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Abstract. Total variation (TV) regularization, originally introduced by
Rudin, Osher and Fatemi in the context of image denoising, has become
widely used in the field of inverse problems. Two major directions of
modifications of the original approach were proposed later on. The first
concerns adaptive variants of TV regularization, the second focuses on
higher-order TV models. In the present paper, we combine the ideas of
both directions by proposing adaptive second-order TV models, includ-
ing one anisotropic model. Experiments demonstrate that introducing
adaptivity results in an improvement of the reconstruction error.
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1 Introduction

In 1992 Rudin, Osher and Fatemi [14] proposed to apply the total-variation (TV)
semi-norm for regularization in a variational framework for image denoising.
Their approach not only had a significant impact in the area of image restoration,
but in the whole field of inverse problems. Since then, various modifications and
improvements have been contributed by the community. Several publications
have been devoted to the idea of adaptive TV regularization methods, where the
regularization varies locally depending on the noise level or the image content [3,
4, 6, 7]. Non-local TV models (e.g. [10]), which have proven as effective variants,
can also be regarded as adaptive methods, since they use image information to
locally determine the regularization weights. Another subclass of TV approaches
are the anisotropic or directional methods, where the regularization not only
depends on the location but also on the local orientation of the signal to be
reconstructed [1, 8, 12, 18]. TV regularization has the major benefit that it allows
piecewise constant signals to be recovered. Recent works have shown that in
certain cases it might be beneficial to assume even higher regularity of the signal,
and thus introduced higher-order regularization schemes [2, 9, 11, 13, 15, 17].
Contribution. We combine adaptive and second-order TV approaches into one
regularization framework. Such a combination has not been proposed up to now.
Our approach uses information on local image structures, in particular on edges
and slope discontinuities obtained from structure tensors applied to the image
and its epigraph. We demonstrate, that our approach can be applied to the
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Fig. 1. Graph Γ = (x, y, u(x, y))> (yellow) of a continuous and piecewise affine function
u with a discontinuity in the gradient (interface between Ω1 and Ω2). The epigraph of
u is the volume above Γ , represented as the super-level set of F (x, y, z) = u(x, y)− z.
On the graph the gradient ∇F of F coincides with the surface normal of Γ .

standard second-order TV regularization as well as to regularization with total
generalized variation (TGV) [2] and infimal convolution (IC) [17]. Moreover, we
propose a new anisotropic second-order TV model and show its advantages over
the isotropic models.
Paper organization. In Sect. 2 we describe how the information on image
structures required to steer adaptive regularization is retrieved. In Sect. 3 we
consider adaptive second-order TV models. Experiments are provided in Sect. 4.

2 Detecting Discontinuities in Piecewise Affine Functions

In this section we provide an approach to extract information about the direction
and location of edges and the location of slope discontinuities from a given input
image. The first task is already addressed in literature. We rely on the standard
structure tensor and just briefly recall the required definitions. However, we will
see that this approach is not suitable for detecting slope discontinuities (sharp
bends, kinks). For this second task, we propose a new approach.

2.1 Edge detection

In the following, we represent an image as a function u : Ω → R, Ω ⊂ R2.
For detecting edges in u we follow the standard approach and use the classical
structure tensor (cf. [5]) to identify regions with high gradient magnitude. To
this end, let

Su(x, y) := (∇uσ(x, y)∇uσ(x, y)>)ρ. (1)

be the standard structure tensor calculated on uσ, which is obtained from u by
convolution with a Gaussian kernel with variance σ2. Furthermore, (.)ρ denotes
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Fig. 2. Test images roof and cone hat for detecting slope discontinuities

a component-wise convolution of each entry with a Gaussian kernel with vari-
ance ρ2. We denote by λS1 (x, y), λS2 (x, y) the eigenvalues of Su(x, y) ordered with
decreasing value, i.e. λS1 (x, y) ≥ λS2 (x, y). Moreover, we consider the eigenvector
vS to the eigenvalue λS1 . It is known that along edges in the image, λS1 takes large
values, whereas λS2 is almost zero. Thus, dS(x, y) := λS1 (x, y)−λS2 (x, y) indicates
the presence of edges. We define ES : Ω → [0, 1] as ES(x, y) := min{c dS(x, y), 1}
with some constant c > 0. In Sect. 3 we make use of the edge indicating function
ES together with the vector field vS .

2.2 Slope discontinuities

The standard structure tensor as considered so far is sufficient to identify dis-
continuities (edges) in u. We now focus on regions where u is continuous but has
discontinuities in its first derivatives. In addition, we assume that u is piecewise
affine. This assumption is in view of our ansatz in Sect. 3 to determine u as
the solution of a second-order TV approach. For the sake of simplicity, let us
consider a prototypical function model with only one discontinuity, which lo-
cally represents a part of a larger image: we assume that Ω can be divided into
two segments Ωi, i = 1, 2 such that u is affine in each segment, i.e. u can be
represented as

u(x, y) =

{
r>1 ( xy ) + b1 if (x, y) ∈ Ω1,

r>2 ( xy ) + b2 if (x, y) ∈ Ω2,
(2)

for Ωi open, such that Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω, and ri ∈ R2, bi ∈ R for
i = 1, 2. Fig. 1 illustrates such a prototypical function u.

The aim of this section is to derive a method to detect the case where r1 6= r2.
To this end, we consider the epigraph of u defined as the super-level set {(x, y, z) |
F (x, y, z) ≥ 0} of F (x, y, z) := u(x, y)− z. In order to detect (surface) edges of
the graph (i.e. locations, where the slope changes), we now apply the three-
dimensional structure tensor to F , i.e.

(
(∇F )(∇F )>

)
ρ
, where ∇F (x, y, z) =

(∂xu
2 +∂2yu+ 1)−

1
2 (∂xu, ∂yu,−1)>. Note that ∇F is constant in z. Since we are

only interested in edges of the graph Γ := {(x, y, z) | F (x, y, z) = 0} (i.e. slope
discontinuities), we restrict this structure tensor to Γ :

Tu(x, y) :=
(

(∇F̃ (x, y))(∇F̃ (x, y))>
)
ρ
, (3)
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where ∇F̃u(x, y) := ∇F (x, y, u(x, y))). We observe that ∇F̃u(x, y) is the normal
to the graph Γ at (x, y, u(x, y)).

Remark 1. The following two scenarios are of particular interest:

Within an affine region: For an affine function u, Tu(x, y) has exactly one
non-zero eigenvalue. This is due to the fact that in this case∇F̃u(x, y) is constant
and convolution of ∇F̃u∇F̃>u does not change the rank.

Interface between two affine regions of different slope: For such u,
Tu(x, y) sums up two different directions (r1,1, r1,2,−1) and (r2,1, r2,2,−1): re-
writing the convolution of the matrix entries as a weighted integral,

Tu(x, y) = (∇F̃u∇F̃>u )ρ =

∫
Ω

w(x)∇F̃u∇F̃>u dx

= w1

( r1,1
r1,2
−1

)
(r1,1, r1,2,−1) + w2

( r2,1
r2,2
−1

)
(r2,1, r2,2,−1)

(4)

with wi :=
∫
Ωi
w(x) dx, we observe that in (4) two rank-1 matrices are added up.

Each matrix has one non-zero eigenvalue wi·‖(ri,1, ri,2,−1)‖22 with corresponding
eigenvector vi = (ri,1, ri,2,−1). Since the eigenvectors are linear dependent only
if r1 = r2, Tu(x, y) has rank 2 near the discontinuity, where r1 6= r2.

In the following we denote by λTi (x, y), i = 1, 2, 3 the eigenvalues of Tu(x, y)
in decreasing order. As an indicator for the existence of slope discontinuities
we propose to use λT2 (x). This is motivated by the fact that, similar to the
standard structure tensor in 2D, Tu(x, y) reveals two eigenvalues significantly
larger that 0 at edges of the graph, while in regions of constant slope the second
eigenvalue becomes 0. Therefore the magnitude of the second eigenvalue can be
used to distinguish between both cases. We propose ET : Ω → [0, 1], ET (x) :=
min(cλT2 (x), 1) with some constant c > 0 as an indicator for regions of slope
discontinuities. In order to be less sensitive to edges, which are already covered by
the standard structure tensor, we use an upwind scheme to compute the gradient
in (3). In practice, it is advisable to use the pre-smoothed uσ (cf. Sect. 2.1)
instead of u to be robust against noise.

To demonstrate the benefits of using ET to detect slope discontinuities, we
compare our approach to one approach based on the standard structure tensor
and one based on curvature, see Fig. 3. We observe that our approach detects
slope discontinuities more reliably than the competitive methods.

3 Adaptive Second-Order Total Variation

In the following we discuss three state-of-the-art approaches for second-order to-
tal variation (TV) regularization. First, we focus on the straightforward approach
of combining two TV semi-norms of first and second order [12, 15]. We gener-
alize this approach to allow for anisotropic regularization with locally adaptive
strength. In addition, we consider two alternative approaches – infimal convolu-
tion (IC) [17] and total generalized variation (TGV) [2] – and propose a spatially
adaptive choice of the regularization parameters.



Adaptive Second-Order Total Variation 5

(a) (b) (c) (d)

Fig. 3. Detecting slope discontinuities using the standard structure tensor (b), a cur-
vature based approach (c), and the proposed method (d) in the test images depicted in
Fig. 2 (black=0, white=1). In both cases the standard structure tensor fails to detect
the slope discontinuities as shown in the ideal result (a) (middle line in the first image,
ring and center point in the second image). Only the proposed approach detects the
slope discontinuity in the first test image (top row). On the second test image (bottom
row), the proposed approach provides a less noisy and more precise result than the
curvature based approach.

3.1 Proposed Approach

Let BV 2(Ω) (Ω open, bounded, with Lipschitz boundary) be the space of func-
tions with bounded first and second-order TV, i.e. u ∈ BV 2(Ω) iff u ∈ L1(Ω) and

TV l(u) := sup

{∫
Ω

udivl ϕ dx | ϕ ∈ C∞c (Ω,R2l),∀x ∈ Ω : ‖ϕ(x)‖2 ≤ 1

}
, (5)

is finite for l = 1, 2. Here, div1 is the divergence operator and div2 ϕ := ∂xxϕ1 +
∂yxϕ2 + ∂xyϕ3 + ∂yyϕ4, where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)>. Note that for u ∈ BV 2(Ω)
we have ∂xu, ∂yu ∈ L1(Ω). For details on BV 2(Ω) we refer to [16, Chapter 9.8].
A standard denoising approach with first and second-order TV regularization
consists in minimizing the functional

FTV 2(u) := 1
2‖u− f‖

2
L2 + αTV (u) + β TV 2(u) (6)

for given data f ∈ L2(Ω) and regularization parameters α, β > 0. We generalize
this approach in two ways. Firstly, we allow α, β to vary depending on the
location, i.e., α, β : Ω → R+. Secondly, we allow anisotropic, i.e. directionally
dependent regularization. To this end, we consider the optimization problem

F(u) := 1
2‖u− f‖

2
L2 +R1(u) +R2(u) (7)

with two regularization terms R1(u) and R2(u) defined as follows. For first-order
TV, we use anisotropic TV regularization (cf. [7]) given as

R1(u) :=

∫
Ω

(
∇u>(x)A(x)∇u(x)

) 1
2 dx, (8)
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for some matrix-valued mapping A : Ω → R2×2
sym, where A(x) is symmetric and

positive semi-definite at every x. Every such matrix A(x) can be written as

A(x) = (v(x), v⊥(x))
(
α1(x) 0

0 α2(x)

)
(v(x), v⊥(x))> with some vector field v(x),

‖v(x)‖2 = 1. We observe that (8) leads to an anisotropic regularization with
strength α1(x) in direction of v(x) and α2(x) in direction of v⊥(x).

For adaptive second-order TV regularization we propose a new approach,
which we motivate by the smooth case u ∈ C2(Ω) : for arbitrary ϕ ∈ C∞c (Ω,R4)
we have ∫

Ω

(div2 ϕ)u dx =

∫
Ω

〈ϕ,∇2u〉 dx, (9)

where ∇2u := (∂xxu, ∂xyu, ∂yxu, ∂yyu)>. For a given normalized vector field
v(x) = (v1(x), v2(x))> ∈ R2, ‖v(x)‖2 = 1, we represent ϕ as ϕ = t1w1 + t2w2 +
s1w3+s2w4, where t, s ∈ R2 and w1 := (v1, v2, 0, 0)>, w2 := (0, 0, v1, v2)>, w3 :=
(v⊥1 , v

⊥
2 , 0, 0) and w4 := (0, 0, v⊥1 , v

⊥
2 ). Note that {wi}i form an orthonormal basis

of R4. Then, standard calculus shows

〈ϕ,∇2u〉 = t>(Hu)v + s>(Hu)(v⊥) for Hu :=
(
∂xxu ∂xyu
∂yxu ∂yyu

)
. (10)

Now we calculate β1‖(Hu)v‖2 + β2‖(Hu)v⊥‖2 for some weighting constants
β1, β2 > 0. To this end, we take in (10) the supremum over t ∈ Bβ1(0) and
s ∈ Bβ2(0), where Br(0) denotes the ball centered at 0 with radius r, and derive

sup
t∈Bβ1 (0),s∈Bβ2 (0)

ϕ(∇2u) = β1‖(Hu)v‖2 + β2‖(Hu)v⊥‖2. (11)

Thus, we obtain in (11) the absolute values of the second order derivative of u in
direction of v weighted by β1 and in perpendicular direction weighted by β2. The
above considerations motivate the following definition for arbitrary u ∈ L1(Ω):

R2(u) := sup
{∫

Ω

(div2 ϕ)u dx | ϕ ∈ C
}
, with (12)

C := {C∞C (Ω;R4),∀x ∈ Ω : 〈ϕ(x), w1(x)〉2 + 〈ϕ(x), w2(x)〉2 ≤ (β1(x))2, (13)

〈ϕ(x), w3(x)〉2 + 〈ϕ(x), w4(x)〉2 ≤ (β2(x))2},

Existence Theory
We now show the existence of a unique minimizer of (7), where R1(u) and R2(u)
are given by (8) and (12), respectively.

Proposition 1. Assume that for every x ∈ Ω the eigenvalues λi(x) of A(x)
are uniformly bounded by 0 < c1 ≤ λi(x) ≤ c2 < ∞. Moreover, assume that
‖v(x)‖2 = 1 and that βi(x), i = 1, 2 are bounded by 0 < c3 ≤ βi(x) ≤ c4 < ∞.
Then functional (7) attains a unique minimizer in L2(Ω) ∩BV 2(Ω).

The proof of Prop. 1 utilizes the following two lemmas:

Lemma 1. Under the assumptions of Prop. 1 we have

c1 TV(u) ≤ R1(u) ≤ c2TV (u), c3 TV2(u) ≤ R2(u) ≤
√

2c4TV
2(u). (14)
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Proof. The first claim follows, since c1‖v‖2 ≤
√
v>Av ≤ c2‖v‖2 for any v ∈ R2.

To show the inequalities for R2, we note that cTV 2(u) = sup{
∫
Ω

(div2 ϕ)u dx |
ϕ ∈ C(c)} with C(c) := {ϕ ∈ C∞C (Ω,R4) | ‖ϕ(x)‖2 ≤ c}. Since {wi}i is an
orthonormal basis of R4 and the set C in (12) includes C(c3), the first inequality
follows. Moreover, C is included in C(

√
2c4), providing the second inequality. ut

Lemma 2 (Weakly-∗-semi-continuity). Let uk ∈ BV 2(Ω) be weakly-∗-con-
verging to u∗, i.e. ‖uk − u∗‖L1 → 0, ‖∂xiuk − ∂xiu

∗‖L1 → 0, i = 1, 2, and
supk TV

2(uk) <∞. Then, again under the assumptions of Prop. 1, we have

R1(u∗) ≤ lim inf
k→+∞

R1(uk) and R2(u∗) ≤ lim inf
k→+∞

R2(uk). (15)

Proof. Semi-continuity of R1(uk): note thatR1(uk) ≤ c2‖∇uk‖L1 <∞. Since
‖∇uk −∇u∗‖L1 → 0, there exists a subsequence ∇ukl converging pointwise al-

most everywhere to ∇u∗. From the continuity of the mapping v 7→
(
v>Av

) 1
2 it

follows that
(
(∇ukl)>A∇ukl

) 1
2 (x) →

(
(∇u∗)>A∇u∗

) 1
2 (x) almost everywhere.

Since any converging subsequence of ∇uk converges to ∇u∗ (Lebesgue thm.),

we find lim infk→+∞
(
(∇uk)>A∇uk

) 1
2 (x) =

(
(∇u∗)>A∇u∗

) 1
2 (x) almost every-

where. The claim then follows from Fatou’s Lemma.
Semi-continuity of R2(uk): For ϕ ∈ C we have∫

Ω

(div2 ϕ)u∗ dx = −
∫
Ω

(∂xϕ1 + ∂yϕ2)∂xu
∗ + (∂xϕ3 + ∂yϕ4)∂yu

∗ dx (16)

= − lim
k→+∞

∫
Ω

(∂xϕ1 + ∂yϕ2)∂xu
k + (∂xϕ3 + ∂yϕ4)∂yu

k dx (17)

= lim
k→+∞

∫
Ω

(div2 ϕ)uk dx ≤ lim inf
k→+∞

R2(uk). (18)

Thus

R2(u∗) = sup
{∫

Ω

(div2 ϕ)u∗ dx | ϕ ∈ C
}
≤ lim inf

k→+∞
R2(uk). (19)

ut

Proof (of Prop. 1).
Since F(u) is bounded from below, we have Finf := infu∈BV 2(Ω) F(u) > −∞.

We consider a minimizing sequence {uk}k, F(uk) → Finf . Due to Lemma 1,
F(u) is finite on BV 2(Ω), thus supk F(uk) ≤ C < +∞ for some C > 0. We
show that {uk}k is bounded in L2(Ω) ∩ BV 2(Ω) due to coercivity of F : from
C ≥ F(uk) ≥ 1

2‖u
k−f‖2L2 it follows that {uk}k is bounded in ‖·‖L2 and, since Ω

is bounded, also in ‖ · ‖L1 ; C ≥ F(uk) ≥ Rl(uk) and Lemma 1 provide that the
minimizing sequence is bounded in TV l(·), l = 1, 2. From boundedness follows by
Theorem 9.83 in [16] that a weakly-∗-converging subsequence in L2(Ω)∩BV 2(Ω)
with some limit u∗ exists. We denote the subsequence also by {uk}k. We have
1
2‖u

k−f‖2L2 → 1
2‖u
∗−f‖2L2 , and due to Lemma 2,Rl(u∗) ≤ lim infk→+∞Rl(uk),

l = 1, 2. Thus F(u∗) ≤ lim infk→+∞ F(uk) = Finf , i.e. u∗ is a minimizer of F(u).
Uniqueness follows from the strict convexity of F(u). ut
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Fig. 4. Test images used in the comparison in Table 1.

Choice of Regularization Parameters
It remains to choose appropriate regularization parameters αi(x), βi(x), i = 1, 2,
and directions v(x). For the vector field v(x) we choose vS(x) as defined in
Sect. 2.1. Recall that vS(x) provides a smoothed version of the image gradient,
which at edges coincides with the edge normals. To avoid a loss of contrast at
edges and over-smoothing at slope discontinuities, we reduce αi and βi at edges
and slope discontinuities using the indicator function E(x) := max(ES(x), ET (x))
based on structure tensors Sf , and Tf applied to data f . We propose

α1(x) := E(x)α+ (1− E(x))α, α2(x) := α,

β1(x) := E(x)β + (1− E(x))β, β2(x) := β,
(20)

with four free parameters α, α, β, β > 0 to be chosen appropriately. We propose
a weak smoothing at edges and slope discontinuities with small α, β. These
parameters can be chosen fairly independent from the image content or noise
level. Similar to other second-order TV approaches, it remains to choose two
appropriate values for α, β depending mainly on the noise level of the image.

3.2 Remarks on Alternative Approaches

Regarding second-order approaches based on total generalized variation (TGV)
[2] and infimal convolution (IC) [17], which both require two regularization pa-
rameters α, β, we observe that both approaches can be extended to be spatially
adaptive by locally varying these parameters. We propose to choose

α(x) := E(x)α+ (1− E(x))α, β(x) := E(x)β + (1− E(x))β, (21)

with suitable α, α, β, β and E : Ω → [0, 1] as defined in Sect. 3.1.

4 Experiments

In this section we perform a quantitative comparison of the total generalized
variation (TGV) approach, infimal convolution (IC), their adaptive counterparts
as proposed in Sect. 3.2, and the proposed anisotropic second-order TV model
(Sect. 3.1)3. For TGV and IC we use the original codes, which were kindly pro-
vided by the authors of [2, 17]. In addition, we consider an anisotropic second-
order TV, where the adaptivity is determined only by the standard structure

3 Computational speed: 17 sec for a MATLAB implementation on an 256x256 image
using an Intel i7 processor.
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Example Roof Train (part) Lena Peppers

2nd order TV with std. struct. tensor 4.6946e-4 2.4249e-4 1.0703e-4 1.8858e-4
TGV 0.8857e-4 2.3644e-4 0.9362e-4 1.3883e-4
Adaptive TGV 0.8703e-4 2.3364e-4 0.8985e-4 1.3258e-4
IC 1.0405e-4 2.3968e-4 0.9519e-4 1.3822e-4
Adaptive IC 0.9861e-4 2.3693e-4 0.9205e-4 1.3589e-4
Proposed method 0.5703e-4 2.2560e-4 0.8749e-4 1.2997e-4
Table 1. Mean squared errors (MSE) to the noise-free image for the different methods.
For each method, the approximate optimal parameters were retrieve by grid search. In-
dependent of the model, introducing adaptivity always improves the error. The results
of the proposed anisotropic method show the lowest reconstruction error.

tensor, i.e. E(x) = ES(x). As test images we use the image roof, cf. Fig. 2,
left, a part of the train image from [2] and the Lena and peppers image, adding
5% zero mean Gaussian noise, cf. Fig. 4. For each image, the approximate op-
timal parameters for each method (α,β,α,β) were determined via a grid search
minimizing the mean squared error (MSE) to the noise-free image. While other
error norms are also applicable, we have chosen the MSE as it is the most
commonly used. Table 1 shows the errors for each method. We observe that
by introducing adaptivity, we are able to decrease the error compared to the
non-adaptive methods. The proposed method achieves the smallest error across
all instances, showing the advantage of introducing anisotropic regularization.
Moreover, it becomes clear that using solely the standard structure tensor to
steer the anisotropy does not suffice, justifying our approach of also taking slope
discontinuities into account. Figs. 5 and 6 depict the results of the methods on
the roof and train images. For the latter, we observe that the results still con-
tain some amount of the original noise. It seems that minimizing the MSE by
grid search favors such residual noise rather than to strongly smooth the results.
Since human users generally prefer a stronger smoothing, we provide in Fig. 7
results with manually adapted parameters for TGV and the proposed methods
(due to space constraints, we omit IC here). The increased smoothing removes
some image structures, as can be seen in the difference images. The proposed
method preserves edges better than the competitive approaches.

5 Conclusion & Future Work

We proposed a way to modify state-of-the-art second-order TV models by in-
troducing spatial adaptivity. Moreover, we introduced a new anisotropic second-
order TV model. Experiments show that the modifications lead to an improved
reconstruction performance. Since all considered methods exhibit over-smoothing
in textured regions, future work will focus on how adaptive approaches can be
improved by including texture information. New insight into this problem could
also possibly close the conceptual gap to non-local regularization approaches.
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(a) Noisy image (b) Std. second order TV

(c) TGV (d) Adaptive TGV

(e) IC (f) Adaptive IC

(g) Proposed

Fig. 5. Cross-section of the results (black lines) of TGV, IC, their adaptive variants
and the proposed method on the roof image and detailed views of the peak and the
left step. The noise-free data is shown in gray. We remark that standard second-order
TV (b), cf. (6), significantly flattens the peak. All considered approaches avoid such a
flattening to varying degrees. The TGV variants provide the sharpest reconstruction
of the peak. The proposed approach provides a sharp reconstruction of both kinks.
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(a) Noisy data (b) TGV (c) Adaptive TGV

(d) IC (e) Adaptive IC (f) proposed

Fig. 6. Results of the tested methods on the train image. For each method the param-
eters were selected by a grid search minimizing the mean squared error (MSE). As a
consequence, all methods preserve some noise. Visually, the results are very similar.

(a) TGV (b) Adaptive TGV (c) proposed

Fig. 7. Denoising results using manually chosen parameters (top row) and difference
image to noisy data (bottom row). TGV shows a strong smoothing effect, with the
drawback, that also edges become smoother. Adaptive methods preserve edge struc-
tures better, as can be seen from the weaker edges in the difference images. In textured
regions, all methods partly remove the texture. The proposed method shows the small-
est amount of structures in the difference image.


