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Abstract. We present a novel dual decomposition approach to MAP
inference with highly connected discrete graphical models. Decomposi-
tions into cyclic k-fan structured subproblems are shown to significantly
tighten the Lagrangian relaxation relative to the standard local polytope
relaxation, while enabling efficient integer programming for solving the
subproblems. Additionally, we introduce modified update rules for max-
imizing the dual function that avoid oscillations and converge faster to
an optimum of the relaxed problem, and never get stuck in non-optimal
fixed points.

1 Introduction

We focus on the Maximum A Posteriori (MAP) inference problem with discrete
Markov Random Field (MRF) models. While applying graph cuts and iterated
graph cuts has become standard for inference with exactly solvable submodular
models, and for approximate inference with intractable models on sparse grid
graphs, respectively [5, 21], recent research has focused on involved higher order
models® [15, 9, 16], model decomposition and lower bound maximization based
on linear programming (LP) duality [10, 12, 11, 17, 8], and tightening the com-
mon local polytope relaxation by advanced convex optimization [23, 24, 13, 20].

In this paper, we study the latter two points in connection with a particular
class of highly connected graphical models, motivated by applications in com-
puter vision. The models involve k-fan substructures® as subgraphs of the overall
model. As illustrated in Figure 1, the defining property of this sub-structure is
that an acyclic graph is obtained if we replace all inner nodes by a single node
and merge resulting multiple edges.

Figure 2 illustrates our model for evaluating the HumanEva dataset [19].
Our graphical model detects the human pose in each image based on appearance
features inside each view and epipolar-features between the 4 views. The random
variables represent model parts (head, elbow, hand ...) defined over a finite set
of image positions with a structure shown in Figure 2(b).

! The order of a model is given by the highest order of a term in the objective.

2 We use the shorthand Glffl: for a fan graph with n nodes and k inner nodes. If n

does not matter we just say k-fan.
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Fig. 1. Examples for fan graphs. Inner nodes are connected to each other. Outer nodes
are connected to all inner nodes, but not among each other.

Exact inference algorithm using this model is not feasible in acceptable time.
By decomposing the problem in simple problems involving fan-structures as
shown in Figure 2(c), however, high-quality inference becomes feasible by opti-
mizing a bound on the relaxed linear problem via linear programming (LP) du-
ality. We demonstrate below that utilizing fan-structures significantly improves
the quality of the bounds obtained by standard LP relaxation.
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Fig. 2. a) Images from the HumanEva dataset. Detection of human pose is done by
processing all four views simultaneously, using the graphical model shown in b). The
model enhances a standard representation for each single view by epipolar constraints
between views. ¢) shows one of 15 fan-structured subproblems used for tight relaxation.

The primary motivation for the decomposition of graphical models is twofold.
Firstly, an approximation to the intractable inference problem can be formulated
in terms of a two-level optimization procedure, where at the lower level inference
on tractable substructures is carried out, while the master program at the upper
level combines these partial solutions via dual variables. Secondly, the resulting
objective value at the upper level yields a bound to the original (intractable)
objective function, whose optimization through dual variables possibly meets
the value of some locally computed optimum, thus providing a certificate that



this optimum is indeed a global one. For the general background, we refer to
standard textbooks [3, 2], and for sophisticated applications of this principle in
computer vision to, e.g. [10, 8, 12, 22].

A major difference to our work presented here is that we do not focus on
graph decompositions into substructures for which inference can be efficiently
done by standard methods, e.g. trees and belief propagation. While trees as sub-
structures are natural for sparse grid graphs (e.g. row/column decomposition
[10, 11]), they appear unnatural in connection with highly connected models as
sketched above in Figure 2. Rather, we directly focus on more complex cyclic
substructures, provided they are embedded into k-fans (Fig. 2(c)). This results
in a relaxation of the overall inference problem that is provably tighter than the
standard local polytope LP relaxation corresponding to tree structured subprob-
lems. In the literature, cyclic substructures in connection with dual decomposi-
tion have been studied for the specific case of planar grid graphs by [11], in a
general framework without specific evaluations by [8], and by [20] in terms of
iteratively adding higher-order terms for locally improving the local polytope re-
laxation. Our work differs by focusing on k-fan substructures that can be flexibly
applied to a wide range of non-planar, densely connected graphical models.

Another issue concerns the method for optimizing the Lagrangian dual at the
upper level. In most work on dual decomposition of graphical models, conver-
gence of the corresponding subgradient-based iteration is not really addressed.
Either a “sufficiently small” step size is chosen, or the basic divergent series up-
date rule is applied [7, 14]. In this paper, therefore, we merely raise this issue
in the light of more recent pertinent work [18], due to its increasing importance
in computer vision, leaving a more comprehensive investigation of this topic for
future work.

Contribution. To summarize, our contribution consists in specifying mathe-
matically the novel relaxation and showing both theoretically and empirically
the influence of the choice of the subproblems on the relaxation and inference.
In particular, we focus on k-fan substructures and general energy functions that
are not restricted to any subclass. Furthermore, we improve convergence of the
subgradient based optimization of the Lagrangian dual function.

Organization. We describe our problem decomposition and Lagrangian relax-
ation approach in Section 2 and show that this relaxation is tighter than the
standard linear programming relaxation. Optimization of the Lagrangian dual
via projected subgradient methods is discussed in Section 3. Finally, we present
in Section 4 experimental results for synthetic and real world data.

Notation. Given a graph G = (V, E) we associate to each node a € V' a variable
r, taking values in X, and a energy function J(z) = > . fe(ze) with C C
VUE. For A C V, we define x4 = (25)aca and Xy = ®geaXy, and as a
shorthand z = xzy and X = Ay. Following [23], we reformulate the problem of
determining the optimal configuration z in X,

o —argmin,cy Y folee), (1)

ceC



in overcomplete form

ceC i€Z(G)

with vectors 6 and ¢(x) indexed by Z(G) = {(¢;j)|c € C, j € X.} and (-, ")
denoting the inner product. Furthermore, given 6 according to (2), problem (1)
is equivalent to determining p* as solution to the LP

i = argmin(d, 1), (3)
HEM(G)

where M(G) denotes the marginal polytope defined as convex hull of all inte-
ger configurations with respect to the overcomplete representation. The expo-
nentially large description of the feasible set M(G) reflects the combinatorial
difficulty of the inference problem and necessitates problem approximations for
general objective functions.

2 Problem Decomposition and Relaxation

In this section, it will be convenient to distinguish between original parameter

vectors 6, 7" and parameter vectors §° defined by the problem decomposition —
cf. (6) below. Starting with the convex optimization problem (3),

J(w') = M&ir(lg)w, 1), (4)

we decompose it as follows. Given a set of graphs {G',...,G"}, with G* =
(V, E") such that E* C E and J_, E' = E, we define 6 € RZ(@);

0 ifagdVUE?,
0,.; = Ba/n ifaeV, (5)
a5/ #a ifa e E".

Here, #a denotes the number of edge-sets containing a. Note that the decom-

position ensures § = > 9. For each subproblem, we define another smaller
exponential parameter vector

0" = [0z, (6)



called the projection of 7' with respect to Z(G?) and reformulate problem (4):

J(p*) = mi 0, 7
(1) Cuin 1’ (0 1) (7a)
. -1 eqn. (5) . i
= min_ S = L min > O uh)  (Th)
Viiptie M(@G) Viipe MG
Viip'=p Viipt = [N]z(gi)
. P eqn. (5) . —
> min >ty = mn o @w ()
H i H .
Vi:pt e M(GY) Vi : [;L]I(Gi) € M(GY)

Vi:pt = [N]z(ci)
Decomposition (7) has the following properties:

— If all subgraphs are trees the relaxation is equivalent to the standard relax-
ation over the local polytope [23].

— If the subproblems include cycles, we get tighter relaxations which also take
into account higher-order constraints.

In this paper, we focus on the latter option in terms of k-fan structured subprob-
lems and show that this significantly tightens the relaxation and hence improves
inference. Because problem (7c) is still difficult to solve, we focus on its dual
by adding Lagrangian multipliers for the equality constraints, yielding the dual
function

gL A = min Y (0L Y D Al —pa)  (8)
pERIE T aeZ(Gi)
Vi:p' € M(G")

Since p is unconstrained, this vector is determined by the corresponding partial
derivatives of the right-hand side of (8). This yields the condition

()\1,...,)\")6/1:{(Al,...,A")‘VaeI(G): 3 Ago}, 9)

ie{jla€Z(G)}
and by insertion into (8) the dual problem of the relaxed LP (7c)

sup “min (6" + \), ). 10
(A ameA /ﬂEM(Gl)« o) (10)

Since the feasible set of the primal problem (7c¢) includes a strict feasible point,
Slater’s condition [4] holds and guarantees that the duality gap between (7c)
and its dual problem (10) is zero, i.e.

sup g\, A =L* = U*:= min @,p). (11
(AL, am)eA e RT(S) ,
Vi : [l‘]z(ci) € M(GY)



Instead of solving the relaxed primal problem (7c) which is still fairly complex,
we can now solve the dual problem (10) by projected sub-gradient descent [3, 18],
taking advantage of the problem decomposition into tractable subproblems. To
this end, we have to optimize each subproblem
: X3 1 K3

o duin (O + X)), 1) (12)
for a given A\¢ (cf. section 3). Rather than solving the LP in (12) directly, we solve
instead the corresponding integer programming problem. This is correct because
vertices of the polytopes M(G?) correspond to integer configurations. Accord-
ingly, if the decomposition has been chosen properly, these integer problems can
be solved very fast. As a by-product, we obtain an upper bound U(t) of the
original objective function (4) by evaluating® in each step ¢ for all subproblems
i the solutions (1)

U()= minmin @[(1)" Jz)) (13)

t'=1,..ti=1,..n

The lower bound, on the other hand, reads

L(t) = 0" + (A, (). 14

(0= mx, 350+ 00" 69) (14)

It crucially depends on the problem decomposition and thus reflects the quality
of the relaxation. Figure 3 further explains and illustrates the relation between

the different bounds and optima.

3 Solving the Dual Problem

The dual problem (10) is a nonsmooth concave maximization problem with linear
constraints. The main difference between most inference algorithm based on
dual decomposition [8, 11, 23, 24], besides the decomposition itself, concerns the
choice and the computation of updates of A in each step. A standard solver for
such problems is the Projected Sub-Gradient Method (PSGM) [3] that requires
to compute a subgradient of g at A. The set of all subgradients at A is called the
subdifferential at A and denoted by dg(X\). We perform inference with respect to
all subproblems and select a subgradient from the set

dg'(\) =0 in_ (0" 4+ X', p’ 15
g0 =0 min @+ X)) (15)
= V(O + N pu*) |pt € argmin gf(AY) (16)
neM(GY)
= {/f p* € argmin gi()\i)}. (17)
pieM(G?)

3 The main trick in (13) is that (ui)t' is integer and both graphs (G and G*) have the
same node set V, consequently the projection [|z() is well defined.



Relaxation Gap

Duality Gap

Fig. 3. This figure displays typical progressions of the bounds. Gray lines mark optimal
values for the original primal and the relaxed primal/dual problem. Note that L* = U*
(zero duality gap for the relaxed problems). The blue line shows the current lower bound
L(t) of the dual relaxed problem. The red line marks the current upper bound U (t) of
the primal relaxed problem whose computation is too complex. Therefore we compute
instead an upper bound U of the minimum of the original primal problem (marked
in red). The observed gap U(t) — L(t) includes the current duality gap as well as the
current relaxation gap, and we can not infer how they split up the total gap. However,
we know that the duality gap will be zero and as a consequence, that after convergence
the remaining gap is only due to the relaxation.

Concerning the subproblems, inference for a Gg’: -structured model with L states
per variable can be done using the junction tree algorithm [6] with asymptotic
complexity O((n — k) - L*+1)). We use an alternative search-based algorithm
proposed in [1] having the same asymptotic worst case runtime complexity for
fan graphs, but performs faster on average. For the synthetic data in section
4 this decreases the dominant term of the average complexity from LFt1 to
approximately L5 (5+1) which is significant in practise.

Algorithm 1 shows a modified form of the PSGM. This modified version, also
known as heavy ball method, does not step into the direction of the last subgra-
dient, but rather into the direction of a convex combination of the subgradients
observed so far. For p® = 1, we obtain the standard PSGM, and for constant
sequence p® € (0,1) a ’damped version’ of it. We can guarantee that Algorithm
1 converges to an optimum provided that

o #(0)

i ) — ) — im — =
tlggoT 0, ;T o0 tlggo p®) 0- (18)
For () = *ﬁ conditions (18) is satisfied for any constant sequence p(*).

The speed of convergence depends highly on good choices of the sequence 7(*),
which we determine offline by grid-search on the parameter space for a particular
problem class and the corresponding graphical model. However, a good choice



of p() also depends on the current value of 7(/). Ruszczynski [18] suggests a

damping sequence p(t) = ﬁg and shows that for this sequence Algorithm 1
converges for p € (0, 1], which generalizes the standard conditions (18).

Algorithm 1 Projected Sub-gradient Method
t=0, A9 =0e4
repeat
s € dg((M")
if t == 0 then

C(t) =3
else

g(t) _ C(tfl) + p(t)(s _ C<t*1))
end if

Compute U(t) and L(t)
(t+1) — (®) t. @)
WD =[O+ ¢O]
t=1+ 1
until |U(t) — L(t)]| < € or t > tmax

4 Experiments

Dual decomposition with k-fans: computer generated example. We
first demonstrate the increasing accuracy achieved by selecting more complex
k-fan subproblems, that is by raising k. We generated complete (fully con-
nected) graphs G = (V, E) containing first and second order potentials uniformly
sampled between 0 and 1. Next we decomposed the graph into [|V|/k] graphs
G' = (V, E%), as shown in Figure 4.

T o s

G b) Decomposition in three 2-fans

Fig. 4. A decomposition of a full connected graph with 6 nodes in three 2-fan structured
graphs.

As Figure 5 reveals, we obtain much tighter bounds for decompositions with
larger k. Also we achieved better integer solutions and this quite efficiently.



Decompositions into cyclic subproblems outperform decompositions with acyclic
subproblems (lowest curve). This finding agrees with observations in [11, 8, 20].
Our results show that this property carries over to more complex problems with
k-fan graphs as subproblems.
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Fig. 5. Lower bounds for different k-fan decompositions as functions of runtime. The
original problem involves 12 variables and 10 labels. The second order graph is fully
connected, and the potentials were uniformly sampled between 0 and 1. Increasing k
leads to tighter (larger) bounds.

Dual decomposition with k-fans: HumanEva dataset. The HumanEva
dataset [19] contains 7 calibrated video sequences (4 grayscale and 3 color) that
are synchronized together with 3D body poses obtained from a motion capture
system. We used the 4 grayscale views and trained a model for images without
taking into account temporal context. The graphical structure of our model is
shown in Figure 2(b). Random variables take positions in the image domain, and
the objective contains unary and pairwise potentials which include information
about geometry and appearance. Nodes corresponding to each single view span a
fully connected graph. Edges between views represent soft epipolar constraints.
For a detailed description of the model, we refer to [1].

As inference for such models is difficult, we use a decomposition of this model
into a set of 1-, 4- and 5-fans in order to derive a relaxation of the original prob-
lem as described above. The 1-fan corresponds to the approach of Komodakis
[12] applied on our non-grid graphs. The 5-fan decomposition consist of 12 sub-
problems. Inner nodes of the fan of each subproblem correspond to the same
single view, as sketched in Figure 7(c). Surprisingly the use of the 5-fans brings
no advantage over the 1-fans for this problem. Rather, the decomposition with
1-fans gives even better results (see Table 1). The explanation for this is firstly,
that the local relaxation inside a single view seems to be quite tight, and sec-
ondly that the computation of a subgradient of the 5-fan decomposition is more
expensive than for 1-fans, hence takes more runtime. As we select some subgra-
dient of the set dg(\), our current implementation does not check the optimality
condition 0 € g(\) (Fermat condition), and therefore we additionally impose an
upper bound on the runtime for possibly terminating the iteration.
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Fig. 6. The plot shows the progression of lower and upper bounds as a function of
runtime. While both 1-fan and 5-fan decompositions restricted to single views perform
similarly, the 4-fan decomposition enforcing epipolar consistency generates significantly
tighter bounds and better integer solutions. The decompositions are sketched in Fig-
ure 7.

In order to effectively enforce higher order constraints between the same parts
in different views, we set up a 4-fan decomposition in which the subproblems
contain the clique of variables assigned to the same body-part in all views, as
shown in Figure 7(b). This decomposition gives much better bounds and guar-
antees a gap which is less than € = 107% in nearly 80% of the images and always
outperforms the 1-fan decomposition. See Table 1 for more details.

These results show that while our approach can be applied to general graph-
ical models, the overall performance may depend on the choice of a particular
decomposition based on application-specific expertise.
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000 000 000 000
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(a) 1-fan (b) 4-fan (c) 5-fan

Fig. 7. The three graphs above sketch the structure of subproblems corresponding to
three decompositions of the graphical model used for the HumanEva data. The 4-fan
subgraphs include all epipolar constraints between single parts. The 5-fan decomposes
the 15 nodes in each single view into three 5-fan substructures.
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Table 1. We tested 3 different decompositions for 103 images from the HumanEva
dataset. We decomposed the original problem into 1-fans, 4-fans and 5-fans as shown
in Figure 7. We used a constant as well as a decreasing p-sequence (the latter one
marked with *) for subgradient ascent with ¢ = 1075, Choosing 5-fans inside single
views does not improve inference while 4-fans between views results in much tighter
relaxations. Furthermore, the decreasing p-sequence leads to faster convergence. The
leftmost two columns specify how often the remaining gap was smaller than €, and how
often the best lower bound over all 6 approaches was reached. The 3rd and 4th column
specify mean values of the gap and the lower bound. Finally, we compared the runtime
for all data where all 6 approaches achieved e-optimality.

€-gap best lower bound|mean gap|mean lower bound|mean runtime
convergence achieved
1-fan 27.18% 18.45% 0.0165 8.4816 1330 sec
1-fan*| 35.92% 24.27% 0.0149 8.4820 1140 sec
4-fan 64.08% 60.19% 0.0011 8.4942 917 sec
4-fan*| 78.64% 98.06% 0.0009 8.4943 577 sec
5-fan 11.65% 11.65% 0.0238 8.4760 2422 sec
5-fan*| 23.30% 22.33% 0.0178 8.4805 1389 sec

5 Conclusions

We studied the decomposition of complex discrete graphical models into k-fan
structured subproblems by Lagrangian relaxation. This enables to take into ac-
count more complex constraints as part of the subproblems that can still be
solved to optimality within reasonable runtime. We also improved the perfor-
mance of the subgradient ascent iteration for solving the Lagrangian dual prob-
lem, which is relevant not only for our problem but for any dual decomposition
approach that are increasingly applied in computer vision research.

Experiments show that just choosing arbitrary decompositions into larger
subproblems does not automatically lead to significantly better bounds. With
little application-specific expertise, however, decompositions can be chosen that
improve inference considerably, at moderate additional costs. The latter becomes
immaterial for parallel implementations that are naturally supported by the
problem decomposition.

Choosing automatically an optimal set of subproblems remains an open prob-
lem for future work, as is the case for automatically determining optimal pa-
rameter values for subgradient-based iterative optimization of nonsmooth dual
functions.
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