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Abstract We introduce a class of adaptive non-smooth convex variational problems for image
denoising in terms of a common data fitting term and a support functional as regularizer. Adap-
tivity is modeled by a set-valued mapping with closed, compact and convex values, that defines
and steers the regularizer depending on the variational solution. This extension gives rise to a
class of quasi-variational inequalities. We provide sufficient conditions for the existence of fixed
points as solutions, and an algorithm based on solving a sequence of variational problems. De-
noising experiments with spatial and spatio-temporal image data and an adaptive total variation
regularizer illustrate our approach.

Keywords Quasi-variational inequalities · adaptive image denoising · total variation regular-
ization · solution-dependent adaptivity

1 Introduction

Variational methods define the state of the art in image restoration [22]. The total variation
measure [16,21], for instance, has spurred tremendous research activities on non-smooth convex
regularizers for image denoising and deblurring, together with numerous extensions, e.g., to image
motion and to non-locally defined operators [4,9,10,13,14,18]. The corresponding perspective on
image signal representation by additive decomposition into geometric structure and texture and
noise, respectively, led to novel ways to represent complex local image structure by simple high-
dimensional signal geometries [2]. As a consequence, there has also been a renewed interest in
large-scale convex programming [8] as a sound basis for implementing variational approaches on
modern parallel hardware like GPUs.

Figure 1(b) displays a simple denoising example using the total variation measure. As is well
known, this basic approach does an almost perfect job for piecewise smooth image signals as
encountered in images of man-made scenes. Yet, for particular local signal geometries one often
would like to adapt the denoising process as illustrated for a particular example in Fig. 1 (c).
Such adaptive approaches are well-known for PDE based denoising methods [5,11,25]. In the
field of variational denoising, there has been corresponding recent work [24] introducing valuable
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(a) (b) (c)

Fig. 1 Adaptive total variation (TV) filtering: (a) noisy test image, (b) filtering with the standard ROFmodel [21]
(close-up of the region indicated in (a)), (c) adaptive TV filtering (close-up), see Sect. 5.2. The feasible set adapts
to the local signal geometry and thus enables to remove noise more effectively.

ideas for adaptation. So far, a theoretical underpinning from both the variational viewpoint and
concerning convex programming has been lacking in the image processing literature, however.

The objective of the present paper is to fill this gap. We show that the desired adaptivity can
be conveniently modeled by resorting to the broader class of quasi-variational inequalities [6].
This leads to existence of solutions in terms of fixed points, and additionally to sound algorithms
formulated in terms of a sequence of convex non-smooth variational problems, to each of which
any established method can safely be applied.

While we motivate and introduce our approach using the total variation measure as the most
prominent non-smooth convex regularizer, we sufficiently abstract from this particular approach
by considering general support functions as regularizers. As a result, our approach is applicable
to many of the extensions referred to above, and we expect that our result helps to provide solid
ground for related existing and novel applications. In the second part of the present paper, we
will exemplify the application of our approach to total variation based denoising of both spatial
and spatio-temporal (motion) imaging scenarios. The latter, in particular, are highly relevant
for industrial applications. A sketch of our approach was already announced in the conference
paper [15]. We refer to [12] for a discussion on the continuous formulation of adaptive convex
regularizers.

This paper is structured as follows. Section 2 introduces the variational formulation and the
novel adaptive formulation in terms of a set-valued mapping that models the dependency of the
set of feasible solutions on the solution itself. Such extensions of the variational formulation are
covered by a corresponding class of quasi-variational inequalities detailed in Section 3, together
with an existence theorem and sufficient conditions relevant to applications in image analysis.
Section 4 specifies a basic algorithmic framework [17] and indicates aspects that are relevant for
implementations. In Section 5 we rigorously work out the application of the variational framework
to several major models for image denoising. Corresponding numerical experiments are presented
in Section 6.

2 Problem

We introduce the basic variational formulation and specify the adaptivity illustrated by Fig. 1
and discussed in Section 1.
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2.1 Primal Formulation

Let Ω ⊂ Rd be a bounded open domain with Lipschitz continuous boundary. The total variation
of u ∈ L2(Ω) is defined by [27]

TV(u) := sup
{
〈u, div p〉L2 : p ∈ C1

c (Ω;Rd), ‖p(x)‖2 ≤ 1, ∀x ∈ Ω
}
. (1)

The subspace of functions u ∈ L1(Ω) with bounded variation TV(u) < ∞ plays a major role
in variational image analysis [1,22]. The basic variational approach to denoising a given image
function f reads [21]

min
u

{1
2
‖u− f‖22 + αTV(u)

}
, α > 0, (2)

and provides the starting point of the present section. In what follows, we assume functions to
be discretized on a regular grid covering Ω, that is f, u ∈ Rn, the divergence operator div in (1)
is represented by a matrix L ∈ Rn×nd, and vector fields p(x) ∈ Rd, x ∈ Ω, are given as vectors
p ∈ Rnd.
Note that αTV(u) in (2) is a particular instance of a support function from convex analysis [20],

σC(u) = sup
v∈C

〈u, v〉, (3)

with C = divD and D = {p : ‖p(x)‖2 ≤ α}. Accordingly, we start out from the more abstract
variational problem in discretized form

min
u∈Rn

{1
2
‖u− f‖22 + σC(u)

}
. (4)

where

C = LD = {v : v = Lp, p ∈ D}, D = {p ∈ Rnd : pi ∈ Di
loc ⊂ Rd, i = 1, . . . , n

}
, (5)

and Di
loc being local constraint sets for each pi ∈ Rd, p = (p1, . . . , pn)

⊤. Note that (5) covers the
specific case Di

loc := Bα(0) ⊂ Rd, with Bα(0) being a ball of radius α centered at 0, corresponding
to (1) after discretization.

2.2 Dual Formulation

We compute the dual variational problem of (2). Using the sub-differential ∂σC(u) = {v : u ∈
NC(v)} = {v : 〈u, v − u〉 ≥ 0, ∀u ∈ C}, where NC(v) is the normal cone of C at v ∈ C, the
optimality condition for u minimizing (4) reads as

f − u ∈ ∂σC(u) ⇔ 〈u, f − u− u〉 ≥ 0, ∀u ∈ C.

Using the additive decomposition f = u+ v, we obtain

〈v − f, u− v〉 ≥ 0, ∀u ∈ C ⇔ v = ΠC(f),

where ΠC denotes the orthogonal projection onto C, and with v = Lp such that p solves the dual
problem

min
p∈D

F (p), F (p) =
1

2
‖f − Lp‖22. (6)
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2.3 Solution-Dependent Adaptivity

We now generalize the variational formulation by additionally taking the variation of the con-
straints sets into account. That is,

– the dual constraint sets D and Di
loc depend on the dual variable p, and

– the constraint set C defining the primal formulation depends on u = f − Lp.

In what follows, we will be primarily concerned with the set-valued mapping

D : p ⇉ D(p) := {p ∈ Rnd : pi ∈ Di
loc(p) ⊂ Rd, i = 1, . . . , n

}
, (7)

which in turn defines C by (5). Accordingly, we focus on the variational problem

min
p∈D(p)

F (p), F (p) :=
1

2
‖f − Lp‖22, (8)

that considerably generalizes (6) due to the dependency (7). We refer to this generalized concept
as solution-dependent adaptivity.

3 Approach

For fixed p, the problem

argmin
p∈D(p)

F (p) (9)

is convex and thus the mapping

p 7→ argmin
p∈D(p)

F (p) (10)

is well-defined. We are interested in a fixed point of this mapping.

3.1 A Quasi-Variational Inequality

In order to apply theoretical results from literature, we formulate our approach as a generalization
of the variational inequality corresponding to the dual problem (9): For fixed p, a minimizer p∗

of (9) satisfies the following optimality condition:

−∇F (p∗) ∈ ND(p)(p
∗) ⇔ 〈∇F (p∗), p− p∗〉 ≥ 0, ∀p ∈ D(p). (11)

A fixed point p ∈ D(p) of the mapping p→ p∗ therefore satisfies the quasi-variational inequality

−∇F (p) ∈ ND(p)(p) ⇔ 〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p). (12)
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3.2 Existence of Solutions

Assumption 1 Each Di
loc : R

nd
⇉ Rd, i = 1, . . . , n has the following properties:

(i) For fixed p the set Di
loc(p) is a closed convex subset of Rd.

(ii) There exists C > 0, such that for all i, p: Di
loc(p) ⊂ BC(0), where BC(0) is the closed ball

with radius C centered at 0.
(iii) For every i, p there exists 0 < c := c(p), such that Bc(0) ⊂ Di

loc(p), where Bc(0) is the open
ball with radius c centered at 0. In particular, Di

loc(p) is non-empty.
(iv) The projection ΠDi

loc
(p)(q) of q onto Di

loc(p) for a fixed q is continuous w.r.t. p.

Proposition 1 Let F (p) := 1
2‖f −Lp‖

2
2, where L : Rnd → Rn is a linear operator. Moreover, let

D(p) be defined as in (7), such that Di
loc(p), i = 1, . . . , n satisfy Assumption 1. Then, the problem

Find p ∈ Rnd such that 〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p) (13)

(cf. (12)) has a solution.

The proof of Proposition 1 utilizes the following theorem and lemma.

Theorem 1 (cf. Theorem 5.2 in [6]) Let G : Rm → Rm be a continuous point-valued mapping
and D : Rm

⇉ Rm be a set-valued mapping. Suppose that there exists a nonempty compact convex
set P such that

(i) D(P ) := ∪p∈PD(p) ⊆ P ;
(ii) D takes nonempty closed convex sets as values;
(iii) D is continuous, that is D(pk) → D(p) whenever pk → p in the sense that for the projection

ΠD(p) onto D(p)

ΠD(pk)(p) → ΠD(p)(p) for all p. (14)

Then, there exists p ∈ Rm such that 〈G(p), p− p〉 ≥ 0 for all p ∈ D(p).

The proof can be found in [6, Theorem 5.2].

Lemma 1 Let D be defined as in (7). Assume for every i = 1, . . . , n and q ∈ Rd the projection
ΠDi

loc
(p)(q) to be continuous w.r.t. p. Then, ΠD(p)(q) is continuous in p for fixed q ∈ Rnd.

Proof ΠD(q) can be written as ΠD(p)(q) = (ΠD1

loc
(p)(q1), . . . , ΠDn

loc
(p)(qn))

⊤. Thus, each compo-

nent of ΠD(p) is continuous, from which the continuity of ΠD(p) follows immediately.
⊓⊔

Proof of Proposition 1: We apply Theorem 1. Conditions (i) and (ii) follow from Assumption 1,
that, in turn, has to be verified for each specific application later, see Prop. 2, 3 and 4. Lemma 1
shows that also condition (iii) holds. ⊓⊔

4 Algorithm

In this section, we consider the problem of numerically computing a solution to the QVI (12):
find p ∈ D(p) such that

〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p). (15)
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Algorithm 1: Fixed point iteration with projected gradient steps.

Input: N,M ≥ 1, point p0 ∈ D(p0), λ ∈ (0, 1] sufficiently large.
Output: p = pM .
Choose 0 < τ < 2/ν, where ν denotes the Lipschitz-constant of ∇F . // initialization

begin

for k = 1 to M do

Dk = D(pk−1),

q0 = pk−1.
for l = 1 to N do

ql = ql−1 − 1
λ

(

ql−1 −ΠDk

(
ql−1 − τ∇F (ql−1)

))

.

pk = qN .

4.1 Prior Work

We comment on prior work that is relevant to the algorithm proposed below for solving (15).

– For the specific class of convex-valued mappings

D : Rnd
⇉ Rnd, D(p) =M(p) +D0, (16)

with fixed closed convex set D0 and Lipschitz continuous, strongly monotone mappings
∇F,M : Rnd → Rnd, convergence of the basic fixed point iteration

pk+1 = ΠD(pk)

(
pk − τ∇F (pk)

)
, k = 0, 1, 2, . . . (17)

to a solution of (15) was shown in [6, Thm. 5.3], for sufficiently small τ and arbitrary p0. We
proposed a corresponding algorithm in [15], which we recall here for the sake of completeness,
see Algorithm 1.

– Nesterov [17, Thm. 5] showed that iteration (17) only converges if the rate of variation of the
feasible set D(p) with p is much smaller than the condition number (Lipschitz constant divided
by the monotonicity parameter) of the operator ∇F . Assuming ∇F to be strongly monotone,
the author developed a more efficient modification of (17) together with an estimate of the
improved convergence rate.

In our case (15), the mapping D(p) is more general than (16). Moreover the mapping

∇F (p) = L⊤(Lp− f) (18)

is not strongly monotone, due to the kernel N (L) 6= {0} of L. The following lemma however
shows that we may restrict ∇F to the subspace N (L)⊥ ⊂ Rnd.

Lemma 2 Let the image data f be non-constant and p solve (15) with F (p) as in (8). Then,
Lp 6= 0.

Proof Assume Lp = 0. Then,

〈L⊤(Lp− f), p− p〉 = −〈f, Lp〉 = 〈−L⊤f, p〉 6≥ 0, for some p ∈ D(p),

because

– −L⊤f 6= 0 corresponds to the gradient of f , that does not vanish by the hypothesis,
– and Bc(0) ⊂ D(p), for every p and some c > 0, due to Assumption 1(iii).
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This contradicts that p solves (15).
⊓⊔

As a consequence, by restriction to the subspace N (L)⊥ ⊂ Rnd, gradient (18) becomes

∇̃F (p) := ΠN (L)⊥L
⊤(LΠN (L)⊥p− f) (19)

and strongly monotone,

〈∇̃F (p)− ∇̃F (q), p− q〉 ≥ µ‖p− q‖2, ∀p, q ∈ N (L)⊥, (20)

with monotonicity parameter µ equal to the smallest non-vanishing eigenvalue of L⊤L. As a
result, we may adopt Nesterov’s approach [17].

4.2 Applying Nesterov’s Approach

The algorithm detailed below is based on

Assumption 2

(i) ∇̃F (p) defined by (19) is Lipschitz continuous with constant ν and strongly monotone with
parameter µ. We define the condition number

γ :=
ν

µ
. (21)

(ii) There exists η > 0 such that

‖ΠD(p)(r)−ΠD(q)(r)‖2 ≤ η‖p− q‖2, ∀p, q, r ∈ Rnd. (22)

(iii) We define the contraction gap
δ := 1− ηγ > 0 (23)

and assume it to be positive.

Remark 1 Note that the operator ∇̃F (p) is still ill-conditioned, as µ can become small. On the
other hand, the constant η is induced by the dependency of the constraint set D on p and thus
is fixed. However, the contraction gap can be controlled by preconditioning, as we will see in
Sect. 4.3.

Based on Assumption 2, Nesterov showed

Theorem 2 If δ > 0 as defined by (23), then, there exists a unique solution to problem (15).

Proof See [17], Theorem 6 and Corollary 2.

A few more quantities need to be introduced in order to specify the algorithm.

Definition 1 For some β > 0, we set

ψβ
q (p) := 〈∇̃F (q), q − p〉 −

1

2
β‖p− q‖22, (24)

Ψk(p) :=

k∑

i=0

τ iψµ
qi(p), τi > 0, ∀i, (25)

SN :=

N∑

i=0

τ i. (26)
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Algorithm 2: Inner Iteration
Input: N ≥ 1, convex set D, point p̂ ∈ D.
Output: q(D, p̂, N) := 1

SN

∑N
i=0 τ

iq̃i.

Set τ0 = 1 and q̃0 = argmaxp∈D ψν
p̂
(p). // initialization

begin

for k = 0 to N − 1 do

pk = argmax
p∈D

Ψk(p),

q̃k+1 = argmax
p∈D

ψν
pk

(p),

τk+1 =
1

γ
Sk.

The algorithm for solving (15) is a two-stage iteration, comprising an inner iteration (Algorithm
2) and an outer iteration (Algorithm 3).

The outer iteration, defined by Algorithm 3 below, calls Algorithm 2 with input data N̂ ,D(qk)
and p̂k, where N̂ = N̂(η, γ) is the minimal number satisfying the condition

3γ exp
(
−

N̂

2(γ + 1)

)
≤
δ

4
⇒ N̂ =

⌊
2(γ + 1) log

12γ

1− ηγ

⌋
+ 1, (27)

and p̂k and qk are computed by Algorithm 3.

Algorithm 3: Outer Iteration

Output: Sequence (qk) converging to the unique solution p of (15).
Choose q0 arbitrary. // initialization

begin

for k ≥ 0 do

p̂k = ΠD(qk)(q
k),

qk+1 = q(D(qk), p̂k, N̂). // → Algorithm 2

For a proof of convergence of Algorithm 3 we refer to [17], Theorem 8, which also provides
the following convergence rate:

‖qk − q‖2 ≤
1

δ
exp

(
−
δ

2
k

)
‖q0 − q0‖2, (28)

where δ is the contraction gap, q the unique solution to (12) and q0 is the solution for the fixed
constraint set D = D(q0).

4.3 Practical Aspects

We illustrate and discuss two further issues relevant for implementations.
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Equivalence of ∇F and ∇̃F : To illustrate the assertion stated by Lemma 2, we numerically
solved the variational inequality

〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D = (Bc(0))
n, (29)

for some c > 0 (d = 2)– see Figure 2. We used a basic primal-dual iteration [8] to compute a
sequence (uk, pk) of primal and dual variables. The iteration was terminated if the gap-condition
‖f − (uk + vk)‖∞ < 10−5 with vk = Lpk, was satisfied. Next we solved

〈∇̃F (p), p− p〉 ≥ 0, ∀p ∈ N (L)⊥ ∩ D, (30)

using the same termination criterion. Let (u, p) denote the numerical solution to (29) and (u′, p′)
the solution to (30). We observed ‖u− u′‖∞ < 10−12 and ‖p− p′‖∞ < 10−12.

Fig. 2 A denoising example to illustrate the equivalence of (29) and (30) – see text.

Preconditioning: Condition (23) couples the variation rate (22) η and the condition number γ
defined by (21). In fact, the number 0 < ηγ < 1 governs the contraction properties (convergence
speed) of the fixed point iteration defined by Algorithm 3, cf. [17, Thm. 6]. As a consequence, if
the condition number is poor, the mapping D : p⇉ D(p) must be designed such that D(p) varies
slowly.

This situation, unfortunately, happens in practice. For the problem illustrated by Fig. 2, for
instance, the largest and smallest eigenvalue of the linear mapping in (19) are λmax ≈ 7.98 and
λmin ≈ 0.00963, respectively, requiring η < 0.0012 according to (23). And these numbers become
worse as the data size n increases!

Using the notations

V V ⊤ := ΠN (L)⊥ , (31a)

A := V ⊤L⊤LV, (31b)

and (19), we rewrite the QVI (30),

〈
∇̃F (p), p− p

〉
=

〈
V V ⊤L⊤(LV V ⊤p− f), p− p

〉
(32a)

=
〈
AV ⊤p− V ⊤L⊤f, V ⊤(p− p)

〉
(32b)

=
〈
P−1AP−1q + gf , q − q

〉
(32c)

≥ 0, ∀q ∈ PV ⊤D(P−1q), (32d)

where we introduced a symmetric, positive definite preconditioning matrix P and the shorthands

q := PV ⊤p, q := PV ⊤p, gf := −V ⊤L⊤f. (33)
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Note that using P in (32c) does not affect the unique solution p = P−1V q. On the other hand,
P does affect both the condition number of the mapping A by multiplication with P−1, and the
variation rate of the mapping

Q : q ⇉ Q(q) := PV ⊤D(P−1q) (34)

defined by (32c) and (32d). Let U be the orthogonal matrix diagonalizing A, such that A =
UDAU

⊤, and choose P = UDPU
⊤. Then, (32c) reads

〈
UD−1

P DAD
−1
P U⊤q + gf , q − q

〉
. (35)

Thus, the preconditioning changes the condition number (21) to

γ → γ′(P ) :=
maxi{λi(A)/λ

2
i (P )}

mini{λi(A)/λ2i (P )}
. (36)

Moreover, in view of (34), we have

‖PV ⊤ΠD(p1)q − PV ⊤ΠD(p2)q‖ ≤ ηλmax(P )‖p1 − p2‖, (37)

(cf. [23, Lemma 1.8.9]) and

‖p1 − p2‖ = ‖V P−1q1 − V P−1q2‖ ≤ λ−1
min(P )‖q1 − q2‖. (38)

From (37) and (38) we conclude that the variation rate (22) changes to

η → η′(P ) := γ(P )η. (39)

Choosing P amounts to a trade-off between reducing γ and increasing η. To illustrate this, we
specifically choose P = A1/2 to obtain γ′(P ) = γ′(A) = 1 and η′(P ) = η′(A) = γ(P )η =
γ1/2(A)η. The corresponding product defining the contraction gap (23) changes to

ηγ = η
λmax(A)

λmin(A)
→ η′(A)γ′(A) = ηγ1/2(A). (40)

This is a considerable reduction and consequently we can choose a higher adaptation rate η
satisfying condition (23). However, this advantage is compensated to some extent by the need
to replace – as a part of the overall algorithm – the trivial orthogonal projection onto D by the
non-trivial orthogonal projection onto Q defined by (34).

Taking into account this latter aspect and working out an optimal preconditioner P is left
for future work.

5 Applications

In Sect. 5.2 we present three applications of the proposed adaptive total variation (TV) reg-
ularization, where the adaptivity depends on the solution of the optimization problem. These
applications differ in the shape of the local constraint sets Di

loc(p) used. For each case we show
that the global constraint set D(p) fits into the concept presented above. In particular, we show
that Assumption 1 in Sect. 3 is satisfied and that the projection ΠD(p)(q) onto the constraint set
is locally Lipschitz continuous w.r.t. p. In Sect. 5.3 we then comment on how the global Lipschitz
property required for the convergence of Algorithm 3 (cf. Sect. 4) can be derived.

For the reader’s convenience, we start with the simpler model of an adaptivity based on the
(noisy) input data rather than the unknown solution. We refer to such a model as data-dependent
adaptivity.
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Fig. 3 Local shape of Dloc for the model of single directions: a rectangle with sides parallel/orthogonal to r and
side length 2α and 2β.

5.1 Data-Dependent Adaptivity

In order to derive an adaptive TV measure, we define the convex set D (cf. (7)) based on edge
information obtained from the noisy input data. In particular, in this section, the set D does
not depend on p. In our approach, we are interested in the local description of the set D via
sets Di

loc for each pixel location i = 1, . . . , n. Moreover, since translation invariance is desirable,
Di

loc should not depend explicitly on i. Therefore, it suffices to consider one particular i. For
simplicity of notation, we omit the index i of the pixel location in the following.

A local constraint set Dloc of anisotropic shape can be motivated as follows. Let us assume
for a moment, that, given a noisy input image f : Ω ⊂ R2 → R, we know the location and
orientation of image edges of the noise free data u. Moreover, we assume that image edges
separate regions with homogeneous intensities. Therefore, we would like to define an anisotropic
TV regularization term, which smoothes inside homogeneous regions, but preserves the borders
between the regions. Thus, at edges, the regularization term should penalize jumps parallel to the
edge stronger than jumps across the edge. In order to formulate such anisotropic regularization,
let g(x) : Ω → R+

0 be an edge-indicating function, i.e. g ≈ 1 is assumed near edges and g ≈ 0
in homogeneous regions. Moreover, let r : Ω → R2, ‖r‖ = 1 be a vector field providing the edge
normals.

One possible anisotropic regularization functional, which penalizes jumps parallel to edges
stronger than across edges, then is

φ(u) = α‖r⊤∇u‖+ β‖(r⊥)⊤∇u‖, (41)

where β ≫ α > 0 near edges (where g ≈ 1) and α = β in homogeneous regions (where g ≈ 0),
e.g.

α := g α0 + (1− g)β0, β ≡ β0, (42)

for fixed 0 < α0 ≪ β0. In our framework of dual constraint sets, this regularizer can be expressed
as

φ(u) = sup
v∈C

〈u, v〉 = sup
p∈D

〈u, p〉, (43)

with C and D being defined as in (5), and the local constraint set Dloc defined as a rectangle:

Dloc := R(r, α, β) = {p ∈ R2 : |r⊤p| ≤ α, |(r⊥)⊤p| ≤ β}. (44)

Fig. 3 illustrates the parametrization of Dloc.
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In the following we define the functions g and r. In order to detect edges in the data f , we
utilize the structure tensor J(f) ∈ R2×2 (definition below), and its eigenvectors vi(f), i = 1, 2
and eigenvalues λi(f), i = 1, 2. Let

J0(f) := ∇fσ∇f
⊤
σ , (45)

where fσ := f ∗Kσ is a smoothed version of f , obtained by convolution with a discrete Gaussian
kernel Kσ with standard deviation σ > 0. The structure tensor J(f) is given as

J(f) := J0(f) ∗Kρ, (46)

with ρ > 0. (Here the convolution is applied componentwise).
We now turn to the eigenvalues and eigenvectors of J(f). Without loss of generality we

assume that the eigenvalues of J(f) are ordered, i.e. λ1(f) ≥ λ2(f) ≥ 0, with corresponding
eigenvectors v1(f) and v2(f). From the structure tensor, we derive an edge normal by setting
r = r(f) = v1(f). Moreover, as edge indicator, we choose

g(f) := g(λ1(f)− λ2(f)), (47)

where g : R+
0 → [0, 1] is a continuous and increasing function, such that g(0) = 0 and g(s) = 1

for s sufficiently large, e.g. g(x) = 1
1+x2/K2 ,K > 0.

To conclude, we have derived a closed convex set D = D(f) by defining local sets Dloc as
rotated rectangles. Note that, since D(f) is convex and not depending on u, the optimization
problem (4) is convex.

5.2 Solution-Dependent Adaptivity

As we have seen in the previous section, for defining an adaptive regularization, information
about image edges is required. When such edge structure is estimated from the noisy input
data, even with a pre-smoothing step applied, the noise still has an impact on the estimation. In
addition, edge estimation is decoupled from the actual image denoising task.

In contrast our approach derives more accurate edge information from the denoised image
u = f − Lp by introducing the dependency of the constraint set Dloc(p) on p, In particular, the
interdependent problem of denoising the image and retrieving edge information is handled in a
joint manner, which, however, leads to a non-convex optimization problem.

In the following sections, we describe three different kinds of anisotropic constraint sets
Dloc(p), which differ in shape and edge structure used for the anisotropy.

5.2.1 Anisotropic TV with a Single Direction

In our first application, similar to Sect. 5.1, we will define the set Dloc(p) as a rotated rectangle
with one side parallel and one side orthogonal to a given edge.

To this end, we need to determine the normals of edges in u (one single direction r per
pixel location). We again utilize the structure tensor, but now depending on u. Note that the
entries of J(u) depend locally Lipschitz continuously on u, since J is obtained by applying linear
operations and convolutions. Again, we assume that the eigenvalues of J(u) are ordered, i.e.
λ1(u) ≥ λ2(u) ≥ 0, with the corresponding eigenvectors denoted by v1(u) and v2(u).

A straightforward choice for an edge adaptive regularization is

Dloc(p) := R(r(u), α, β) = R(r(f − Lp), α, β), (48)
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where R(r, α, β), is defined as in (44) and r(u) := v1(u). For the moment, we consider α, β > 0
to be fixed. Then, however, the projection ΠD(p) is not continuous w.r.t. p, since the eigenvector
v1(u) in general does not depend continuously on the entries of J(u). On the other hand, for
R(r, α, β) as defined in (48), ΠR(r,α,β) is locally Lipschitz continuous w.r.t. r, as Lemma 5 (cf.
appendix) shows. Moreover, p→ u = f−Lp is Lipschitz continuous. Thus, ensuring the Lipschitz
continuity of r(u) is sufficient to guarantee the Lipschitz continuity of ΠD(p).

In the following, we describe the construction of a vector r(u), which is locally Lipschitz
continuous w.r.t. u, such that r(u) = v1(u), if λ1(u) ≫ λ2(u). Note that the eigenvectors of
J(u) ∈ R2×2 are locally Lipschitz continuous w.r.t. u, as long as the eigenvalues λ1(u) and λ2(u)
differ (cf. Theorem 3 in [19]). We denote the difference between the two eigenvalues by

coh(u) := λ1(u)− λ2(u) ≥ 0. (49)

In contrast to v1(u), coh(u) depends Lipschitz continuously on the entries of J , since the eigenval-
ues do (cf. e.g. Theorem of Wielandt-Hoffman in [26]). Since J(u) is locally Lipschitz continuous,
the local Lipschitz continuity of coh(u) follows.

We recall the function g : R+
0 → [0, 1] with the above mentioned properties. Let I(p, q, t) :

S1 × S1 × [0, 1] → S1 be an interpolation from p to q on the sphere S1 as described in the
appendix (cf. Definition 2). Lemma 3 in the appendix then shows, that

r(u) := I(v1(u), (0, 1)
⊤, g(coh(u)) (50)

is locally Lipschitz continuous.
For the side lengths α and β of the rectangle we would like to have α ≪ β near edges and

α = β in homogeneous regions. To this end, for fixed 0 < α0 ≤ β0 we set

α(u) := (α0 − β0)g(coh(u)) + β0, β(u) = β0,

where function g is defined as above. Note that coh(u) depends Lipschitz-continuously on u, thus
also α(u) is Lipschitz-continuous. With these particular r(u), α(u) and β(u) = β0 we set

Dloc(p) := R(r(f − Lp), α(f − Lp), β0). (51)

Then, Dloc(p) satisfies Assumption 1:

Proposition 2 Let Dloc(p) be defined as in (51). Then

(i) Dloc(p) is closed, convex and satisfies Bα(0) ⊂ Dloc(p) ⊂ B√
2β0

(0).

(ii) For fixed q ∈ R2, u→ ΠDloc(p)(q) is locally Lipschitz continuous, with the Lipschitz constant
depending on ‖q‖2.

Proof (i) The set Dloc(p) is a closed rectangle with center 0 and side lengths 2β0 and 2α ≤ 2β0
and contains the ball Bα0

(0). (ii) Note that u = f−Lp is Lipschitz continuous w.r.t. p. Since J(u)
is a composition of convolutions and differentiation, J(u) is locally Lipschitz continuous. Lemma
4 then provides the local Lipschitz continuity of r(u). Together with Lemma 5, the local Lipschitz
continuity of ΠDloc

(p) follows.
⊓⊔

Alternatives to (51) are e.g. to use rotated squares or two-dimensional ellipsoids with one half-
axis r(u) of length α and the other half-axis of length β ≫ α. We discuss elliptical constraint
sets for the 3D case in detail in Sect. 5.2.3.
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Fig. 4 Local shape Dloc for the model of Steidl & Teuber [24]: a parallelogram with sides parallel to r1 and r2
with side length 2α.

5.2.2 Anisotropic TV with Double Directions

In order to preserve edges as well as corners, Steidl & Teuber [24] proposed an anisotropic TV
method based on the estimation of two orientations r1, r2 : Ω → R2. They consider the variational
problem

min
u

1

2
‖u− f‖22 + α

(
‖r⊤1 ∇u‖2 + ‖r⊤2 ∇u‖2

)
, (52)

where the directions ri, i = 1, 2 are retrieved from the data f . In the dual formulation of (52)
the set Dloc = Dloc(f) is a parallelogram with sides ri, i = 1, 2:

Dloc(p) = P(r1, r2, α) := {p ∈ R2 : |r⊤1 p| ≤ α|, |r⊤2 p| ≤ α}. (53)

Figure 4 illustrates P(r1, r2, α).
Steidl & Teuber [24] discuss two related models to obtain ri, i = 1, 2, the transparent model

and the occlusion model. In our considerations, we concentrate on the occlusion model. Moreover,
we consider ri = ri(u) depending on the unknown u = f −Lp and, by introducing slight changes
of the original approach, guarantee the applicability of the theoretical results of Sect. 3. The
orientations ri(u) are obtained as follows. Let

ν(u) :=
(
(∂xuσ)

2, ∂xuσ∂yuσ, (∂yuσ)
2
)⊤
, (54)

where uσ is obtained by convolution of u with a discrete Gaussian kernel Kσ, σ > 0 as in the
previous section. For the occlusion model, the following structure tensor is utilized:

J0(u) := ν(u)ν⊤(u), J(u) := J0(u) ∗Kρ, (55)

where the convolution is applied componentwise.
Now let λ1(u) ≥ λ2(u) ≥ λ3(u) ≥ 0 denote the eigenvalues of J(u) and v1(u), v2(u) and v3(u)

the corresponding eigenvectors. Analogously to the previous section, in view of the continuity of
vi(u), we have to deal with non-isolated eigenvalues. To this end, we define

coh1(u) := λ1(u)− λ2(u), coh2(u) := λ2(u)− λ3(u). (56)

In order to define r1(u), r2(u), we consider the following cases:

1. Corners (coh2(u) > 0): Steidl & Teuber propose to use the unit vectors

r
(1)
1 (u) ‖ (v3,1(u), y1(u))

⊤, r
(1)
2 (u) ‖ (v3,1(u), y2(u))

⊤, (57)

where a ‖ b denotes that a and b are parallel and y1(u), y2(u) are the solutions of the quadratic
equation

y2 + v3,2(u) y + v3,1(u) v3,3(u) = 0. (58)

The local constraint set degenerates, if r
(1)
1 (u) and r

(1)
2 (u) become parallel. This is the case if
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– (v3,1(u), y1(u)) ‖ (v3,1(u), y2(u)), or, equivalently y1(u) = y2(u), or
– v3,1 = 0.
In view of Assumption 1 (iii), we prevent the degeneration of the constraints sets by choosing

r
(2)
1 (u) ‖ (v3,2(u), v3,3(u))

⊤, r
(2)
2 (u) ‖ (−v3,3(u), v3,2(u))

⊤, (59)

if ω(u) := |y1(u)− y2(u)| or |v3,1| become zero.
2. Edges (coh2(u) = 0, coh1(u) > 0): Since we can only guarantee that eigenvalue λ1(u) is

isolated, we determine r1, r2 depending on the eigenvector v1(u).
Along straight edges, the eigenvector v1 is parallel to the normal of the edge. Therefore, v1
and v⊥1 are suitable for defining the orientation for anisotropic TV at edges. We set

r
(3)
1 (u) ‖ (v1,1(u), v1,2(u))

⊤, r
(3)
2 (u) ‖ (−v1,2(u), v1,1(u))

⊤. (60)

3. Homogeneous regions (coh1(u) = coh2(u) = 0):

r
(4)
1 (u) := (1, 0)⊤, r

(4)
2 (u) := (0, 1)⊤. (61)

In general, r1(u), r2(u) have to be continuous interpolations between the cases above. Let

ri(u) = I
(
I
(
r
(1)
i (u), r

(2)
i (u), g(ω(u))g(|v3,1(u)|)

)
,

I
(
r
(3)
i (u), r

(4)
i (u), g(coh1(u))

)
, g(coh2(u))

)
, i = 1, 2,

(62)

using g as defined in the previous section and I as defined above (see also Def. 2 in the appendix).

Proposition 3 Let Dloc(p) = P(r1(f − Lp), r2(f − Lp), α) with P(r1, r2, α) being the parallelo-
gram defined in (53) and ri(u), i = 1, 2 defined as in (62).

1. Dloc(p) is closed, convex and satisfies Dloc(p) ⊂ B2α(0).
2. For any p there exists c(p) such that Bc(p) ⊂ Dloc(p).
3. ΠDloc(p)(q) is Lipschitz continuous w.r.t. p, with the Lipschitz constant depending on ‖q‖2.

In particular, Dloc(p) satisfies Assumption 1.

Proof The first claim follows from the fact that Dloc(p) is a closed parallelogram with sides of
length α. The second claim follows from the fact that, by definition of r1, r2, the case r1 ‖ r2
is excluded, i.e. the parallelogram can not degenerate. As a consequence, there exists c(p) such
that Bc(p) ⊂ Dloc(p).

For the local Lipschitz continuity of ΠDloc(p), we observe the following: First, u = f − Lp
is Lipschitz continuous w.r.t. p. Since J(u) is a composition of convolutions and differentiation,

J(u) is locally Lipschitz continuous. The vectors r
(j)
i (u), i = 1, 2, j = 1, . . . , 3 are defined in a way

that they are locally Lipschitz continuous w.r.t. u, when restricted to the individual case. Note
that also v3,1(u) and ω(u) are locally Lipschitz continuous, as long as coh2(u) > 0. Moreover,

r
(4)
i is constant w.r.t. u. The local Lipschitz continuity of ri(u), i = 1, 2 is guaranteed by smooth
interpolation, c.f. Lemma 4 applied to the nested interpolations. The local Lipschitz continuity
of P(r1, r2, α) is provided by Lemma 5.

⊓⊔
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Fig. 5 Local shape Dloc for spatio-temporal TV regularization. Prototype of an ellipsoid with one half axis
parallel to r with length α and the other half-axes of length β. In order to regularize surfaces in the spatio-
temporal domain, one would choose r parallel to the surface normal and α ≪ β to achieve strong smoothing
tangential to the surfaces, which results in shrunken ellipsoid.

5.2.3 Anisotropic Spatio-Temporal TV Minimization

In the following we describe a spatio-temporal TV minimization approach. We interpret time as
third coordinate, thus u, f : Ω ⊂ R3 → R, p : Ω → R6.

To obtain directional information, we utilize the three-dimensional structure tensor Jρ(u)
defined analogously to (45) and (46). Let λ1(u) ≥ λ2(u) ≥ λ3(u) > 0 denote the eigenvalues and
v1(u), v2(u), v3(u) the eigenvectors of Jρ(u).

Let us assume that a spatio-temporal intensity gradient is present in uσ(x), which forms a
two-dimensional iso-surface. Then, λ1(u) ≫ λ2(u) and v1(u) approximates the normal to this
surface. The aim is to penalize variations mainly in directions tangential to the surface and allow
variations in normal direction. To this end we set

Dloc(p) := E(v1(f − Lp), α, β), (63)

where

E(r, α, β) :=

{
q ∈ R3 :

1

α2
|r⊤q|2 +

1

β2
‖(Id−rr⊤)q‖22 ≤ 1

}
, 0 < α≪ β. (64)

is a three-dimensional ellipsoid (see Fig. 5 for an illustration).
In homogeneous regions, where a unique orientation r can not be estimated, we choose

Dloc(p) := Bα(0). A continuous transition between both cases is obtained by defining

Dloc(p) := E(r(f − Lp), α̃(f − Lp), β), (65)

where

r(u) := I
(
v1(u), (0, 0, 1)

⊤, g(coh(u))
)
, (66)

α̃(u) := g(coh(u))α+ (1− g(coh(u)))β, (67)

coh(u) := λ1(u)− λ2(u) ≫ 0. (68)

In order to remove speckles and similar kinds of distortions, an adaptation of (65) is required.
This is due to the fact that at speckles, v1(u) points in direction of (0, 0, 1)⊤. Using (65) with
the above α̃ then would lead to a penalization of ∇u mainly in spatial directions, which is not
suitable for removing distortions of medium/large scale in spatial directions. Instead, we propose
to use (65) with

α̃(u) = g(coh(u))g(φ(u))α+ (1− g(coh(u))g(φ(u)))β, (69)

where φ(u) is the angle between v1(u) and (0, 0, 1)⊤. The above modification leads to stronger
smoothing of surfaces parallel to the x1, x2-axes.
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(a) (b) (c) (d)

Fig. 6 Filtering of an artificial test image: (a) ground truth, (b) noisy test images, (c) filtering with the stan-
dard ROF model, (d) anisotropic filtering with double directions. Intensity scales are identical for each result.
Undesirable smoothing effects at corners are considerably reduced by anisotropic filtering. See Fig. 7 for a close-up.

Proposition 4 The set Dloc(p) defined in (65) with the above definitions of α̃(u) satisfies As-
sumption 1. Moreover, (p, q) → ΠDloc(p)(q) is locally Lipschitz continuous.

Proof The set Dloc(p) is a closed ellipsoid and therefore is convex. Its half-axes are bounded by
c := min(α, β) from below and C := max(α, β) from above. Thus, Bc(0) ⊂ Dloc(p) ⊂ BC(0).

The local Lipschitz continuity ofΠDloc(p) can be shown as follows. First, u = f−Lp is Lipschitz
continuous w.r.t. p. Since J(u) is a composition of discrete convolutions and differentiation, J(u)
is locally Lipschitz continuous. α̃ is locally Lipschitz continuous w.r.t. u, since g, coh(u) and
φ(u) are. Lemma 4 provides the local Lipschitz continuity of r(u). By Lemma 6 the projection
ΠE(r,α,β)(q) onto the ellipsoid E(r, α, β) is local Lipschitz continuous w.r.t. r, q, α and β.

⊓⊔

5.3 Global Lipschitz Continuity

In the above applications, we have considered three different examples for constraint sets D(p),
defined via the local sets Dloc(p) = R(r, α), Dloc(p) = P(r1, r2, α) and Dloc(p) = E(r, α, β),
respectively, (cf. (51), (53) and (65)) and directions r, r1, and r2 were estimated from structure
tensors depending on u = f − Lp. (cf. (50), (62) and (66)). We have shown that the constraint
sets satisfy Assumption 1 and that the projections are locally Lipschitz continuous w.r.t. p.

In order to fit these applications into the algorithms presented in Sect. 4, we require global
Lipschitz continuity, where the Lipschitz constant is independent of q. This can be achieved by
considering p, q only on a given compact subset of Rnd, as we will see in the following.

In the case of problem (12), the solution p has to lie in D(p). Since D(p) consists of the
local sets Di

loc, which by Assumption 1, all lie in BC(0), we find p ∈ BC(0). Therefore, the
optimization problem can be restricted to p ∈ BC(0) and, consequently, q ∈ BC(0). We then
obtain global Lipschitz continuity of ΠD(p)(q) with a constant independent from q as follows:
First we achieve Lipschitz continuity of the projections ΠDi

loc

. For the first two cases based on
rectangles and parallelograms, this Lipschitz continuity follows from the fact that the mapping
p → r(u) is locally Lipschitz continuous and that the Lipschitz constant for the projection
onto parallelograms depends on ‖q‖2, see Lemma 5 in the appendix. In the third case, using
ellipsoids, Lipschitz continuity follows from the local Lipschitz continuity of p→ (r(u), α, β) and
(r, α, β, q) → ΠE(r,α,β)(q), see Lemma 6. Finally, we can prove similar to Lemma 1 that ΠD(p) is
Lipschitz continuous, whenever the projections ΠDi

loc

to the local constraint sets are.
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(a) (b) (c) (d)

Fig. 7 Zoom into a region of the images of Fig. 6: (a) ground truth, (b) noisy test images, (c) filtering with
the standard ROF model, (d) anisotropic filtering with double directions. Undesirable smoothing effects at the
corners are considerably reduced by anisotropic filtering.

6 Experiments

We present experimental results for the anisotropic TV models presented in Sect. 5. Up to
now Algorithm 1 is used for solving the corresponding quasi-variational inequalities. A thorough
evaluation of Algorithm 3 including dedicated convex solvers for Algorithm 2 is beyond the scope
of this paper and will be reported in future work.

6.1 Anisotropic TV Minimization with Double Directions

Let us start with experimental results for the anisotropic TV model with double directions, where
Dloc(p) = P(r1, r2, α) with P(r1, r2, α) defined as in (53) and r1, r2 as in (62). We compare our
approach to standard ROF minimization [21] using the same regularization parameter α and
consider two different test images, both with artificially added Gaussian noise of mean zero.

For the first test image (cf. Fig. 6, left) we use α = 0.6 and 10 outer iteration steps. The
results of the standard and anisotropic TV models in Figs. 6 and 7 show that anisotropic TV
minimization reconstructs corners of the parallelogram better and produces less smoothing at
corners (as already demonstrated in [24]).

The second test image is a real world image with artificial noise. The results of standard ROF
and anisotropic TV minimization for α = 0.4 and 10 outer iteration steps are depicted in Fig. 8.
In order to highlight the differences, we zoom into a region of the image: Fig. 9 shows results
for the standard ROF model (Fig. 9(b)), of applying anisotropic TV minimization with double
directions, where the constraint set depends only on the data f , i.e. D = D(f) (Fig. 9(c)), and
of anisotropic TV with the constraint set depending on the solution, D = D(p) (Fig. 9(d)).

Anisotropic filtering leads to an improved and more regular reconstruction of edges and less
stair-casing. If the constraint sets depend on the solution itself, an adaptation to local structures
can be observed during the iterations, see Fig. 9, right. Here, the reconstruction of the characters
improves when using fully adaptive constraint sets. For a comparison with the non-local means
algorithm, we refer to [24].

6.2 Adaptive Motion-Based TV Minimization for Image Sequences

In our example for spatio-temporal TV minimization, we consider an image sequence recorded
with a time-of-flight (ToF) camera, see Fig. 10 (4 frames from of the whole sequence). ToF
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(a) (b)

(c) (d)

Fig. 8 Filtering of real test image: (a) ground truth, (b) noisy test images, (c) result of standard ROF mini-
mization, (d) result of anisotropic TV minimization with double directions. Undesirable smoothing effects at the
corners are considerably reduced on the right. Detailed views can be found in Fig. 9.

cameras provide a depth map of the captured scene, which here consist of a foreground object
in front of a background. The noise and speckles, which can be observed in the original data,
are introduced by the camera system. Induced by the camera movement, the object’s position in
the frame sequence shifts to the right. Fig. 10, bottom, illustrates this shift by showing the level
lines of one specific depth level for each of the four frames.



20 Frank Lenzen et al.

(a) (b) (c) (d)

Fig. 9 Zoom into a region of the filtered images shown in Fig. 8: (a) ground truth (b) standard ROF, (c)
anisotropic TV minimization with D = D(f), (d) adaptive anisotropic TV minimization with D = D(p). Solution-
dependent adaptivity of the TV regularization improves details.

Fig. 10 Top row: Four exemplarily selected frames of a sequence of depth maps taken with a time-of-flight
camera. Bottom: Movement of one specific contour line over time.

For filtering, we propose to use spatio-temporal anisotropic TV with

Dloc(p) = E(r(f − Lp), α̃(f − Lp), β), (70)

where r(u) is defined as in (66) and α̃(u) as in (69). As parameters, we chose α = 0.3, β = 0.001
and 10 steps for the outer iteration. The result for one specific frame is depicted in Fig. 11(d). We
compare this method with standard 2D ROF (Fig. 11(b)) and 3D ROF in the spatio-temporal
domain (Fig. 11(c)), using the same parameter α = 0.3. Additionally, we zoom into two image
regions, see Fig. 12. We observe that standard 2D ROF filtering provides a good noise removal
and edges preservation, but is not able to remove the speckles. 3D ROF filtering removes both
noise and speckles, but introduces some blurring of edges, which is caused by the object’s shift
in time and the stair-casing effect of the TV model in 3D. The proposed adaptive anisotropic
TV regularization combines the advantages of the 2D and 3D isotropic model: As for the 2D
ROF model, noise is removed while the edges are kept sharp. In addition the smoothing now is
coherent in time, as for the 3D ROF model, but without introducing motion blur. Due to the
temporal coherence speckles are removed.
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(a) (b)

(c) (d)

Fig. 11 Spatio-temporal denoising of time-of-flight data. (a) one of the original frames taken with a time-of-flight
camera with system-inherent noise, (b) frame filtered with standard 2D ROF, (c) frame sequence filtered with
standard 3D ROF, (d) frame sequence filtered with the proposed adaptive TV minimization. Only the spatio-
temporal methods are able to remove both noise and speckles. Anisotropic TV regularization keeps the result
sharper than isotropic 3D TV minimization.

7 Conclusion

We presented a novel class of variational denoising approaches based on non-smooth convex
regularizers with adaptive constraint sets. Sufficient conditions that hold in typical applications
were specified for the existence of fixed points, along with an algorithm for computing them by
solving a sequence of large convex programs. Our approach covers in particular spatial and spatio-
temporal denoising with adaptive total variation regularization as special cases, that served to
demonstrate our approach by a range of numerical experiments.

Our future work will focus on Nesterov’s algorithm and the joint optimization of its com-
ponents for specific applications: large-scale sparse convex solvers for the inner iterative loop
(Algorithm 2) and preconditioning depending on the linear operators involved.
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(a) (b) (c) (d)

Fig. 12 Zoom into two regions of the depth map shown in Fig. 11: (a) original data with system-inherent noise,
(b) result of standard 2D ROF filtering, (c) 3D ROF filtering, (d) proposed adaptive TV minimization. 2D ROF
filtering provides sharp edges (top), but can not remove speckles (bottom). Standard 3D ROF removes speckles,
but blurs the image edges. Only spatio-temporal anisotropic TV is able to both remove noise and speckles and
to keep edges sharp.

A Appendix

A.1 Smooth Interpolation on Sd−1

In this section we consider a smooth approximation of one specific eigenvector of a symmetric positive definite
matrix. To this end, let J(u) ∈ Rd×d be a symmetric, positive semi-definite matrix, such that its entries depend
Lipschitz continuously on u. We denote the eigenvalues of J(u) by λ1(u), . . . , λn(u) and assume w.l.o.g. that they
are ordered in decreasing order. Let v1(u), . . . , v2(u) denote the corresponding normalized eigenvectors.

We are interested in the Lipschitz continuous vector field r(u) parallel to v1(u). Unfortunately, v1(u) is not
Lipschitz continuously depending on u. Problems arise, when λ1(u) is a multiple eigenvalue, in which case the
eigenvector v1(u) is not uniquely defined.

We therefore construct a vector field r(u) with the property that r(u) ‖ v1(u) at least where coh(u) :=
λ1(u)− λ2(u) ≥ 0 is large enough. (Note that coh(u) does depend Lipschitz continuously on u, cf. e.g. Theorem
of Wielandt-Hoffman in [26]).

To this end, we consider an interpolation I(p, q, t) : Sd−1 × Sd−1 × [0, 1] → Sd−1 between points p and q on
the sphere, with the following properties:

– I(p, q, t) is locally Lipschitz continuous w.r.t. p, q and t,
– I(p, q, 1) = p, I(p, q, 0) = q, and
– |I(p, q, t)− q| ≤ Ct.

For example, a steady rotation of vector p onto q suffices:

Definition 2 For p, q ∈ Sd−1 we define

I(p, q, t) := cos(α0t)q + sin(α0t)q
⊥, (71)

where q⊥ is the orthogonal vector to q such that p, q, q⊥ lie on a plane, 〈p, q⊥〉 ≥ 0 (unique if p ∦ q) and
α0 = α0(p, q) is the angle between p and q.

Lemma 3 I(p, q, t) as defined in (71) is locally Lipschitz continuous and satisfies |I(p, q, t)− q| ≤ π|t|.

Proof Note that α0 = α0(p, q) can be calculated using arctan and thus is locally Lipschitz continuous w.r.t. p, q
and t. Together with the smoothness of sin and cos the first claim follows. Moreover, |I(p, q, t)− q| is bounded by
the arc length α0t between I(p, q, t) and q, thus

|I(p, q, t)− q| ≤ α0t ≤ πt. (72)

⊓⊔
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Lemma 4 Let q(u) : Rd → Sd−1 be locally Lipschitz continuous. Moreover, let g : R+
0 → [0, 1] be a locally

Lipschitz continuous and increasing function, such that g(0) = 0 and g(x) = 1 for x ≥ ν > 0. Then, r(u) :=
I(v1(u), q(u), g(coh(u))) is local Lipschitz continuous.

Note that we do not assume v1(u) to be locally Lipschitz continuous.

Proof We distinguish between the cases coh(u) > 0, and coh(u) = 0.
In the first case, v1(u) is an eigenvector to an isolated eigenvalue and thus depends locally Lipschitz continu-

ously on J(u), see [19]. Moreover coh(u) is Lipschitz continuous (cf. [26]). From the local Lipschitz continuity of
I, the local Lipschitz continuity of r(u) follows.

In the second case, coh(u) = 0, for every v we find

|r(v)− r(u)| = |I(v, q(v), g(coh(v)))− I(u, q(u), g(coh(u)))|
= |I(v, q(v), g(coh(v)))− q(u)|
≤ |I(v, q, g(coh(v)))− q(v)|+ |q(v)− q(u)|
≤ Cg(coh(v)) + |q(v)− q(u)|
= C|g(coh(v)− g(coh(u))|+ |q(v)− q(u)|,

(73)

and the local Lipschitz continuity of r(u) follows from the local Lipschitz continuity of g(.), coh(.) and q(.).
⊓⊔

Remark 2 Recall that g(s) = 1 for s ≥ ν. We have found a locally Lipschitz continuous approximation r(u) of
v1(u), with the property, that r(u) = v1(u), if coh(u) becomes larger or equal to ν.

A.2 Projections

Definition 3 We define the following closed and convex sets:

(i) Rectangle: For r ∈ S1, α, β > 0 we define

R(r, α, β) := {p ∈ R2 : |r⊤p| ≤ α, |(r⊥)⊤p| ≤ β}. (74)

(ii) Parallelogram: For r1, r2 ∈ S1, r1 ∦ r2, and α > 0 let

P(r1, r2, α) := {p ∈ R2 : |r⊤1 p| ≤ α|, |r⊤2 p| ≤ α}. (75)

(iii) Ellipsoid: For r ∈ Sd−1, d = 2, 3 and α, β > 0 we define

E(r, α, β) :=
{

q ∈ Rd :
1

β2
|r⊤q|2 +

1

α2
‖(Id−rr⊤)q‖22 ≤ 1

}

. (76)

Lemma 5 Let R(r, α, β) and P(r1, r2, α) be defined as in Definition 3(i) and (ii).
Then, ΠR(r,α,β)(q) and ΠP(r1,r2,α)(q) are Lipschitz continuous w.r.t. r, α and r1, r2, α, respectively, with

the Lipschitz constant depending on α and q.

Proof We prove only the Lipschitz continuity of ΠP(r1,r2,α)(q). The proof for ΠR(r,α,β)(q) is analogous.
On the local Lipschitz continuity ofΠP(r1,r2,α)(q) w.r.t. α, we note that for fixed q and α, α̃ > 0, the difference

between ΠP(r1,r2,α)(q) and ΠP(r1,r2,α̃)(q) is bounded by
√
2|α− α̃|.

Next, we show the Lipschitz continuity w.r.t. r1, r2. For q ∈ P(r1, r2, α), we have ΠP(r1,r2,α)(q) = q, i.e. the
projection is constant w.r.t. ri, i = 1, 2. For q 6∈ P(r1, r2, α) the projection onto P(r1, r2, α) can be calculated
as follows: Let j∗ := argminj=1,...,4 ‖q − Πj(q)‖2, where Πj is the projection on the j-th side of the rectangle.

Then, ΠP(r1,r2,α)(q) = Πj∗(q). If j
∗ changes to j̃∗ by varying r1, r2, the transition from Πj∗ (q) to Πj̃∗(q) is

continuous. Thus, it remains to show that Πj(q) is Lipschitz continuous w.r.t. r1, r2.
Each of the projections Πj is a composition of the orthogonal projection onto a line and a projection from

the line onto a line segment. E.g. for the side given by {αr1 + tr2 | t ∈ [−α, α]}, we can calculate Πj(q) as follows

q0 := r⊤2 (q − αr1),

t0 := max(min(q0, α),−α),
Πj(q) := αr1 + t0 r2.

(77)
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Thus, for two parameter sets r1, r2 and r̃1, r̃2

|Πj(q)−Πj̃(q)| ≤ α|r1 − r̃1|+ |t0|
︸︷︷︸

≤α

|r2 − r̃2|+ |r̃2|
︸︷︷︸

≤1

|t0 − t̃0| (78)

and
|t0 − t̃0| ≤ |q0 − q̃0| = |r⊤2 (q − αr1)− r̃⊤2 (q − αr̃1)|

≤ |r⊤2 (q − αr1)− r̃⊤2 (q − αr1)|+ |r̃⊤2 (q − αr1)− r̃⊤2 (q − αr̃1)|
≤ (|q|+ α) |r2 − r̃2|+ α|r1 − r̃1|.

(79)

Inserting (79) into (78), we get

|Πj(q)−Πj̃(q)| ≤ 2α|r1 − r̃1|+ (|q|+ 2α)|r2 − r̃2| ≤
√
2(|q|+ 2α)‖r − r̃‖2. (80)

This result generalizes to the three other sides of the parallelogram.
Finally, the transition between the cases q ∈ P(r1, r2, α) and q 6∈ P(r1, r2, α) is continuous and therefore

ΠP(r1,r2,α)(q) is Lipschitz continuous.
⊓⊔

Lemma 6 Let E(r, α, β) be defined as in Definition 3 (iii). Then, ΠE(r,α,β)(q) is locally Lipschitz continuous
w.r.t. r, α, β.

Proof The projection onto the ellipsoid E(r, α, β) can be expressed as a locally Lipschitz continuous function of r,
α, β and one distinct root of a polynomial function, see [7]. The coefficients of the polynomial are locally Lipschitz
continuous w.r.t. r, α, β. Thus, also the root is local Lipschitz continuous w.r.t. r, α and β, see [3].

⊓⊔
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