cf. e.g. [52] and references therein), andstegi
tion [31,54]. We represent model points by a smooth func-
tion in terms of the kernel density estimate

1 & 1
m(z;Y) = EZK(ﬁ||$—RUj —t[I3), (17)
i=1 m

whereK () denotes a smoothing kernel integrating t@and
om IS a scale parameter.

A natural replacement for (16) in order to measure the
Fig. 4 Visualization of the set of candidate poses remaining after apdistance between a model instance and the scene, is the dis-

plication of Prop. 1 using the set-up of Fig. 3. Although, the amaf  tance between the distribution (17) and the empirical ielistr
possible candidates is reduced dramatically, there are stfiksiand bution of the observations

large pose variations that have to be removed in a subsequergxconv
optimization step. 1 &
s(z) == EZé(m—uj) (18)
J=1

The evaluation of two state-of-the-art solvers for solving; terms of the relative entropy [18]
(15) will be reported in Sect. 4.1.1, and the issue to con-

vert the corresponding solutianinto a binary solution is D(5||m(y)) — /S(z) 1Ogﬂ
addressed in Sect. 4.1.2. m(z;Y)

= /s(z) log s(x) f/s(x) logm(z;Y) .
3 Pose Refinement by Geometric Optimization (29)

. . Ignoring the first term as it does not depend on the e
The solutionz to problem (15) yields both the number of 1gnoring . . P . QOS

. i : inserting (18), and using Gaussian kernel functions in,(17)
detected objects and an estimate of their pose. As these €% obtairt
timates are related to the finite setof samples of the Eu-
clidean manifold, their accuracy is necessarily limited. I 1 & 1 )

Consequently, we refine these estimates in a subseque’rt"l(ty) - z_a: log m z_:l exp (= 202, lui = Fog —t2),

second processing step described in this section. Specifi- = = 20)
cally, based on the initializations delivered by we opti-

mize each pose individually by continuous geometric optiwhere we dropped/» and the constant normalizinfg.

mization on the Euclidean manifoBE(3), using an objec- In order to see the connection to (16), note that (20) cor-
tive function that does not rely on explicit point correspon responds up to the constantn to the log-exponential func-
dences, in view of the discussion following below. tion having well-known properties [45]. Correspondingly,

We employ second-order approximations for fast con¥o,, > 0, we immediately obtain the estimate
vergence while providing a sufficiently broad basin of at- m 1

: s 2 2 2
traction that enables to converge to the correct local minie;, logz exp (—202|ui — Rv; —t|| ) — o, logm
mum. These properties will be demonstrated by numerical j=1 m
experiments and compared to related work in Sect. 4. < max { _ %Ilui ~ Ruj - tHg} 21)
J=1,....m
3.1 Alignment of Point Sets without Correspondence <o? 1ngexp <_%‘1_2|Ui — Ru; — t||2) ’
j=1 m

The common objective criterion for the registration of two depicts
point sets is

1 We deliberately denote this objective function again wittas in

min Z”ui — Ru) — t||§ , (16)  (15). By inspecting the argument and from the context, the megofi
Y={R,t}€SE(3) = £ will be clear.



() that the maximum in (21) is uniformly approximated Tangents With each Lie group is associated its Lie alge-
as the scaling parametey, goes to zero, and conse- bra, the vector space tangent to the manifold. b case of

quently, SE (3), the tangent spacg reads
(ii) that (20) implicitly encodes the unknown correspon- by O, .
dence function(:) in (16) in terms of the closest point s¢ (3) = {(OT 0) Pp = —PRr, P € R3} , (25)

of the smoothed model representation to the observa- . .
tion u;. which is easily deduced from the fact tlwat(3) contains all

] . ) . matrices® such that for all- € R, the matrix exponential
The effectiveness of this smoothing procedure for dealln%Xp(T¢) € SE (3) is a Euclidean transformation, ariti—

with unstructured point sets is further illustrated in F5g. exp(®5) for some skew-symmetrid . The latter is just
We next focus on a numerical optimization procedureRodrigues, formula for 3D rotations

for evaluating the objective function (20). Vector space (25) is equipped with the Riemannian met-

ric inherited from the canonical inner produ@,,®.) =
3.2 Geometric Optimization tr(d, ' ®,) of the ambient Euclidean matrix spate **.
Furthermore, functions and the corresponding derivatiees
Newton’s method is the method of choice for minimizing afined onSE (3) are evaluated at' = I without loss of gen-
smooth functionf : R™ — R because it converges quadrat- erality, because during iterative optimization the currtm-
ically provided the initial pointz, is sufficiently close to a ateY” can be regarded as offset redefining the model's orig-
local minimum. Based on a second order approximation ofhal pose.

f aroundzo € R, f(x) can be written as Gradients The gradienV f € T ofafunctionf: SE (3) —

f(xo)+(Vfw0)T(x—mo)+§(x —20) " Hyy(z—20) , (22) R is uniquely defined by the relation
: : (Vf,®)=(0f,®) ,VPeT, (26)
whereV f,,,, H,, denote the gradient and Hessiaryadval- ) ) o )
wheredf is the usual matrix derivative given 9 f);; =

uated atrg, respectively. Hence, the equation for determin- 5 '
ing the solution of the sufficient optimality condition ivgh ~ av;; /- EAN- (26) shows tha¥ f — 0f is orthogonal to all

by @ € T.HenceV/ is the orthogonal projectiofl+(0f) of
df ontoT. Using the same block-factorization as in (25),
Hmo'r = V xo 23
I (23) af = 0f11 Of12 @7)
and can be solved numerically. In order to apply this schemeé Ofo1 Ofa )’

to the minimization of (20), we have to take into account thagy,;s projection can be computed in closed form
Y € SE(3) is a curved space, however.
In this section, we work out two algorithms for geomet- Vf = I (0f) = <§ (3f11 - 3f11T) 3f1,2> . (28)
ric optimization that utilize second-order informatioaded or 0
on [42] and another variant suggested by ourselves. For the

mathematical background, we refer to e.g. [19,23,36].  Hessian The Hessian of a functiofi: SE (3) — R, evalu-
ategatY = [, is a linear mapping frorT onto itself given
3.2.1 The Manifold of Euclidean Transformations by Va(Vf), V& € T, where the gradieri f is given by

(28) andV is the Levi-Civita connection defining the co-
The Lie Group SE (3) Euclidean transformations in terms variant derivativeV ¢ of the vector fieldV f with respect to
of Y ={R,t} e SE(3) mapapointtoYz =Rzr+tand PcT.

form a group via concatenatiol Y> = {Ry,t; }{Ra, t2} = To obtain a more explicit expression in terms of the ordi-
{R1Ry,t1 + Rita}. The inverse elemerit —! is given by  nary first- and second-order derivatives, we denot¢fy}
{R™!, —R71t}. with £ = 1,...,6 the canonical basis spanning the trans-

For the purpose of optimization and numerical analysislational and skew-symmetric components of tangehts:
itis common to identifySE (3) C GL(4) with a subgroup of  >_, ¢xLi, € T defined by egn. (25). Then, the quadratic
all 4 x 4 regular matrices with respect to matrix multiplica- form of the Hessian with respect to adis given by

tion. Keeping the symbal” for simplicity, this representa- (Vo(Vf),8) = 0*f (®,®) — (0f, ['(®,d)) (29)
tion reads o 7 7 92 7 7 ’

R B RT _RT: with 0°f (2, %) = 324 11 3v,,0v;; Pis ¥ @and

071 0" 1 D@, @) =Y g, ITfiLy, . (30)
In this way SE (3) becomes a differentiable manifold em- bk

bedded intdGL(4), hence a Lie group. The Christoffel symbold’ are listed in appendix A.
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Fig. 5 Comparison of the smooth objective functional (20) with theeciiin (16) where the correspondence functigi) assigns the observation

u; to theclosestmodel pointv,, ;). The “model” consists of two scalar values = 0, vz = 1, and we assume to have observed the same two
values asi1, uz, and a single additional valug; € (0, 1) at some arbitrary position in between. We inspect both objefilivetions depending on
the unknown translational pose parametevith ¢ = 0 being the true unknown parameter value. Top left: Objectivefion (16) not only is non-
convex but also shifts the global minimum. Top right, bottom IEir increasing values ef,,, objective function (20) is not only “convexified”
but also exhibits a less biased global optimum. Bottom right: Pwosiif the global optimum as a minimum, dependingogr. For a significant
range of this parameter value, minimizing (20) gives a more ateuesult. The constant value on the top corresponds to thalgiobimum of

(16) depicted on the upper left panel.

3.2.2 Newton Optimization by Motion Approximation the objective functiorf (Y') is restricted to the 6-dimensional
vector spacé in terms of the coefficient&sy, . . ., ¢>6)T as
Transforming a point: € R? according to the Euclidean variables.
transformation specified by (24) amounts to compute= As a result, the linear system (23) defining the Newton
Rx +t, whereY € SE(3) can be uniquely specified by a iteration is replaced by (we keep the symbAlsanddf for
corresponding tangent elemeaht se (3) such that simplicity)
sk H(¢) = —-0f, 33
Y =exp(P) = % . (31) (@) / o o2 (53)
o where(9f); = 55-f andH;; = 500, are evaluated at

Accordingly, it makes sense to consider local approxi- As (32a) and (32b) are local approximations of the Eu-

mations clidean group, the solutio = ), ¢, L}, of the linear sys-
Yy ~ I+ & (32a) tem (33) will not be an element 6f (3) in general. Rather,
1 the Newton updat® € SE (3) is determined by inserting
Yowaa = I+ &+ 5@2, (32b) into the exponential map (31).

respectively, as suggested by Pottmann et al. [42], and 18.2.3 Intrinsic Newton Updates

determine the optimal tangent vectbrBy inserting the ap-

proximations (32a) and (32b) intt(Y"), and by expanding Instead of restricting first the objective functighto the
& with respect to the basisC, }x=1,. ¢ introduced above, tangent spacé through the local manifold approximations
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(32), and then computing Newton updates by solving (33)whereg are the coefficients of the expansidp = ", ¢rLs.

we may base the Newton iteration directly on the intrinsic ~ As a consequence, when the rotation components of New-

gradient and Hessian of the manif@d (3). ton updates happen to become large in magnitude, the non-
This means that the linear system (23) in the Euclideaonvexity of the objective function due to the quadratiaoter

case is replaced by the linear system defined by the varida (37) may cause Newton updates to step into wrong direc-

tional equation tions. This will be confirmed by numerical experiments in

_ the following section.

(Va(V)), W) =—(Vf,¥), WeT, (34) This argument can be underlined by considering the Ro-
drigues’ formula, the closed form expression of the expo-

with the gradien f given by (28) and the Hessian defined

in (29). While system (34) is slightly more expensive tonentlal map
sqlve than_ (33), it betﬁer reflgcts th_e geometry of the und(_er]-% o sin(||®r|) e 1 — cos(|[@r|) a8)
lying manifold. We will consider this aspect in more detail ** — R 27] R [l .

in the following subsection and demonstrate favorable prop

erties of (34) also below in the evaluation part of this paperAPProximating the trigonometric function by its first and
As in the case of (33), the tangent vecfosolving (34)  Second order Taylor expansion|j# ||, given by

does not directly results in a Euclidean transformatioas

Newton update. Rather, we have to apply the exponennal1 (12rl) ~ 1@&] , cos(i®rl) ~ 1, . (392)
mappingY” = exp(¢®) defined by (31), too. sin(||@g|) ~ |®r| , cos(||Pr|) ~ 1 — 5\@3”2 . (39b)
3.2.4 Local vs. Intrinsic Approximation respectively, insertion into (38) directly results in (32ad

(32b). Thus, with increasingd || the approximation fails
While both schemes, (33) and (34), require to solve lineato be accurate. Moreover, as this approximation affects the
systems in each iteration, respectively, as well as reétigct translation part too, large magnitudes in rotation aff¢iots
the obtained solution back to the manifold, there are majoaccuracy ir.
differences in terms of convergence properties. We address Another issue concerns the choice of the metric. While
this issue in this section and take it up again in connectiomve suggest the canonical metric in the ambient space [23],
with discussing experimental results in Sect. 4, see ingart embeddings of the Euclidean transformations iRtoand

ular Sect. 4.2.2. using the corresponding metric, i.e. the standard inned-pro
Recall that the objective function to be studied in thisuct in R, results in a different scaling of the rotational part.
paper reads Moreover, representing in terms of its basis expansion,
" " first and second order approximation yield the restrictibn o
_ZIOg (iZexp(— hij(y)))7 @35 [ SE(3) — Rto f : RS — R. Consequently, second-
, m <=

order derivatives are symmetric in the latter Euclidearwspa

ie. a¢?;¢ f = a¢82a¢ f. As in general the Lie bracket of

whereh;;(Y) = 2 |lui — Rv; —t]|3 andY € SE (3). two elementsZ;, £; € se(3) does not vanish, however,
Approximating the rigid body transformation by trun- ysing standard second-order derivatives only yield afprox

cating (31) after the linear term (32a) yields a redefinitionmations to the correct Hessian. Thus, if the components of
of h; such that optimization of is restricted to the tangent ne transformation become large in magnitude, the result-
spaceT . As this approach provides an accurate approximamg approximation of the Hessian in (33) becomes worse,
tion only within a small neighborhood around the currentyyhereas (34) is based on (29) that includes corrective terms
iterate, however, convergence to the correct local optimumng thus better reflects the geometry of the underlying space
is unlikely if it lies outside this neighborhood [42]. Our numerical evaluation discussed in the subsequent sec-

In contrast, second order truncation (32b) provides a mogign, demonstrates that this difference is relevant to appli
accurate local approximation of the manif@f (3). Onthe  tjgns.

other hand, inserting the quadratic approximation ingp
mapskv; +t to

1 4 Numerical Evaluation
Vj +@t+@31}j+ §@R(¢t+@RUj)~ (36)

Accuracy, robustness and speed are of primary importance

Using the fact thatbr is skew symmetric, the latter part for industrial applications. In this section, we therefara-
rewrites as lyze our proposed two-step approach accordingly using syn-
1 thetic data samples with ground truth. Real-world applica-
5(453@ + (¢ vj)p — (6T P)v;), (37)  tions will be discussed in Sect. 5.
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4.1 Initialization Estimation by Convex Optimization previous iterates in order to model the objective functmn |
cally. For further details, we refer to [39] and the referesnc

Finding proper initializations amounts to solve the convexherein.

optimization problem (15). In the following two subsection Letz* € [0,1]" denotes the global optimum of the con-

we separately discuss the two major issues involved in thigex functionf. Then the error bound

connection: the large problem size of the convex relaxation

i ; ; ) 4Ld(z*)
and the conversion of the global optimum to a binary solu F(ye) — f(z*)

< (42)
tion in a post-processing step. o(k+1)(k+2)

S holds depending on the number of iteratiégndVe point out
4.1.1 Convex Optimization that the Lipschitz constart of the objective function’s gra-

. dient appears in both problems (41a) and (41b). As a con-
We study two different state-of-the-art approaches toe;owsequence, having a tight estimate Iofis essential for the
(15): theSpectral Projected Gradient (SP@)ethod [9] and  performance of this method.

Nesterov's algorithnfi39]. Both algorithms only require eval-
uations of the objective function and its gradient, henee arComparison In order to competitively evaluate the perfor-

suited for large-scale sparse convex programming. mance of SPG and Nesterov’s approach, we conside@idhe

. ) . setup depicted in Fig. 3. Using a totalio335 840 candidate
Spectral Projected Gradients (SPG) The general idea un- transformations, application of Prop. 1 fixes 99.7%(!)

derlying SPG [9] is to successively approximate the objeCyf the variables beforehand. The remainig?7 variables
tive f(x) in terms of the current iterate;, by the simplified  \yere determined using SPG and Nesterov's algorithm, re-

Taylor series spectively.
1 Concerning Nesterov's approach, we used three methods
flzk) + (Vf(a:k))T(x —xr) + 5(3: - :ck)T)\I(x -z, to numerically determine or estimate the Lipschitz cortstan

(40) L = || AT A||, of the gradient off: the power iteration [28]
to computel, application of Gerschgorin’s disk theorem to
whereAI with A € R corresponds to a simplified approxi- obtain an upper bound, and evaluating the tracd bfi re-
mation of the Hessian. turning the sum of all eigenvalues as upper bound.

A non-monotone line search allows to temporarily in-  While the power iteration converges within few itera-
crease the objective such that variables of the optimal cortions it has to perform multiple matrix-vector multiplica-
figuration can be fixed in early iterations. Due to the secondtions and therefore took abou5 seconds. In contrast Ger-
order approximation of the objective in terms of the Hessiarschgorin’s disk theorem only requires inspection of thendat
A, SPG belongs to the class of quasi-Newton methods thawatrix and computed an upper boundliri1 seconds. Fi-
typically exhibit fast convergence to the global optimum. nally, the trace operator returned an upper bound witti

A drawback of the method is that no accuracy bound caiseconds whose quality highly depends on the number of
be guaranteed depending on the number of iterations. dominant eigenvalues that increase with the number of ob-

jects in the scene.

Nesterov'’s A|gor|thm Accuracy bounds are provided by Our numerical experiments confirmed that the value cho-
Nesterov’s optimization procedure [39]. This approach issen for L highly influences the performance of Nesterov's

based on the Lipschitz continuity of the gradientfofcon- ~ algorithm, see Fig. 6. SPG on the other hand outperforms
StantL) and computes the 0ptima| Conﬁguration by subseNesterov’s approach in terms of the number of iterations.

quently solving simple minimization problems of the form This however is primarily due to the line search involved
and at the cost of additional function evaluations such that

1 the time per iteration is significantly smaller for Nestésov
Yp = min ((Vf(xk% y— k) + 5L||y - xk||2> (41a) approach, resulting in an overall faster convergence.
vel0.1] As a consequence, for our real world experiments sum-

) 1 k marized in Sect. 5, we throughout used Nesterov’s algorithm
RO S Ld(z) + > igil@) (41b) {0 determine the solution of (15).
’ =0

whereg;(z) = f(x;) + (Vf(z;),r — ;) corresponds to an 4.1.2 Binarization of the Solution

approximation off atx;, d(-) being a proper prox-function,

o the corresponding convexity parameter and the next iteratBue to the relaxation of the integer constraint, the global
Tr41 IS given byk%ﬁgz;c + f—iéyk While (41a) bounds the optimumaz* of (15) in not an element of0, 1}™ in general
deviation from the current iterate, (41b) takes into actounbut has real-valued componets z; < 1.
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Fig. 6 Comparison of optimization algorithms using the experimentalpsetirig. 3: While the SPG algorithm typically requires lessations
to converge to the global optimum (left: energy vs. iteratipdsie to the line search involved, more time per iteration (in séspis spent in
comparison to other approaches (right: time [sec.] vs. itergfion

To infer a corresponding high-quality discrete configu-  The binary solution obtained by this procedure is guar-
ration, we studied two post-processing steps describetd nexanteed to differ from the global continuous configuration
Neither of them guarantees to return thscreteoptimal so-  only by a fixed constant [6]. Yet, due to the need to solve the
lution to (7), of course. large-scale optimization problem multiple times, the €lus

tering procedure sketched above turned out to be a better
Clustering Regarding the results of the convex optimiza-compromise between accuracy of initialization and compu-
tion procedure as probabilities; indicating the presence tational speed.
of an object with posé&’, the components af* typically
form compact clusters in the model-pose space and are well-
localized in the image domain — see Fig. 7. 4.2 Geometric Fine Alignment

Consequently, a simple clustering post-processing step

where nearby poses are assigned to the same cluster, fé\‘ext we evaluated the geometric optimization algorithms
lowed by averaging the elements within each cluster propresented in Sect. 3 by applying it to computer-generated

vides a high-quality solution. Strictly speaking, thisstler- pomt sets, and analyzed_ the perforr_nz_;\r_wc_e W'_th respect o run
ing step should take into account the underlying manifold™® and robustness to inaccurate initializations.

geometry (cf., e.g. [50]). Due to the clusters’ compactness

however, simple Euclidean clustering turned out to work#-2-1 Speed of Convergence

very well for computing a reasonable initialization of the
subsequent geometric optimization procedure (Sect. 312 a
4.2), thatdoestake into account the underlying geometry.

Algorithms like ICP [8] or Softassign [43] return less accu-
rate registrations in cases where the underlying pointa®t h
no or only few salient regions. This often occurs in indus-
trial applications where smooth surfaces have to be regis-
tered accurately. To compare the ability of the approaahes t
cope with such scenarios, we generat&do data points by
randomly sampling from the smooth functiofw — 1)2
3sin(2y) on the unit intervalo, 1)2.
We transformed a copy of the model only slightly (about
Ef(x)|z; =0,2;_1,...,21] 4 degree in each rotation and by a total(12 in trans-
< Elf(2)e; = Lzioy,...,z1] (43) lation), such that all approaches including ICP [8], Softas
sign [43], the Newton schemes based on local approxima-
and tol otherwise, wherd” denotes the expected value of tion [42] and the approach proposed in this paper converged
f(x) with respect to the probability distribution, estimatedto the true solution. Figure 8 reveals that the convergence
by averaging samples. rates differ significantly.

Randomized Rounding This method proceeds by exclud-
ing in turn each variable; for a candidate poseand solv-
ing the convex relaxation for the remaining variables. Agai
interpreting the globally optimal values as probabilities,
we setr; to 0 if
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Fig. 7 Despite of a substantial amount of noise and background clutiegspindicated by: after convex optimization are compactly located
(left). A close-up view is shown top left. Dots indicate the tszrof the model and colors their orientation. The correceéotinstances in the scene
(red shapes) can be determined quickly by a clustering postgsincestep.

While for varyingo,,, the Newton procedures based oncause we are primarily interested in quadratic and fast con-
local approximations of the Euclidean group (Sect. 3.2.2)ergence and the resulting accuracy after a fixed run-time,
converge slightly faster than the approach presented $n thive terminated all second-order algorithms af2éritera-
paper, all of them exhibit quadratic convergence. In cabtra tions.

ICP and Softassign only converge linearly to the optimal We observed that especially for transformations with ro-
configuration. As a result, they return less accurate regigational initialization error, the Newton approach propos
trations under tight run-time constraints (fixed numbet-of i in this work has a significantly larger domain of attraction t
erations). the correct solution than the procedures based on local ap-

The superior performance of the Newton schemes is groximations of the Euclidean group, as visualized in Fig. 9
the cost of more expensive computations for determining th&his finding confirms the discussion in Sect. 3.2.4.

Hessian in each iteration. While ICP requi@éM log N)

computations in each iteration using K-D trees, the evalua-

tion of the gradient and the Hessian of (20) causes costs of i L

O(MN). As aresult, a single round of ICP requires about® Ndustrial Application

1 second. In contrast, the computation of the derivatives, | . _

using MatLab research code, needs betw&glinear and In this section, we apply and evaluate our two-stage ap-

quadratic approximation [42]) ari® seconds (ourapproach).proaCh to the real-world bin-picking scenario. To this end,
This difference is primarily due to the higher dimension of V€ US€d both computer-generated data allowing for full con-

the ambient space in which the gradient and the Hessian a"reo_I of the evaluation by simulating the scanning device and

computed. We expect however that when using a C-tuned®'=® and real industrial data as shown in Fig. 1.
implementation the Newton approaches will considerably
catch up with ICP.

5.1 Efficient Initialization
4.2.2 Region of Attraction

Short processing times are important for many industrial ap
Fast convergence is immaterial if the algorithm gets stuick oplications. We briefly point out properties of our approach
converges to the wrong local minimum. Robustness to pocgnabling fast on-the-fly computations of some steps of the
initializations is therefore important. The region of atttion ~ overall approach.
for ICP [8] has already been analyzed in [37]. We therefore  Concerning the preprocessing based on Prop. 1, only the
only consider Newton procedures here. object in positionOy, is required to compute the corre-

For comparison, we used the same initial setup as [37Fponding column vectai; and to determine if the related

i.e. a model of the Stanford Bunny rotated around the z-axigdicator variablex;, can be set to zero (i.e. ignored) im-
and shifted in the x-y plane by the size of the model. Asmediately. Furthermore, each entryqf can be computed
scene we used a copy of the model placed in the origin. Ben parallel. Finally, each entry iay, is given by (3) that only
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Fig. 8 Evaluation of the performance of Newton algorithms based @alimnd quadratic motion approximation [42], the approachgsed in
this paper (manifold Newton) as well as ICP [8] and Softassid, [for different values ofr,,, (left: 0.3, right: 0.15). Each plot visualizes the
objective function values for subsequent iterates. ICP anthSs§n converge linearly while the remaining approachesargevquadratically.

Fig. 9 Evaluation of theegion of quadratic convergender Newton'’s algorithm based on linear (left), quadratic (di&) local approximation
[42], and on the intrinsic local approximation (this papeght), for fixedo,,, = 0.1. Each circle center together with the circle center in thedteid
shows the initial translation offset of the model vs. the scenedr: th y plane. Slices in each circle refer to the initial rotatiooward thez-axis.
They are colored black if the model converges to the scenenntitie first few iterations and otherwise remained white. The teglustrate that
the approach proposed in this paper is significantly and umifomore robust against inaccuracies of initialization.

requires to compute the shortest distance (1). Using precom e | Link | Hook | Mech-part
- ; : - candidate instances 1524600 | 2413675 | 394975
puted distance maps [37], this evaluation amounts to inspec # instances prunin 298 336 681 4597
a look-up table. o _ # instances optimizatio 9 47 11
As a consequence, the only remaining costly part is the  # instances clusterin 5 5 5

computation of the local neighborhood for which a range of

established efficient algorithms and data structures ssich dable 1 Quantitative evaluation of the initialization phase andhf t
kd-trees are available first processing stage (non-local multiple object detectionujnacon-
) vex optimization) for the data sets shown in Figs. 10,11, and J&evh

the rows refer to the number of candidate instances in tomhdmber
of non-zero instances remaining after pruning, the number fzewo

5.2 Computer-Generated Data instances remaining after convex optimization, and the nunfoere
zero instances remaining after clustering, respectively

To evaluate the accuracy of our approach in a fully con-

trolled environment, we generated different “realistieital

sets by simulating the real world scanning device of Fig. 1

and noise, for real objects.

Each object instance was randomly placed in the sce

The collection of candidate poses for multiple object de-
nl"gction was compiled by discretizing the space of possible

including partially overlapping objects. Additionallg cover Otations in intervals oft5° and ranges of the translation

a wide range of applications with different input data, Wev.ector such that at [east a smgle point in the scene can be
used both object models exclusively based on edge data 4€d accurately. This resulted in a total of up2d13 675

well as models obtained by reference scans, as depicted [i)rcl)ssmle candidate instances. Table 1 displays all retevan
Figs. 10, 11, and 12, respectively. Again, we point out tha{lumbers.

different input formats are uniformly handled by our ap-  Our current research code does not exploit the measure-
proach. ments listed in Sect. 5.1 to accelerate the initializatioage,
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Fig. 10 Object detection and localization with real world objedtgp(left) in 3D scanning data obtained by simulating a SICK LM$ 46anning

device (top right). While the convex initialization step siameously gives proper estimates of the number of objects assvite corresponding
transformations (bottom left), running subsequently few tters of the geometric optimization approach yields accureggstration results
(bottom right).

yet. Rather, we computed the full matrik off-line which Because geometric optimization convergeslical op-

took several minutes. timum, occlusion configurations may occasionally lead to
Parameters, eqn. (2),0, eqn. (3), angs, eqn. (15), of ~ €froneous updates of the corresponding Newton algorithm.

our approach are set by hand for each scenario. These valdgigure 12 depicts such a scenario where due to locally “look-

reflect the characteristics of tiseenarig i.e. the noise level ing through holes” no consistent match of the sparse model

and the spacing of thmodelpoints. Their choice is therefore Points to scene points is possible.

straightforward and does not require elaborate tuning. We

point out that they only depend on the scenario (noise, bbjec

models), anahot on the specific given scene (davép fixed 5.3 Real World Industrial Data

scenario to be analyzed.

The elimination of variables in the preprocessing stepye applied our approach to the real-world industrial scenar
(Sect. 2.3.1) reduced the dimension&sfs to 99.9% such  jos depicted in Fig. 1, comprising 3D noisy and unstructured
that the final convex optimization procedure returned multi scanning data of brake-discs and flanges, respectively. Sim
ple objects within few seconds only. ilar to the synthetic scenario, we set the parameters.

Pose clustering according to Sect. 4.1.2 provides roughy hand according to the noise level and the spacing of the
initializations used for subsequent fine alignment throughmodel points and kept these values for all corresponding ex-
geometric optimization. In case of the mechanical part-(Figperiments. At the second stage, i.e. the refinement, we also
ure 11) the deviation of the estimated position from groundused an additional background kernel to cope with struc-
truth was at moss° rotation andx 5.3% translation of the tured outliers [17]. Furthermore, we used a machine with a
model size. Similar results have been obtained for the linlPentium 4, 3.00 GHz processor.

(rotation error< 4.5°, translation error< 1.8%) and the Based on expert's knowledge, i.e. knowing that brake-
hook data set (rotation errst 5°, translation errox 2.4%).  disc objects are never located upside down, we sampled the
The trade-off between the computational costs of the firsinodel at10 different points for each circle and discretized
non-local convex processing stage and the subsequent gape space of rotations within the interval pf15, 15] de-
metric optimization depends on how finely the pose space igrees for each free axis (the model is rotation invariant wit
discretized (problems size vs. inaccurate detection) and ¢ respect to the third axis). This resulted in a total 420 can-
certainly be optimized for fixed industrial scenarios. didate objects poses that can yield a single scene point and

Running the geometric optimization algorithm (Sect. 3)took about).2 seconds computation time.
for each detected object returns a final pose estimate within The preprocessing step reduced the problem size by elim-
few iterations. At this second stage of the overall apprpachinating =~ 99.5% of the variables immediately. The subse-
we used an additional background kernelin (17) with a largguent global convex optimization determined the remaining
scale parameter,, to cope with structured outliers [17], i.e. 4320 variables in14 seconds. Even highly occluded model
nearby objects. instances are detected accurately as indicated by the blobs
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Fig. 11 Object detection and localization with real world objects8D scanning data obtained by simulating a SICK LMS 400 scanrenge.

While the convex initialization step simultaneously gives gropstimates of the number of objects as well as the correspotrdimgformations
(bottom left), running subsequently few iterations of thergetric optimization approach yields accurate registratisnlts (bottom right).

on the right hand side of Fig. 13 marking the hypotheseso the other discs, multiple object detection through canve
corresponding to the objects’ pose. programming only return this single object instance.

Applying the subsequent geometric optimization for at
most5 iterations where each iteration required abbgec-
ond, turned out to be sufficient to accurately locate all obje
instances located in the bin.

6 Conclusion and Discussion

We presented a novel two-stage approach for the model-
For the complex objects shown in the lower panel ofyased detection and localization of multiple objects in in-
Fig. 1 the approach was able to detect the objects and {@strial bin-picking scenarios from noisy, unstructured a
determine proper initial pose estimates in the correspandi sparse point measurements.
highly unstructured point set — see Fig. 14, left panel. Agai We formulated the problem of finding good initializa-
subsequent geometric optimization determined the final oly;op, hypothesis in terms of a global convex objective func-
ject positions within few iterations. tion that reflects geometric constraints and provides a ba-
However, geometric optimization may fail if the initial sis for efficient preprocessing techniques that drasyical
pose estimate does not fall into the region of convergence @fuce the problem size. We evaluated state-of-the-artspars
the Newton updates on the manifold, as indicated in Fig. 9solvers for the corresponding large-scale convex programs
This fact is well known from standard Newton-based op-and demonstrated promising performance in terms of accu-
timization in Euclidean spaces, too. We cope with this istacy of multiple object detections and in view of industrial
sue by resorting térst-order optimization techniques on the runtime constraints. We pointed out techniques for consid-
group of Euclidean transformations [12] if the initial New- erably speeding up the preprocessing stage for which, ob-
ton updates do not sufficiently decrease the objective fungsiously, modern graphics hardware may be used to achieve
tion value. The object marked with red in Fig. 14 shows sucHyrther accelerations.
an example, where the Newton method failed and switching  To refine the hypothesis individually, we suggested a
to first-order optimization safely converged, at the cost of Newton algorithm that fully exploits the intrinsic geometr
higher number of iterations. of the underlying space of Euclidean transformations and
Finally, we demonstrate the robustness of the non-locatéxhibits fast convergence to a local optimum as well as a
detection stage with respect to similar looking Hifferent  significantly enlarged region of attraction.
objects. Fig. 15 shows a single disc embedded into other Although the presented approach is designed to handle
discs, and whose radius of the inner ring is slightly largersingle rigid models, it can be extended to cope with multiple
than that of all other discs. Although this disc is very sanil rigid object models straightforwardly.



17

g
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Fig. 12 Object detection and localization with real world objects8D scanning data obtained by simulating a SICK LMS 400 scanrenge.
Due to the use of edge images, wrong edge detections due to rioiskiifty through holes”) yields Newton’s algorithm to fail¢onverge. While
the convex initialization step simultaneously gives propenestis of the number of objects as well as the corresponding dramestions (bottom
left), running subsequently the geometric optimization apghdails to converge for the two objects marked red. The reasthmat the ability of
“looking through holes” complicates the objective functiomdanarrows down the region of attraction to the local minimum.

Further work also includes to work out criteria for se- Pepperl+Fuchs Group, for supporting this research work,
lecting the discretization of the pose space automaticallyand to Stefania Petra, Jan Lellmann and Florian Becker from
Too coarse discretization yields inaccurate initial poste e our IPA group for continuously discussing with us various
mates for the subsequent geometric optimization procedureptimization issues.

Too fine discretization leads to unnecessarily large proble
sizes. A convenient feature for the user therefore would be o
to derive this parameter from given object models directly. A Christoffel Symbols Defining the ConnectionV

A more straightforward extension concerns the interplayrhe non-zero Christoffel symbols of (30) are
between first- and second-order optimization methods on the

manifold of Euclidean transforms in order to optimized the s _ 1 _ ;2 _ 1 44

. . F12—F23—F31—§7 (44a)
speed of convergence while guaranteeing convergence to a .
local optimum. As discussed above, the latter sometimesy =I5 = I3, = ~5 (44b)
requires to temporarily switch from second- to first-order ¢ _ rho=r5, =1, (44c)

methods. This objective can be accomplished by adoptingla5 o 4
; ; ; ; ; 16 = I2a = I35 = —1. (44d)
numerical trust-region strategies to the manifold setting
Finally, evaluation of the objective functional proposed
in this work is slightly more expensive than related wWorkgeferences
based on sophisticated extensions of ICP. Here, it is appare

that our approach might benefit from established techniqued. R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and
for accelerating multiple kernel evaluations. M. Shub. Newton’s method on Riemannian manifolds and a geo-
metric model for the human spini®A J. Numer. Anal.22(3):359
— 390, 2002.
2. D. H. Ballard. Generalizing the Hough transform to detebt-a
trary shapesPattern Recognl13:111-122, 1981.
. . . 3. S. Belongie, J. Malik, and J. Puzicha. Shape matching and
The authors would like to thank the VMT Vision Machine  opject recognition using shape context$EEE Trans. Pattern

Technic Bildverarbeitungssysteme GmbH, a company of the  Anal. Mach. Intell, 24:509-522, 2002.
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Fig. 13 Object detection and localization with real world 3D scagnitata. Pose clusters of all object instances recovered by xghobal
optimization are displayed as blobs in the left panel. Selgairepresentative of each compact cluster as initializatiables to infer the unique
number and localization of objects by subsequent geometrimagattion (right panel).
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op

Fig. 14 Detection and localization of complex objects in unstrudwa@nge data. Poses returned by the first convex global optiorizstage
cluster tightly and are displayed in the left panel, where migedyl candidate poses are shown less transparent. Selectipgeseatative of each
cluster as initialization enables to accurately locate thieais through subsequent geometric optimization — cf. righepand the lower panel
of Fig. 1. The object marked with red shows an example, where dtesvinethod failed and switching to first-order optimizationeguired to
ensure convergence.
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Fig. 15 Robustness of object detection. A single disc that only slighifferd from all other discs (slightly larger inner ring radius)reliably
returned as single object instance by the first convex programsaug.
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