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Abstract. Manifold models of image features abound in computer vi-
sion. We present a novel approach that combines unsupervised compu-
tation of representative manifold-valued features, called labels, and the
spatially regularized assignment of these labels to given manifold-valued
data. Both processes evolve dynamically through two Riemannian gradi-
ent flows that are coupled. The representation of labels and assignment
variables are kept separate, to enable the flexible application to various
manifold data models. As a case study, we apply our approach to the
unsupervised learning of covariance descriptors on the positive definite
matrix manifold, through spatially regularized geometric assignment.

1 Introduction

Manifold-based methods define an active research area in computer vision [19].
Covariance descriptors, in particular, play a prominent role [5]. Covariance de-
scriptors are typically applied to the detection and classification of entire images
(e.g. faces, texture) or videos (e.g. action recognition). An important task in
this context is to compute a codebook of covariance descriptors that can be used
solving a task at hand by nearest-neighbor search [6].

The recent work [10] defines a geometric state-of-the-art method for comput-
ing such codebooks. Embedding descriptors into a Hilbert space (see (4) below)
enables to approximate given data by kernel expansion [11] and to determine
a sparse subset by `1-regularization of the expansion coefficients. This method
works entirely in feature space and ignores the spatial structure of codebook
assignments to data. Figure 1 illustrates that when covariance descriptors are
used as ‘labels’ for representing local image structure, rather than encoding global
second-order statistics of entire images or videos, then the spatial structure of
label assignments should also drive the evolution of labels in feature space for
unsupervised label learning.

The classical approach for the unsupervised learning of feature prototypes
(‘labels’) is the mean-shift iteration [8, 7], which iteratively seeks modes (lo-
cal peaks) of the feature density distribution through the averaging of fea-
tures within local neighborhoods. This has been generalized to manifold-valued
features by [17] by replacing ordinary mean-shifts by Riemannian (Fréchet,
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Karcher) means [13]. The common way to take into account the spatial struc-
ture of label assignments is to augment the feature space by spatial coordi-
nates, e.g. turn a color feature (r, g, b) into the feature vector (x, y, r, g, b). This
merge of feature space and spatial domain has a conceptual drawback, however:
The same color vector (r, g, b) observed at two different locations (x1, y1, r, g, b),
(x2, y2, r, g, b) defines two different feature vectors. Furthermore, clustering spa-
tial coordinates into centroids by mean-shifts (together with the features) differs
from unbiased spatial regularization as performed by variational approaches or
graphical models, that do not depend on the location of centroids and the corre-
sponding shape of local density modes. This work, therefore, studies the problem
of representing a given manifold-valued input image with few prototypes, which
are learned in an unsupervised way, while performing unbiased spatial regular-
ization in the image domain.

Fig. 1. Local assignments of covariance descriptors {Gj}j∈J ⊂ Pd from a codebook J to
data {Fi}i∈I are noisy. Different colors represent different codebook entry assignments
but do not have any other specific meaning. By definition, unsupervised learning rules
out the possibility of feature parameters tuning. Rather, covariance descriptors should
evolve along a flow G(t) driven by spatially regularized assignments W (t) that are not
biased towards spatial centroids and still enable global communication on the feature
manifold Pd. This is accomplished by our approach (1).

Contribution. We introduce a novel approach with the following properties:

(i) The approach incorporates and performs unsupervised learning of manifold-
valued features, henceforth called labels. We work with covariance descrip-
tors as a case study. But the approach applies to any feature manifold [17]
for which the corresponding Riemannian feature means are well-defined
and computationally feasible.

(ii) The evolution of labels (unsupervised learning) is driven by the spatial
regularization of assignments that is not biased towards spatial centroids.
This is accomplished by applying the geometric approach to image labeling
by assignment, recently introduced by [2].

(iii) The smooth settings of both (i), (ii) enables to define a smooth coupled
flow

(Ġ, Ẇ ) = V(G,W ) (1)

where the evolution of labels G and the evolution of spatially regular-
ized assignments (of labels to data) W interact. This interaction keeps
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both domains (i) and (ii) separate, which enables to use alternative feature
manifolds with the same regularized assignment mechanism.

Organization. Section 2 sketches basic material required to understand the
approaches (i) and (ii), which are described in Section 3. Our approach is pre-
sented in Section 4. The concrete iterative scheme corresponding to (1) and ge-
ometric numerical integration is given by system of equations (30). We present
and discuss experimental results in Section 5.

2 Preliminaries

To make this paper self-contained, we briefly sketch three methods that are rel-
evant to our approach: (1) Geometry of the domain of covariance descriptors,
S-divergence and Hilbert space embedding; (2) Soft-k-means clustering in Eu-
clidean spaces that will be generalized to geometric soft-k-means on manifolds
in Section 4.1; (3) Metric clustering with performance guarantee and linear com-
plexity for label initialization with non-sparse codebooks.

Geometry of Covariance Descriptors, S-Divergence and Hilbert Space
Embedding. The open cone

Pd = {S ∈ Rd×d : S = S>, S � 0} (2)

of symmetric positive definite matrices endowed with the Riemannian metric
〈S1, S2〉S = 〈S−1S1S

−1, S2〉 = tr(S−1S1S
−1S2) forms a Riemannian manifold

[3]. Since evaluating the Riemannian distance involves a numerically expensive
generalized eigenvalue problem, divergence functions are used instead as a com-
promise between respecting the geometry of (2) and computational efficiency
(cf. e.g. [6]). We focus on the symmetric S-(matrix-)divergence [16]

DS(F,G) = log det
(F +G

2

)
− 1

2
log det(FG), F,G ∈ Pd (3)

that emerges as special case of a parametric family of matrix divergence functions
[4] and compares favorably to the more common log-Euclidean divergence [1].
Moreover, the S-divergence generates a valid kernel function

kS(F,G) = exp
(
− βDS(F,G)

)
with β ∈ { 12 ,

2
2 , . . . ,

d−1
2 } ∪ [d−12 ,∞) (4)

for the embedding Pd → H of covariance descriptors into a reproducing kernel
Hilbert space H [11]. This has been explored recently by [10], see also [5].

Euclidean Soft-k-Means Clustering. The content of this paragraph can be
found in numerous papers and textbooks. We merely refer to the survey [18]
and to the bibliography therein. It will be generalized to the manifold Pd (2) of
covariance descriptors in Section 4.

Given data vectors x1, . . . , x|I|, we consider the task of determining proto-
type vectors M = {m1, . . . ,m|J|} by minimizing the k-means criterion J(M) =
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i∈I minj∈J ‖xi −mj‖2. Soft-k-means is based on the smoothed objective

Jε(M) = −ε
∑
i∈I

log
(∑
j∈J

exp
(
− ‖x

i −mj‖2

ε

))
, (5)

which results from approximating the inner minimization problem of J(M) using
the log-exponential function [14, p. 27]. Similar to the basic k-means algorithm,
soft-k-means clustering solves the stationarity condition ∇mjJε(M) = 0, j ∈ J
by fixed point iteration that iterates the update steps

piε,j(M) =
exp

(
− dij(M)/ε

)∑
l∈J exp

(
− dil(M)/ε

) , dij(M) = ‖xi −mj‖2 (6)

for every i ∈ I, j ∈ J and

mj =
∑
i∈I

qji (M)xi, qji (M) =
piε,j(M)∑
k∈I p

k
ε,j(M)

. (7)

The distribution piε(M) ∈ ∆k represents the soft-assignment piε,j(M) of each

data point xi to each prototype mj , and the distribution qj(M) determines the
convex combination of data points that determines the prototypes mj by the
mean-shift (7).

Greedy Clustering in Metric Spaces. We adopt a simple algorithm from
[9] as a preprocessing step for data reduction, due to the following properties: It
works in any metric space (X, dX), it has linear complexity O(kN) with respect
to the problem size N , and it comes along with a performance guarantee.

Given data points XN = {x1, . . . , xN} ⊂ X, the objective is to determine a
k-subset M = {m1, . . . ,mk} that solves the combinatorially hard optimization
problem

J∗∞ = min
M⊂XN ,|M |=k

max
x∈XN

dX(x,M). (8)

Starting from a first initial point m1, e.g. chosen randomly, selecting the re-
maining k − 1 points m2, . . . ,mk by greedy iteration yields a set M that is a
2-approximation J∞(M) ≤ 2J∗∞ of the optimum (8) [9, Thm. 4.3]. As a conse-
quence, the subset of k points of M are uniformly distributed in XN according
to the metric dX . Figure 2 provides an illustration.

3 Label Learning, Label Assignment

We sketch the recent work of [10] and [2] which motivated our approach, that is
presented in Section 4.

Sparse Coding of Covariance Descriptors [10]. Given observations {Fi}i∈I ⊂
Pd and the embedding φ : Pd → H into a Hilbert space induced by the S-
divergence (3) and the kernel function (4), the objective function for learning a
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Fig. 2. Approximation of the metric clustering objective (8).
left: 10.000 points on the sphere regarded as manifold equipped
with the cosine distance. right: 200 prototypes determined with lin-
ear runtime complexity by metric clustering are almost uniformly
located in the data set, which qualifies them for unbiased initializa-
tion of more complex nonlinear prototype evolutions (Section 4). This
works in any metric space and is applied in this paper to covariance
descriptors on the positive definite matrix manifold (2), to determine
non-sparse codebooks as initialization G(t)|t=0 of the flow (1).

sparse codebook G = {Gj}j∈J ⊂ Pd of covariance descriptors reads

J(G, y) =
∑
i∈I

lφ(y, Fi, G), lφ(y, Fi, G) =
∥∥∥φ(Fi)−

∑
j∈J

yjφ(Gj)
∥∥∥2 +α‖y‖1, (9)

where sparsity is enforced through `1-penalization of the coefficients y. The ap-
proach iterates i) a sparse coding step solving yi = argminy lφ(y, Fi, G), i ∈ [m]
while keeping G fixed, and ii) a dictionary learning step evaluating the optimal-
ity condition ∇GjJ(G) = 0, ∀j. In the particular case of the S-divergence (3),
(4), this condition takes the form of an algebraic Riccati equation which can be
solved numerically with the fixed-point iteration

Gj −GjGj(G)Gj = 0, G
(k+1)
j =

(
Gj(G(k))

)−1
, j ∈ J. (10)

The map Gj(G) is given by

Gj(G) =

∑
i yij

(
kS(Fi, Gj)

(Fi+Gj

2

)−1 −∑r yirkS(Gj , Gr)
(Gj+Gr

2

)−1)
∑
i yij

(
kS(Fi, Gj)−

∑
r yirkS(Gj , Gr)

) . (11)

As discussed in Section 1, we point out again that this approach entirely works
on the feature manifold Pd with auxiliary variables y, independent of the spatial
image structure corresponding to the data {Fi}i∈I .
Regularized Image Labeling on the Assignment Manifold [2]. Given
data {Fi}i∈I and labels {Gj}j∈J , assignments Fi ↔ Gj are represented by the
components Wi,j of assignment vectors Wi ∈ S, i ∈ I, where S denotes the
open probability simplex equipped with the Fisher-Rao metric. Gathering all
vectors into the assignment matrix W ⊂ W ∈ R|I|×|J| on the product manifold
W :=

∏
i∈I S, spatially regularized assignments W are determined as follows.

A distance matrix

D ∈ R|I|×|J|, Di =
(
d(Fi, G1), . . . , d(Fi, G|J|)

)>
, i ∈ I (12)

with row vectors Di, describes the similarity of labels Gj and data Fi based on
any distance function d(·, ·). Using the mapping (with componentwise multipli-
cation of stricly positive vectors in the numerator)

Lp(u) =
peu

〈p, eu〉
, p ∈ S, (13)
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which serves as a first-order approximation of the exponential mapping induced
by the Fisher-Rao geometry [2, Prop. 3], the distance matrix D is turned into
the likelihood matrix

L(W ) ∈ R|I|×|J|, Li(W ) = LWi
(−Di/ρ) =

Wie
−Di/ρ

〈Wi, e−Di/ρ〉
, ρ > 0, i ∈ I. (14)

These local assignments are spatially regularized through geometric averaging,
resulting in the similarity matrix

S(W ) ∈ R|I|×|J|, Si = Si(W ) =
meang{Lj(W )}j∈N (i)〈
1,meang{Lj(W )}j∈N (i)

〉 , i ∈ I (15)

with meang{Lj(W )}j∈N (i) =
(∏

j∈N (i) Lj(W )
) 1

|N(i)| and spatial neighborhoods

N (i) around each pixel i. Finally, W is determined by maximizing the objec-
tive function J : W → R, J(W ) := 〈W,S(W )〉. This leads to the Riemannian
gradient ascent flow

Ẇ (t) = ∇WJ(W (t)), W (0) =
1

|J |
1|I|1

>
|J| := C (16)

initialized at the barycenter C of the assignment manifold corresponding to
uniform unbiased assignments. Using the approximation discussed in [2],

∇J(W (t)) ≈ S(W ), (17)

where ∇ denotes the Euclidean gradient, the Riemannian gradient flow (16)
explicitly reads for each vector

Ẇi = Wi

(
Si(W )− 〈Wi, Si(W )〉1

)
, i ∈ I. (18)

Numerical integration of (18) in order to solve for W (t) can be conveniently
done on the tangent space T I = T × · · · × T := TCW, T := T 1

|J|1
S, using the

framework suggested by [15]. The pullback of the flow (16) using the map LC
(14) evaluated at the barycenter C takes the form

V̇i(t) = ΠT∇iJ(W (t)), Vi(0) = 0, Wi(t) = LCi(Vi(t)), i ∈ I, (19)

where ΠT denotes the orthogonal projection onto the tangent space T . Dis-
cretization with the simplest numerical integration method, i.e. explicit Euler-
steps with stepsize h > 0, and taking into account approximation (17), yields
the iterative scheme

V
(k+1)
i = V

(k)
i + hΠTSi(W

(k)), V
(0)
i = 0, h > 0, (20a)

W
(k+1)
i = LCi(V

(k+1)
i ), i ∈ I. (20b)

This update step for supervised smooth geometric image labeling has high po-
tential for parallel implementations and corresponding speed-ups.

Moreover, it has been shown recently [12] how the approach can be used in
order to evaluate any given discrete graphical model for image labeling.
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4 Label Learning by Assignment

In this section, we detail our approach (1) in two steps concerning the G- and
W−component, respectively.

(1) G-component: We extend the basic soft-k-means clustering approach (Sec-
tion 2, eqns. (6), (7)) to an arbitrary feature manifold. In the particular
case of the S-divergence, it turns out that the resulting fixed point iteration
takes the form of an algebraic Riccati equation, as does the approach [10] –
cf. (10), with different mappings Gj , of course.

(2) W -component: Since the assignment variables due to (1) turn out to be
probabilities, we can replace them by the assignment variables of the flow
(16) and thus seemlessly enforce spatial regularization for manifold-valued
soft-k-means clustering of features. Conversely, the resulting evolution of
labels {Gj}j∈J affects the assignment flow through the distance vectors (12).
This defines the W -component of our approach.

We point out once more that covariance descriptors are used here as a case
study. They can be replaced or augmented by any other manifold-valued fea-
tures for which the corresponding operations are mathematically well-defined
and computationally feasible.

4.1 Manifold-Valued Soft-k-Means Clustering

Given data and labels {Fi}i∈I , {Gj}j∈J ⊂ Pd as covariance descriptors, we adopt
the S-divergence (3) and rewrite the soft-k-means objective (5) in the form

J(G) := J(G1, . . . , G|J|) = −ε
∑
i∈I

log
(∑
j∈J

exp
(
−DS(Fi, Gj)

ε

))
, ε > 0. (21)

The Riemannian metric of the positive definite manifold Pd,

gA(U, V ) = tr(A−1UA−1V ), A ∈ Pd, U, V ∈ Ssym(d,R) (22)

is also induced by the S-divergence DS [4, Prop. 3.8]. We regard the argument
G = (G1, . . . , Gn) of J as points on the product manifold

∏
j∈J Pd. The j-th

component of the Riemannian gradient of J is a symmetric matrix (grad J)j
satisfying

gGj

(
(grad J)j , V

)
= djJ(V ), ∀V ∈ Ssym(d,R), (23)

where djJ(V ) denotes the differential of J with respect to Gj applied to a
tangent matrix V . Thus, if djJ(V ) = tr(UV ) for some symmetric matrix U ,
then (grad J)j(G) = GjUGj . We have

djJ(G)(V ) =
∑
i∈I

exp
(
− DS(Fi,Gj)

ε

)∑
l∈J exp

(
− DS(Fi,Gl)

ε

)︸ ︷︷ ︸
pij(G)

djDS(Fi, Gj)(V ) (24)
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where pij(G) ∈ ∆n are the assignment probabilities of datum Fi to each proto-
type Gj . Evaluating the differential djDS(Fi, Gj), we have djDS(Fi, Gj)(V ) =
tr
(
((Fi +Gj)

−1 − 1
2G
−1
j )V

)
and thus obtain from (24)

(grad J)j(G) =
∑
i∈I

pij(G)Gj(Fi +Gj)
−1Gj −

Pj(G)

2
Gj , j ∈ J (25)

with Pj(G) =
∑
i∈I pij(G). Setting the gradient to zero and rearranging yields

Gj −
∑
i∈I

qij(G)Gj

(Fi +Gj
2

)−1
Gj = 0 qij(G) :=

pij(G)

Pj
, j ∈ J (26)

where the variable symbold p and q highlight the extension of their counterparts
in the Euclidean case (6). Moreover, rewriting the preceding optimality condition
in the form

Gj −GjGj(G)Gj = 0, Gj(G) =
∑
i∈I

qij(G)
(Fi +Gj

2

)−1
, j ∈ J (27)

reveals a structure analogous to condition (10) resulting from the approach [10],
with different mappings Gj , however. The major difference is that (10) includes
the embedding Pd → H of covariance descriptors into the Hilbert space generate
by the kernel (4), whereas (27) is directly defined on the feature manifold Pd.

Exploiting this analogy, we adopt the fixed point iteration (10),

G
(k+1)
j =

(
Gj(G(k))

)−1
, j ∈ J (28)

with Gj given by (27). Since (qij)i∈I is a probability vector, it is immediate
that Gj : Pd → Pd maps the feature manifold onto itself and that eq. (28) is
well-posed.

4.2 Joint Label Learning and Label Assignment

We modify in this section the schemes (28) and (20) so as to obtain an interac-
tion {Gj} ↔ {Wi} of label evolution G(t) and label assignments W (t), in both
directions. And we explain why these modifications make sense.

{Gj} → {Wi}: Changing labels G(t) change the distance matrix (12) to D(t) =
D
(
G(t)

)
, which affects the matrices (14) and (15) and in turn the assignment

flow (16). Since the distance function d(·, ·) definingD by (12) is the S-divergence
DS(·, ·) (3) in this paper, and since labels Gj satisfying (27) minimize DS(Fi, Gj)
by minimizing the objective (21), they also maximize the likelihood vectors (14)
which are spatially regularized to form the similarity matrix (15). The similarity
matrix S(W ) drives the assignment flow through (20) so as to maximize the
correlation 〈W,S(W )〉 between pixelwise label assignments Wi and similarity
vectors Si(W ), which represent assignments in the spatial context through the
non-local geometric diffusion process (15).
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{Wi} → {Gj}: The row vectors Wi can be interpreted as posterior probabilities
Wij = Pr(Gj |Fi) of assigning prototypes Gj , j ∈ J to data Fi, i ∈ I. Hence these
row vectors are of primary importance for the assignment flow, as just discussed.
Conversely, the column vectors W j , j ∈ J with components (W j)i = Wij rep-
resent weights that associate each data point Fi with a label Gj . Normalization
Wij

〈1,W j〉 turns these weights into probability vectors that exactly show up as prob-

abilities qij(G) in the optimality condition (27), which defines the evolution of
labels Gj . Consequently, in order to affect label evolution by spatially regularized
assignments, we exchange these probabilities so that the mappings Gj , j ∈ J
defining the optimality condition (27) now read

Gj(W ) =
∑
i∈I

qij(W )
(Fi +Gj

2

)−1
, qij(W ) =

Wij

〈1,W j〉
∈ S|I|, j ∈ J. (29)

4.3 Summary and Discussion

Summing up, the joint flow (1) of labels {Gj}j∈J and assignments {Wi}i∈I is
implemented, with h > 0 by the discrete iterative scheme

V
(k+1)
i (G) = V

(k)
i (G) + hΠTSi

(
W (k)(G)

)
, G = G(k), V

(0)
i = 0 (30a)

W
(k+1)
i (G) = LCi

(
V

(k+1)
i (G)

)
, i ∈ I (30b)

G
(k+1)
j (W ) =

(
Gj(W )

)−1
, W = W (k+1), j ∈ J (30c)

Gj(W ) =
∑
i∈I

qij(W )
(Fi +Gj

2

)−1
, qij(W ) =

Wij

〈1,W j〉
. (30d)

We adopt the termination criterion from [2]: The iteration (30) stops when
the average entropy of the assignment variables drops below 10−3, which signals
an (almost) unique label assignment and hence also stationarity of the label
evolution.

While the dependency G = G(W ) is explicit by (30d), the dependency W =
W (G) is not: it is given through the distance matrix (12) which defines the
vectors Si of (30a) through (14) and (15). As a consequence, the computation
of these matrices, though not expensive, has to be repeated at every step of the
iteration (30).

To conclude this section, we point out and discuss few further aspects that
characterize our approach and differences to established work.

(a) Our approach is affected by specific properties of the feature manifold
only through the divergence function DS of (21), and through the structure of
the resulting optimality condition (27). The divergence function should induce
the Riemannian metric, like (22) in our present case study using covariance
descriptors. The optimality condition should admit a numerically convenient it-
erative scheme, like the fixed point iteration (28). If these properties are satisfied
for some feature manifold, our approach can be applied.

(b) The approach [10] works entirely on the feature manifold, as discussed
in Section 3, whereas our approach additionally takes into account the spatial
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Assignment flow [2] Coupled flow

N
=

7
×

7
N

=
1
9
×

1
9

Fig. 3. left: Image combining homogeneous (left) and heterogeneous texture (right).
right: Supervised flow (fixed labels) vs. unsupervised flow (with label evolution) to-
gether with weak and strong spatial regularization (bottom vs. top). Our approach
(Coupled flow) moves few labels in a proper position on the feature manifold and
suppresses redundant ones, through the sparsifying effect of spatial regularization and
adaptation of labels done simultaneously.

structure of assignments through regularization. Mean-shift approaches, on the
other hand, merge both representations by augmenting feature vectors with spa-
tial coordinates. As a consequence, spatial regularization through averaging is
based on the corresponding centroids (spatial coordinates of prototypes). Our
approach keeps both representations separate, and spatial regularization through
the geometric diffusion process (17) does not involve any centroids.

(c) A natural idea is to replace manifold-valued soft-k-means clustering,
i.e. the G-component of our approach, by the approach [10]. This is not di-
rectly practicable because the sparse coefficients y of the kernel expansion (9)
are signed, whereas our approach works with assignment probabilities. We leave
this problem for future work.

5 Experiments

In this section we show numerical results to illustrate the impact of geometric
spatial regularization on unsupervised label evolution on the feature manifold,
the empirical convergence rate and the influence of parameter values.

We compare to two state-of-the-art methods: Assignment Flow [2] for super-
vised labeling on the manifold (fixed labels), Harandi et al. [10] for unsupervised
label learning (no spatial regularization), and the Local Method, which is nearest-
neighbor labeling based on given initial labels.

Experiment set-up. We did not undertake any ‘feature-engineering’ but
constructed only a basic set of covariance feature descriptors consisting of intensi-
ties, first and second order partial derivatives: g =

(
∂0,0, ∂1,0, ∂0,1, ∂2,0, ∂1,1, ∂0,2

)
which, in the case of color images, results in descriptors of size 18 × 18. For all
methods we used the S-divergence as distance. Initial labels were computed by
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metric clustering to limit the otherwise infeasible large label space when using
the complete data set.

Coupled flow Assignment flow [2] Local Harandi [10]
8 labels

15 labels

Fig. 4. Impact of spatial regularization (Assignment flow, Coupled flow) and unsu-
pervised label evolution (Harandi, Coupled flow). The Assignment flow consistently
suppresses fine details whereas Harandi’s approach captures all small variations in the
data including noise. The Coupled flow provides a good compromise between sup-
pressing spurious labelings and obtaining a compact, spatially coherent representation
through label evolution that preserves visual features (eye region, tip of the nose).

Fixed labels vs. evolving labels, with and without spatial regular-
ization. Figure 3 shows an image with two textures. The texture on the left
is more homogeneous than the texture on the right. We compare the supervised
assignment flow (fixed labels) and our unsupervised approach (with label evolu-
tion) performing both weak and stronger spatial regularization (top vs. bottom
row). Starting from an overcomplete dictionary with 8 initial labels, the super-
vised approach easily clusters the homogeneous left texture whereas partitions
emerge on the right that reflect the heterogeneous texture structure. Our un-
supervised approach manages this task with fewer labels. This demonstrates i)
the effect of label evolution and ii) the sparsifying effect of spatial regularization
done simultaneously, in order to move few labels in a proper position on the
feature manifold and to get rid of the remaining ones.

Figure 4 shows a larger problem instance including the outcome of the Local
method and Harandi’s unsupervised clustering. We point out that, since label
evolutions differ between the approaches, colors merely index label assignments
but cannot be compared. Rather, the relative frequencies of label assignments
are informative and enable to compare the methods.
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Fig. 5. Entropy of label assignments depending on the iteration number for the Assign-
ment flow and the Coupled flow, for different strengths of spatial regularization. We
observe i) that both labeling processes converge rapidly until the termination criterion
(entropy ≤ 10−3) is met, ii) stronger spatial regularization requires more iterations
to resolve label assignment conflicts, and iii) the Coupled flow needs more iterations
than the supervised Assigment flow, due to the interaction between label evolution and
regularized label assignment.

We performed two experiments with 8 and 15 initial labels (top vs. bottom
row) and fixed strength of spatial regularization. Both the local method and es-
pecially Harandi’s method are susceptible to small details and noise. The noise
suppressing effect of spatial regularization is clearly visible for the supervised
assignment flow. Our approach (Coupled flow) additionally combines regulariza-
tion with label evolution and yields a more coherent result without suppressing
details, e.g. at the eyes and the tip of the nose.

Empirical convergence rate. Figure 5 displays the entropy measure of
label assignments used as termination criterion for the Assignment flow and the
Coupled flow, for different strenghts of spatial regularization. Due to the inter-
action between label evolution and regularized label assignments, the Coupled
flow needs more iterations to converge. The total number of iterations is quite
small, however, and the approach has high potential for parallel implementation
on modern hardware.

Euclidean color clustering (special case: spatially regularized mean-
shift; Figure 6). We demonstrate the flexible applicability of our approach: re-
placing the positive definite manifold (covariance descriptors) by the Euclidean
RGB-space results in spatially regularized mean-shift clustering as a special
case. The S-divergence and geometric averaging were replaced by the squared
Euclidean distance and arithmetic averaging. We used 200 initial labels which
suffice to represent the image structure (compare Input vs. Local). Comparing
the Assignment flow and the Coupled flow demonstrates the sparsifying effect
of combining label evolution with spatial regularization. In particular, regions
around the eyes and the nose are encoded by a smaller number of prototypes.

Real Images and Texture. We applied the assignment of covariance de-
scriptors to representative urban scenes, that comprise both low-rank image
structure (edges of walls, windows, etc.) and texture (trees, roofs, etc.).
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Input image Coupled flow Assignment flow [2]

3
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3
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5
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Fig. 6. Replacing the covariance descriptor manifold Pd by the R3 color space results
in spatially regularized mean-shift as a special case. Comparing the Assignment flow
(fixed labels) with the Coupled flow (evolving labels), for 200 initial labels and different
strenghts of spatial regularization (top vs. bottom), demonstrates the sparsifying effect
of the coupled process, resulting in a more compact representation of the image. In
particular, regions around the eyes and the nose are encoded by a smaller number of
prototypes.

Figure 7 shows the results for 15 initial labels whereas Figure 8 shows the
results for 100 initial labels. In both scenarios, the unsupervised method of Ha-
randi consistently returns non-compact oversegmentations, despite performing
label evolution. This is significantly different for the Coupled flow, where label
evolution and spatial regularization adapt labels on the feature manifold and
thus enable more compact representions of textured regions corresponding to
the tree and the roof in Fig. 8.

6 Conclusion

We introduced a novel approach in terms of two coupled Riemannian gradient
flows that perform simultaneously label evolution on a feature manifold and spa-
tially regularized label assignment. This unsupervised method returns compact
representations of local image structure in high-dimensional feature spaces that
are statistically significant and hence useful for subsequent image interpretation.
The modular design enables flexible applications to various feature manifolds.
The algorithm has high potential for fine-grained parallel implementation.
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Input image Coupled flow Assignment flow [2]
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Fig. 7. The Coupled flow yields more homogeneous regions, which can be observed in
particular in regions corresponding to the roof, windows and grass. Without prototype
adaptation the Assignment flow returns large disconnected regions that are less useful
for subsequent image interpretation. The global clustering method of Harandi produces
visually pleasing results, but fails to return spatially coherent regions, especially in
textured regions of the scene.

Input image Coupled flow Assignment flow [2]

3
×

3

Local Harandi [10]

5
×

5

100 labels

Fig. 8. Same set-up as Fig. 7 using 100 initial labels. The observations stated in the
caption of Figure 7 hold here as well. We only point out that with sufficiently strong
spatial regularization (bottom row), the Coupled flow managed to adapt labels on the
feature manifold, and thus represents more compactly textured regions (tree, roof) in
a spatially coherent way.
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