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Abstract. The saddle point framework provides a convenient way to
formulate many convex variational problems that occur in computer vi-
sion. The framework unifies a broad range of data and regularization
terms, and is particularly suited for nonsmooth problems such as To-
tal Variation-based approaches to image labeling. However, for many
interesting problems the constraint sets involved are difficult to han-
dle numerically. State-of-the-art methods rely on using nested iterative
projections, which induces both theoretical and practical convergence is-
sues. We present a dual multiple-constraint Douglas-Rachford splitting
approach that is globally convergent, avoids inner iterative loops, en-
forces the constraints exactly, and requires only basic operations that
can be easily parallelized. The method outperforms existing methods by
a factor of 4−20 while considerably increasing the numerical robustness.

1 Introduction

Overview and Motivation. In this work, we focus on algorithms for solving
saddle point problems associated with variational formulations in image process-
ing and analysis, which have recently become a very active research area. The
output of a variational method is defined as the minimizer

u∗ := argmin
u∈C

f(u) , (1)

where C is some subset of a space of functions defined on some continuous do-
main, and f a functional depending on the input data. In contrast to “discretize
first” approaches such as grid- or graph based methods, this “analyze first” ap-
proach allows to get a deeper insight into the underlying problem, and to abstract
from inaccuracies caused by the discretization.

The interpretation of u is governed by the problem to be solved: for color
denoising, u : Ω → [0, 1]3 could directly describe the colors of the output image
on the image domain Ω ⊆ R

d; while for segmentation problems, u : Ω → [0, 1]
could assign each point to the foreground (u(x) = 1) or background (u(x) = 0)
class. Recently, interest has risen in a specific class of variational problems of
the form

inf
u∈C

sup
v∈D
{〈u, s〉+ 〈Lu, v〉 − 〈b, v〉} , (2)

where the primal and dual constraint sets C ⊆ X and D ⊆ Y are convex subsets
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Fig. 1. Application of the proposed saddle point optimization method to multi-class
color segmentation. Left: Input image.Right: Segmentation into 12 regions of constant
color. The tight relaxation of the combinatorial labeling problem results in a saddle
point problem with an intricate dual constraint set. In contrast to existing approaches,
the method proposed in this work allows to compute global minimizers of such problems
without requiring inaccurate and time-consuming iterative projections as subroutines.

of some function space X with dual space Y , L : X → Y is a linear operator,
s ∈ Y and b ∈ X. These bilinear saddle point problems are very useful in the
context of labeling [4, 12, 14], and – using a “lifting” technique – can be used to
minimize a large class of common variational problems [18].

As these problems are generally convex, they do not suffer from local minima,
which allows to clearly separate modelling from optimization aspects. The inner
problem turns out to be a convenient way of expressing objective functions f
that contain non-smooth terms, such as Total Variation (TV) regularization, and
allows to apply fast primal-dual optimization schemes that explicitly update the
primal variables u as well as the dual variables v.

First-order methods of this kind have been shown to achieve a good perfor-
mance for many problems while offering excellent parallelization characteristics
[22, 17, 14]. These methods require to compute projections ΠC and ΠD on the
sets C and D. However, in many cases one faces discretized problems of the form

min
u∈C

max
v∈D1∩...∩Dr

{〈u, s〉+ 〈Lu, v〉 − 〈b, v〉} , (3)

with C ⊆ R
n and Di ⊆ R

m, i = 1, . . . , r. This occurs in particular in connection
with relaxations of the combinatorial labeling problem (Fig. 1) and functional
lifting [4, 18, 14]. Here the dual constraint set D is only given implicitly as an
intersection, hence projections cannot be computed in closed form.

Current methods to solve such problems are based on approximating the
projection on D by a series of projections on the simpler sets Di. However, this
causes a number of issues. From a theoretical viewpoint, convergence of the outer
algorithms usually requires the inner problem to be solved with an increasing
accuracy at each step, which is impractical. Thus in practice convergence is no
longer guaranteed. In addition, the projections become very slow, and raise many
issues on how to choose suitable and matching stopping criteria.
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Contribution. In this work, we propose a dual multiple-constraint Douglas-
Rachford method for saddle point problems of the class (3), that exactly takes
into account the dual constraint set D while still relying only on simple ex-
act operations. The method is shown to converge to a global optimum and is
suited for massive parallelization. While the method essentially solves the dual
problem, we show that a primal solution can be recovered. As all steps in the
proposed algorithm can be computed explicitly, the theoretical convergence re-
sults directly transfer to the actual implementation. The approach outperforms
state-of-the-art methods on real-world problems with respect to computation
time and numerical robustness by a factor of 4− 20.

Related Work. Continuous labeling approaches [21, 5] constitute a continuous
equivalent to discrete graph cut methods [3]. These discrete methods are difficult
to parallelize and suffer from anisotropy induced by the discretization. This
grid bias can be reduced in some extent by using larger neighborhoods in the
graph construction, but it cannot be completely eliminated and computational
costs quickly increase in the process. In contrast, continuous methods can be
used to construct discretizations that exactly represent the original metric in an
infinitesimal sense [4]. The idea of functional lifting can be found in a discrete
setting in [11] and in a continuous formulation in [4, 17], and has also proven to
be useful in the context of optical flow [10].

Regarding optimization, our work extends the approach proposed in [9] for
two-, and in [14] for multiclass labeling. The authors use a similar method, but
require iterative projections at each step. The basic Douglas-Rachford iteration
[6, 7] applied to the dual problem can be shown to be equivalent to the Alternat-
ing Direction Method of Multipliers [8] and the recently proposed Alternating
Split Bregman method [9, 20], hence our results equally apply in these formula-
tions.

2 Bilinear Saddle-Point Problems in Computer Vision

In the following, we will consider variational problems that can be stated in the
specific saddle point form (3) when discretized. For s ∈ R

n, b ∈ R
m, L ∈ R

m×n,
and some closed convex sets C ⊆ R

n and Di ⊆ R
m, i = 1, . . . , r, define D :=

D1 ∩ . . . ∩ Dr and

g(u, v) := 〈u, s〉+ 〈Lu, v〉 − 〈b, v〉 . (4)

Then problem (3) consists in computing a minimizer of the primal objective

f(u) := maxv∈D g(u, v),

min
u∈C

max
v∈D

g(u, v) = min
u∈C

f(u) . (5)

Under the assumption that at least one of the sets C and D is bounded, it
can be shown that equivalently one may maximize the dual objective fd(v) :=
minu∈C g(u, v) [19, Cor. 37.3.2],

max
v∈D

min
u∈C

g(u, v) = max
v∈D

fd(v) . (6)
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In particular, pairs of primal resp. dual solutions (u∗, v∗) are saddle points of g,

min
u∈C

f(u) = f(u∗) = g(u∗, v∗) = fd(v
∗) = max

v∈D
fd(v) (7)

We will now present two prototypical applications of the saddle point method:
multiclass image labeling and generic scalar variational models with gradient-
based regularizers.

Continuous Multiclass Labeling Approaches. Many problems in image
analysis can be reduced to the basic problem of assigning to each point x in
the image domain Ω one of l discrete labels {1, . . . , l}, such as an object class in
segmentation problems, a depth label in stereo reconstruction, or a displacement
vector in image registration [16]. In order to reduce the influence of noise, some
nonlocal spatial coherency constraints are required in addition to the local data
fidelity measure based on the input image.

As for each point a discrete decision must be made, the problem is combina-
torial and nonconvex, and in fact can be shown to be NP-hard even for relatively
simple energies under a graph discretization [3]. However, by relaxing the original
problem to a convex constraint set, good solutions for the original problem can
be recovered using convex optimization [22, 4, 13, 14]. In the continuous setting,
the labeling problem can be relaxed to the variational problem

min
u∈C
〈u, s〉+ J(u) , C := {u ∈ BV(Ω,Rl)|u(x) > 0,

∑

i

ui(x) = 1} , (8)

where BV denotes the space of functions of bounded variation [2]. By embed-
ding the original labels into a higher-dimensional space via the unit vectors
{e1, . . . , el}, the local data fidelity can be completely encoded into the linear
term, irrespective of the complexity of the original data term: assigning label i
to the point x will locally be penalized by si(x).

For the nonlocal regularizer J , we choose some metric d : {1, . . . , l}2 → R,
denote by Du the (distributional) Jacobian of u, and set

J(u) := sup
v∈D

∫

Ω

〈Du, v〉, D := {v ∈ (C∞
c )d×l|v(x) ∈ Dloc∀x ∈ Ω} , (9)

Dloc := {v = (v1, . . . , vl) ∈ R
d×l|‖vi − vj‖ 6 d(i, j),

∑

k

vk = 0} . (10)

This is a tight relaxation of the requirement that switching from label i to label j
along some curve should be penalized by the curve length, multiplied by a factor
d(i, j) depending on the labels i and j. In terms of graph-based approaches, this
can be thought of as the potentials on the edges of the graph. The formulation (9)
carries over this principle to the continuous domain Ω. By discretizing u, v and
s on a rectangular grid and choosing a forward finite differences discretization
L of the gradient operator D, the above variational formulation can be posed in
the saddle point form (3) without introducing grid bias (cf. [4]).

The definition of Dloc is derived by locally constructing the convex envelope
of the desired regularizer restricted to the set of u that only assume the “hard”



Fast and Exact P-D Iterations for Variational Problems in Computer Vision 5

labels {e1, . . . , el}. As a result, the minimizer of the convex problem (8) is often
a unit vector in almost all points, and provides a very good approximation to
the solution of the original combinatorial labeling problem.

The increased approximation tightness comes at the price of a more compli-
cated optimization process. However, as Dloc is the intersection

Dloc = {v ∈ R
d×l|

∑

i

vi = 0} ∩
⋂

i<j

{v ∈ R
d×l|‖vi − vj‖ 6 d(i, j)} , (11)

the problem can be put into the form (3). Projections on the individual sets can
be easily computed by subtracting the mean resp. by shrinkage-like operations.

Lifting Approach. For the case where the sought-after function takes scalar
values, such as gray scale or depth, the saddle point formulation permits another
interesting application. Assume we want to minimize over C ⊆W 1,1(Ω,R) some
functional

min
u′∈C

f ′(u′), f ′(u′) :=

∫

Ω

h(x, u′(x),∇u′(x))dx (12)

with h convex in ∇u′(x), but not necessarily in u′(x). Then, motivated by the
“calibration” idea [1], it was shown in [18] that f ′ can be expressed in terms of
the {0, 1}-indicator function χH(u′) of the hypograph

H(u′) :=
{
(x, t) ∈ R

d × R|u′(x) > t
}

(13)

of u′, i.e. χH(u′)(x, t) = 1 iff u′(x) > t and zero otherwise. Specifically,

f ′(u′) = sup
v∈D

∫

Ω×R

〈v,DχH(u′)〉 , where (14)

D :=
{
(vx, vt) ∈ C∞c |∀x ∈ Ω, t ∈ R : vt(x, t) > h∗(x, t, vx(x, t))

}
. (15)

Here h∗ denotes the convex conjugate of h with respect to the last argument.
Intuitively, this lifts the problem to a higher-dimensional space and transforms
it to the problem of finding the set of points below the graph of u′.

Again, the problem is transformed to a convex problem by replacing χH(u′)

with some function u : Ω → [0, 1]. This effectively linearizes the nonconvexity of
h with respect to u(x). The relaxed problem reads

min
u∈C

sup
v∈D

∫

Ω×R

〈v,Du〉 , C := {u ∈ BV(Ω × R, [0, 1])|u(x, t) t→±∞−→ 0/1} , (16)

which after discretization fits into the saddle point framework (3). Again, de-
pending on the integrand h, the dual constraint set D may be very complicated.
The approach can be extended to the full Mumford-Shah functional [15],

f ′(u′) = λ

∫

Ω

(f − u)2dx+

∫

Ω\S
u′

‖∇u‖2dx+ νHd−1(Su′), λ, ν > 0 , (17)

where Hd−1 is the (d − 1)-dimensional Hausdorff measure (Fig. 2). The W 1,1

requirement above is relaxed to u′ ∈ SBV(Ω×R), i.e. the set of special functions
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Fig. 2. Application of the proposed optimization method to nonsmooth variational de-
noising. Left: Input image. Right: Result of variational denoising using the Mumford-
Shah functional with 8 levels, λ = 0.5 and ν = 5. Noise or fine details can be re-
moved without blurring sharp edges. The lifting approach allows to minimize the full
Mumford-Shah functional within the convex saddle point framework.

of bounded variation [2], such that u′ may have a nonempty set of discontinuities
Su′ . The dual constraint set then becomes [17]

D = C∞
c (Ω × R,Rd+1) ∩R ∩

⋂

p6q

Sp,q , (18)

R :=

{

(vx, vt)|vt(x, t) + λ(t− f(x))2 >
vx(x, t)2

4
∀x, t

}

(19)

Sp,q :=

{

(vx, vt)|
∣
∣
∣
∣

∫ q

p

vx(x, t)dt

∣
∣
∣
∣
6 ν ∀x, t

}

. (20)

Again, projections on the discrete counterpart of D can only be approximated.
On the other hand, projections on Sp,q and R can be computed explicitly by
using a shrinkage-like method [4] resp. by solving a third-order polynomial using
a solution formula. This motivates our optimization approach below that exactly
takes D into account in terms of individual projections onto Sp,q and R.

3 Dual Multiple-Constraint Douglas-Rachford Splitting

Based on the theory of set-valued operators applied to the subdifferential oper-
ators of convex functions, the Douglas-Rachford approach [6] provides a scheme
to compute a minimizer of the problem

min
u∈Rn

f(u), f(u) := f1(u) + f2(u) , (21)

by iterating a combination of backward (proximal) steps with step size τ > 0,

u′ ← arg min
u′∈Rn

{(2τ)−1‖u′ − u‖22 + fi(u
′)} (22)
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Algorithm 1 Dual Multiple-Constraint Douglas-Rachford Optimization for
Saddle-Point Problems (DMDR)

1: Choose τ > 0, v̄0i ∈ R
n×d×l, z̄0 ∈ R

n×d. Set k ← 0.
2: while (not converged) do
3: vki ← ΠDi

(

v̄ki −
τ

r
b
)

.

4: z′′k ← ΠC

(

1

τ

(

z̄k − s
))

.

5: v′k ←
(

rI + LL⊤
)−1 (∑

i

(

2vki − v̄ki
)

− L
(

z̄k − 2τz′′k
))

.

6: v′k1 = . . . = v′kr ← v′k.
7: z′k ←

(

−L⊤
)

v′k.

8: v̄k+1

i
← v̄ki + v′ki − vki .

9: z̄k+1 ← z′k + τz′′k.
10: k ← k + 1.
11: end while

on each of the fi individually. More precisely, if both f1 and f2 are proper,
convex, and lower semicontinuous functions, and the relative interiors of their
domains have a nonempty intersection, the Douglas-Rachford iteration scheme
converges to a minimizer of f [7, Thm. 3.15; Prop. 3.23, 3.20, 3.19]. A strong
point of the method is that it does not require any part of the objective to be
smooth or finite, which allows to introduce constraints into the fi as required.

Algorithm and Convergence. We will now show how to add auxiliary vari-
ables before splitting the objective in order to avoid the iterative projections
employed in [4, 18] and the associated accuracy and convergence issues. Instead
of solving (5) directly, we solve the dual problem (6) and additionally introduce
auxiliary variables z and v1, . . . , vr, leading to the equivalent problem

min
vi∈Rm

δ−L⊤( 1

r

∑
i
vi)=z,v1=...=vr

︸ ︷︷ ︸

f1

+
∑

iδvi∈Di
+ 〈 1

r

∑

ivi, b〉+max
u∈C
〈u, z − s〉

︸ ︷︷ ︸

f2

. (23)

The extra constraints are represented as characteristic functions δ taking values
{0,+∞}. Applying the Douglas-Rachford method to the above splitting formu-
lation leads to the complete algorithm as outlined in Alg. 1. Due to the auxiliary
variables, the backward step for f2 requires only separate projections on the Di

instead of the complete set D. The backward step for f1 amounts to solving a
linear equation system. By the Woodbury identity, this can be transformed to

(
rI + LL⊤

)−1
x = r−1x− r−1L

(
rI + L⊤L

)−1
L⊤x . (24)

In all of the presented applications, L is a forward differences discretization of
the gradient. Thus LL⊤ is the five-point Laplacian and diagonalizes with respect
to the discrete cosine transform, allowing to solve (24) fast and exact using DCT
and diagonal matrix multiplications. We now show convergence of Alg. 1 subject
to a mild condition on the relative interiors ri of the domains.

Proposition 1. Let D1, . . . ,Dr, C be closed convex sets, C bounded such that

ri(D1)∩. . .∩ri(Dr) 6= ∅ and ri(C) 6= ∅. Then Alg. 1 converges in (vk1 , . . . , v
k
r , z

′′k).
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Proof. As C is closed we have ri(dom f2)∩ ri(dom f1) = ri(dom f2)∩{v1 = . . . =

vr,−A⊤vi = z} = {
(
v, . . . , v,−A⊤v

)⊤ |v ∈ ri(D1) ∩ . . . ∩ ri(Dr)}. This set is
nonempty by the assertion, which with the remarks at the beginning of the
section implies convergence. ⊓⊔

Duality Properties of the Proposed Method. In particular, the conver-
gence property of the Douglas-Rachford approach guarantees that from some
point on the constraints hold exactly. Then vk := vk1 = . . . = vkr , and vk con-
verges to a solution v of the dual problem (6). Unfortunately, it is nontrivial to
generate a primal solution u from a single dual solution, as both the dual and
the primal problem are usually not strictly convex. However, it turns out that
the above algorithm additionally returns a primal solution:

Proposition 2. Let (v := v1 = . . . = vr, z
′′) be a fixed point of Alg. 1. Then z′′

is a solution of the primal problem (5).

Proof. We will only provide a sketch the proof as it is quite technical. The point
is to show that the limit (z′′, v) of Alg. 1 is a saddle point of g(u, v) as defined
in (4), i.e.

g(u, ṽ) 6 g(z′′, v) 6 g(ũ, v) ∀ũ ∈ C, ṽ ∈ D . (25)

Let z̄ and v̄i be the corresponding limits from Alg. 1, and substitute z := z̄−τz′′.
Denoting by ∂f(x) the subdifferential (i.e. the set of subgradients) of f in x, from
the Douglas-Rachford convergence theorem [7, Prop. 3.19], it follows that

τ−1 (v̄1 − v1, . . . , v̄r − vr, z̄ − z)
⊤ ∈ ∂f2(v1, . . . , vr, z) . (26)

Summing up and using the definition of the algorithm leads to

Lz′′ = τ−1
∑

i

(v̄i − vi) ∈
∑

i

NDi
(vi) + b = ND(v) + b, (27)

where ND denotes the normal cone of the set D from convex analysis. On the
other hand, from (26) we get

τ−1 (z̄ − z) ∈ argmax
u∈C
〈u, z − s〉, i.e. z′′ ∈ argmax

u∈C
〈u,−L⊤v − s〉 . (28)

Together, (27) and (28) show the saddle point property of (z′′, v). Thus z′′ must
be a primal solution. ⊓⊔
By duality, the same scheme can be applied to solve problems where the primal

constraint set is more complicated, i.e. C = C1∩ . . .∩Cr. Also note that for r = 1,
the algorithm reduces to the Douglas-Rachford method from [14]. In case both f
and fd can be numerically evaluated, the gap f(z′′k)− fd(v

k) provides a strong
stopping criterion, as for any solution u∗ and dual feasible point vk ∈ D,

f(z′′k)− f(u∗) 6 f(z′′k)− fd(v
k) . (29)

In practice, it is often better to stop depending on the relative gap (f(u) −
fd(v))/fd(v), which overestimates the actual gap and provides some scale invari-
ance. However, in our case f usually cannot be evaluated due to the complexity
of D, and we must resort to a more elementary stopping criterion such as the
difference between two consecutive iterates, ‖z′′k − z′′k−1‖.
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Fig. 3. Runtime comparison on a set of four-class labeling problems. Top row, left

to right: Input image; input overlaid with heavy Gaussian noise; purely local labeling
without regularizer; segmentation computed using the proposed method. The exper-
iment was repeated 10 times with different noise. Bottom row: Gap vs. number of
iterations (left) and time (right) with error indicators at 2σ. The proposed DMDR
method performs comparable to FPD with respect to the number of iterations, but
requires significantly less time per iteration, resulting in a total speedup of 2− 3.

4 Experimental Results

We implemented and evaluated the proposed DMDR method as well as the fast
primal-dual (FPD) [17] and Douglas-Rachford (DR) [14] methods in Matlab on
an Intel Core2 Duo 2.66 GHz with 4 GB of RAM and 64-bit Matlab 2009a. The
full data set for the experiments is available at ipa.iwr.uni-heidelberg.de.

Runtime Comparison. We compared the performance of the above algorithms
on a four-class color segmentation problem (Fig. 3). The input image was gen-
erated by overlaying the synthetical “four colors” image with Gaussian noise,
σ = 1. The data term was set to the ℓ1-RGB distance to the four prototypical
color vectors. For the regularizer we chose the Potts distance, d(i, j) = λ iff
i 6= j and d(i, j) = 0 otherwise, with λ =

√
2. A reference solution and optimal

dual objective fd were computed using 5000 iterations of the DR method. The
experiment was repeated 10 times with varying noise.

In terms of the number of iterations, the proposed DMDR method converges
as fast as FPD. However, as it requires significantly less effort per iteration, it
outperforms FPD and DR by a factor of 2− 3 with respect to total runtime.

High Label Count and Improved Numerical Robustness. For a larger
number of labels, the runtime advantage is expected to become more apparent
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Fig. 4. Runtime performance on segmentation problems with a high label count. Top
row: Input images (top) and segmentation into 12 classes (bottom) computed using
the proposed DMDR method. Bottom left: Dual objective vs. time for 500 iterations
on the “crop” image. The proposed method outperforms DR and FPD by a factor of 10
resp. 17. Bottom right: Infeasibility of the dual iterates vs. number of iterations. Due
to the inexact projections, FPD and DR get stuck and converge to infeasible solutions.
In contrast, DMDR gradually decreases the infeasibility to zero in theory and practice.

as the cost per iteration increases. We performed a 12-class segmentation of the
real-world images in Fig. 1 and Fig. 4 with the same data term as above with
λ = 0.2 for the lake and fish images, and λ = 0.5 for the palm and crop images.

For this moderate number of labels, the iterative projections for DR and
FPD are already quite slow, so we fixed a maximum of 5 inner iterations per
outer step in order to get a reasonable computation time. The proposed method
is about 6−10 times faster than DR, and 7−17 times faster than FPD (Fig. 4).

Moreover, due to the inexact projections, DR and FPD converge to infeasible
dual points, i.e. they generate dual solutions v that do not lie inside the dual
constraint set D. In contrast, using DMDR the infeasibility gradually decreases,
and is guaranteed to eventually drop to zero given exact arithmetic (Sect. 3).

Histogram-Based Segmentation and Absolute Distance. Fig. 5 shows the
application of our method to a histogram-based three-class segmentation where
the data term is based on probabilities computed from histograms over regions
preselected by the user. In order to preserve more details, we chose λ = 0.025.
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Fig. 5. Application to histogram-based segmentation. Top row, left to right: Input
image with seed regions marked by the user; minimizer of the three-class variational
segmentation using the proposed approach. Bottom row: Dual objectives (left) and
ℓ2 distance to the reference solution (right) vs. time. With low-accuracy approximate
projections, FPD and DR get stuck in an infeasible solution (solid). Increasing the pro-
jection accuracy reduces the effect but slows down convergence (dashed). The proposed
DMDR method avoids these problems and returns high-quality solutions after only a
few iterations.

As above, it can be seen that FPD and DR get stuck at infeasible solutions,
while DMDR converges smoothly. Increasing the accuracy of the approximate
projections reduces the infeasibility, but leads to a much slower convergence.

It remains to ask how the dual gap relates to actual visual differences. There-
fore at each step we evaluated the ℓ2 distance of the current iterate to a reference
solution computed using 5000 DMDR iterations (Fig. 5). Again it becomes clear
that the inexact projections cause convergence issues for FPD and DR, while
DMDR does not suffer from these problems. After 500 iterations, DMDR recov-
ered a solution uk with ‖uk − u∗‖2 6 10, or 1.3 · 10−4 per pixel, suggesting that
only few iterations are required for visually high quality results.

Note that for all of the examples above, DMDR ran out of the box with
τ = 1, and did not require any parameter tuning.

Conclusion. We presented the DMDR method to efficiently solve saddle point
problems with intricate dual constraints, as arise from tight relaxations of contin-
uous multiclass labeling problems and general nonsmooth variational problems,
using only simple operations that can easily be parallelized. Experiments indi-
cate that it outperforms existing methods by a factor of 4− 20, and avoids the
inaccuracies and convergence issues of the FPD and DR methods that rely on
inexact projections.
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