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Abstract. We propose two new GPU-based sensor fusion approaches for
time of flight (TOF) and stereo depth data. Data fidelity measures are de-
fined to deal with the fundamental limitations of both techniques alone.
Our algorithms combine TOF and stereo, yielding megapixel depth maps,
enabling our approach to be used in a movie production scenario. Our
local model works at interactive rates but yields noisier results, whereas
our variational technique is more robust at a higher computational cost.
The results show an improvement over each individual method with TOF
interreflection remaining an open challenge. To encourage quantitative
evaluations, a ground truth dataset is made publicly available.

1 Introduction

Knowledge of scene geometry is required in many areas such as visual effects,
human computer interfaces or augmented reality systems. While Lidar scanners
are accurate, they usually are expensive, slow and require extensive postprocess-
ing. Stereo matching works well on textured scenes, but has difficulties at depth
boundaries, in homogeneous regions and when repetitive patterns introduce am-
biguities. TOF cameras recently have become an interesting alternative source of
3D data. They deliver consistent results even on textureless surfaces at the cost
of a lower resolution, systematic errors such as flyig pixels, interreflections as well
as high noise - especially in regions with low infrared reflectance. By harnessing
the advantages of both methods we are able to improve the reconstructed depth.

1.1 Contributions

1. We define fidelity measures to identify those regions were either TOF, stereo
or both approaches are likely to fail.

2. We locally fuse both sensors by appropriately dealing with problems such as
missing textures in the stereo and low IR reflectance in TOF data.

3. We transfer this model to a slower but accurate variational approach using a
new higher order TV regularization with a joint stereo and TOF data term.

4. The methods upsamples the 200 x 200px TOF depth to 1082x1082px.
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5. Both local and global approaches are implemented on GPU.
6. Finally, we have created a publicly available ground truth dataset to which

we compare the results of our approach.

2 Related Work

3D reconstruction is a broad field of research in measurement sciences, pho-
togrammetry and computer vision. TOF imaging is an active illumination sys-
tem where infrared light is emitted by a source and reflected by the target.
In each pixel the phase shift between emitted and reflected waveform is then
calculated[1, 2]. TOF imaging suffers from several systematic errors such as an
offset between actual depth and measured data as well wiggling errors due to
deviations of the modulation from a pure sine function. A detailed description
of the TOF noise sources and model is given in [3]. An interesting approach to
estimating TOF noise has recently given in [4]. Here a regression forest is used
to learn the noise model given lidar data as ground truth. Depth from stereo on
the other hand has a long-standing history in computer vision. An overview of
the methods and their shortcomings have been discussed in [5]

TOF based sensor fusion methods can be differentiated by the camera setup
employed: a) With a single additional camera typically edge information from
the high resolution intensity image is used to guide the upsampling of the depth
image [6, 7]. b) Methods combining TOF and stereo not only filter the data to
gain a higher lateral resolution; they also refine the actual depth information
in textured regions. TOF imaging is a comparatively young field with a limited
number of methods that have been proposed. As in pure stereo methods [5],
these can be broadly grouped into local and global methods.

Local methods [8–13] tend to be faster and parallelizable but cannot cope
with locally erroneous data. [9] applies a hierarchical stereo matching algorithm
directly on the remapped TOF depth data without considering uncertainties.
[8, 11] compute confidences in the TOF image and let stereo refine the result in
regions with low confidence. The latter are similar to our method but only use
binary confidence maps based on the TOF anmplitude image and therefore only
sparsely use stereo information. Instead, we use the rich information of both
data sources in the form of data fidelity measures to guide the fusion process.

Global methods apply spatial regularization techniques to propagate more
information to regions with low confidence. Among the global methods, [14]
applied an extension of semiglobal matching [15] to additionally handle TOF
data. [16] applied a graph cut approach with a discrete number of disparities to
sensor fusion. The methods closest to ours were proposed in [17] and [18] who
employ an MAP-MRF framework and and a energy minimization scheme with
quadratic regularization terms respectively. We employ adaptive first and second
order total variation (TV) with L1 regularization. Such approaches already have
been used for optical flow estimation [19–21]. For denoising TOF data, adaptive
TV methods have been introduced in [22]. Our proposed approach differs to
existing methods in the way adaptivity is defined: we include adaptivity in the
differential operators, not in the TV norm.
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3 Experimental Setup

The experimental setup (Fig. 1) consists of two high-resolution cameras (L, R)3

and a low-res TOF camera4 (T). To enable depth estimation in all areas of
the primary (L) camera, the TOF camera is positioned such that the regions
of occlusion between L-T and L-R are on opposite sides. Both our algorithms

Fig. 1. Camera setup.

use the TOF intensity (TOFI) and depth (TOFD), as well as left and right
images (Fig. 2). The setup is calibrated such that TOF and the right camera are
registered to the left stereo image.

Fig. 2. Input data: TOFD, TOFI (200x200), L and R (1312x1082, cropped for vis.).

4 Data Fidelity Measures

Various fidelity measures are then computed based on the input data.

1. TOF depth estimates are corrupted either when the reflectance of the illu-
minated surface is low or when the active light is not strong enough. A map
CTOFI is obtained by normalizing the inverse TOF intensity.

2. Due to flying pixels, the measurements at depth boundaries are error prone.
The gradient of the TOF depth image C∇TOFD is used to account for this.

3 Photon Focus MV1-D1312-160-CL-12 with Linos Mevis-C lenses at 25mm/1.6,
1312x1082px

4 PMDTech Camcube, 200x200px
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3. In stereo matching, disparities can only be estimated when the texture within
a region is sufficiently unambiguous. Regions with high horizontal gradients
can be used as indicator: the third fidelity map is the horizontal gradient of
L, denoted by C∇xL.

4. Finally, occluded areas can partly be detected using a regular photo-consistency
check [15] on the TOF depth information projected on L. We denote this
binary map as CLOcc, where occluded pixels are marked with 0.

All fidelity measures are normalized to the range [0 . . . 1] (Fig. 3). These measures
enable to find regions with noisy depths, systematically inaccurate or simply
missing. However, regions with corrupted data not covered by our measures
(e.g. interreflection) may remain. Therefore, the next steps have to be robust.

Fig. 3. Fidelity of scene in Fig. 2. Left to right: CTOFI , C∇TOFD, C∇xL and CLOcc.

5 Local Fusion of TOF and Stereo

Once calibrated, each TOF depth pixel j can be projected into the L frame.
Since TOFD is at a lower resolution and itself has an error, each TOFDj maps
to multiple pixel locations i in L, with a certainty α1C

TOFI
j in each pixel. Con-

versely, for each pixel i in L the viewing ray intersects with the TOF depth
map at multiple locations. Thus there may be multiple possible depths and
probabilities (TOFDj , pj), j = 1, . . . , N . With L and R rectified, these depth
measurements can be converted into disparities. Using stereo block matching we
can then probe the matching score of the candidate disparities and choose the
best candidate. This is only feasible if the pixel at i can be used for matching
at all. This depends on CLOcci and C∇xL

i . We make two simplifications at this
point to speed up the method:

1. We are using CTOFIi as an uncertainty along rays from L even though it is
defined along rays from T . Since we are observing objects at a long distance
this simplification is justified.

2. Instead of keeping a list of all candidate disparities in L we keep the most
probable disparity (dispTOF ) and a range.

Putting all together, we compute a joint per pixel search range map
[dispTOFi − Ci,dispTOFi + Ci] by combing the measures as follows:

Ci = (α1C
TOFI
i + α2C

∇TOFD
i + β1C

∇xL
i )CLOcci . (1)
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The parameters {α1, α2, β1} can be easily fixed for a given camera setup and
lighting conditions. With the most probable depth and range standard block-
matching is applied using a SSD cost on a square support window. This search
space reduction not only speeds up the process: Also, repetitive pattern regions
(multiple likely matches) are biased towards the TOF depth.

6 Variational Fusion of TOF and Stereo

In the following we describe a variational approach for the estimation of a smooth
disparity map from both stereo and TOF data. A regularization term based on
total variation (TV) of first and second order guarantees that the solution has
the required smoothness.

Our approach considers two fidelity terms: the first one incorporates the
stereo data and is based on a linearized 1D optical flow constraint (BCCE) [23],
the second one incorporates the upsampled TOF data. Since the linearization of
the BCCE assumes small displacements, we perform an incremental update (cf.
[24]) of the targeted disparity map, i.e. dk+1 := dk + δk, starting with the TOF
disparity d0 := dispTOF . δk is found by solving the variational problem

δk := argmin
δ

S1(δ) + S2(δ, dk) +R(δ, dk) (2)

with the two fidelity terms S1,S2 and a regularization term R. We describe the
terms S1,S2 and R in detail below.

The first fidelity term S1 is to penalize derivations from the linearized BCCE.
To be robust against outliers, we use the L1-norm. Since we already know from
the map C∇xL where to expect matchable structures, we only apply S1 in regions
where C∇xL is large. To this end we define gi := C∇xL

i · CLOcci and set

S1(δ) :=
∑
i

gi |(DxR
wrp)i · δi +Rwrp

i − Li)|, (3)

where the summation is performed over all pixel indices i and Dx denotes a dis-
crete differential operator for the horizontal derivative. Rwrp is the right stereo
image warped according to the current disparity map dk using bi-cubic interpola-
tion (cf. [24]). When no matchable structures are present, we rely on the disparity
map dispTOF given by the TOF camera and make use of the uncertainty map
CTOFI and occlusion map CLOcc. The second fidelity term S2 penalizes the
deviation from the data dispTOF with weights wi := (1/CTOFIi − 1) · CLOcci .
Again, to be robust against possible outliers, we use the L1-norm:

S2(δ, dk) =
∑
i

(1− gi) wi |δi + dki − dispTOFi |. (4)

We now specify the regularization term R. We use first and second order TV,
which is adapted to local edges obtained as follows: Edges are defined as the
maximum of the eigenvalue differences of a local structure tensor of an upsampled
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gradient image (see [25]) above a certain threshold. Inspired by Canny[26] edges
below a certain length are rejected. Unlike Canny’s double thresholding, we
check for an angular alignment of the normal vectors of neighboring pixels. The
orientation of the edge can be determined since the upsampling gradient filters
yield edge locations with subpixel accuracy. We denote the location of such edges
by binary data terms cx and cy, which are zero if an horizontal/vertical edge is
present. For TV regularization we consider finite difference operators Dx and Dy

for calculating horizontal and vertical derivatives. We adapt the finite differences
to the edge information described above and use Dx := cxDx instead of Dx, and
Dy := cyDy instead of Dy, respectively. Second order finite differences Dxx and
Dyy then can be defined based on Dx and Dy (see [27]). In the regularization
termR(δ, dk) we then penalize the norms of the first and second order derivatives
of the targeted disparity map dk + δ. Thus, we set R(δ, dk) := R(dk + δ), where

R(v) :=
∑
i

(
γ1

√
(Dx(v))2i + (Dy(v))2i + γ2

√
(Dxx(v))2i + (Dyy(v))2i

)
. (5)

Mixed derivatives of second order were omitted as no significant changes could
be observed in experiments by [27]. Parameters γ1 ≥ 0 and γ2 ≥ 0 can be
chosen pixel-wise in order to locally switch between the two orders. However,
our experiments indicate that fixed positive values for the whole data set suffice.
The mixture of first and second order TV in particular avoids stair-casing and
provides piecewise affine reconstructions (cf. Section 7).

The numerical solution of (2) is obtained by a reformulation using variable
splitting [28, 20]: after introducing auxiliary variables δ̃ and δ and penalizing their
difference to δ with additional cost terms, problem (2) can be approximated by

min
δ,δ̃,δ
S1(δ̃) + S2(δ, dk) +R(δ, dk) +

1

2λ1

‖δ̃ − δ‖22 +
1

2λ2

‖δ − δ‖22, (6)

with λ1, λ2 > 0 tending to zero. In practice, however, we use fixed small values
λ1 = λ2 = 0.01. Problem (6) then is solved by alternating minimization w.r.t.
δ, δ̃, δ, where for the minimization w.r.t. δ̃, δ closed forms can be provided using
the pseudo-inverse of (DxR

wrp)i and thresholding. For minimizing (6) w.r.t. δ
we apply the primal-dual algorithm proposed by Chambolle & Pock [29].

7 Experiments and Results

7.1 TOF Only versus Stereo Only versus Our Approaches

Both proposed methods were implemented in C++ and make use of the CUDA
framework. Fig. 4 shows a comparison of depth maps obtained from Fig.2 : using
TOF only, SGM [15] stereo with rank filtering [30], and our local/TV fusion.
The local method was parametrized with (α1, α2, β1) = (0.7, 1.5, 0.1), the global
method with (γ1, γ2) = (5, 1).

Besides the low resolution a considerable amount of noise can be observed in
the TOF image, esp. in the dark regions of the poster (a) and the foam plate (b).
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Fig. 4. Comparison of our approach. TOF only, SGM stereo, local and global fusion.

Stereo matching fails on the wooden plates (c) due to lack of texture. Bleeding
of disparities between the two statues (d) is also observable. Due to the fine
texture on the poster (e) the SGM estimates the right disparity in that region.

Both our methods eliminate most of the noise around the poster (f) by using
the available texture from stereo. The silhouettes (g) are reconstructed more pre-
cisely than in either TOF or stereo alone and fine details retained (e.g. pyramid
(h)). Also the corner between the plates (i) that was corrupted due to interreflec-
tions is reconstructed properly as stereo cues are present there. The TV approach
furthermore eliminates artifacts that could not be removed by the local method.

7.2 Ground Truth Evaluation

In the style of the Cornell Box [31], we have created a Heidelberg Box containing
objects of different complexity (Fig. 5). The box has a size of (1 x 1 x 0.5)m. A
synthetic model was then created with an accuracy within 1mm. For the shown
scene we estimated the extrinsic camera parameters using manually selected 2D-
to-3D correspondences. A ground truth (GT) depth map was then rendered with
values that are an order of magnitude more precise than the TOF/stereo values.
With few exceptions the reprojection error is lower than one pixel [31].

Fig. 5. Left to right: Heidelberg Box, Overlay of the GT mesh, largest alignment error,
GT

To evaluate our measurements in a quantitative fashion, depth maps of the box
were computed using the both approaches (Fig. 6). The variational approach
was parameterized with (γ1, γ2) = (5, 1) and the local method method with
(α1, α2, β1) = (0.05, 0.05, 1.6). The difference between the GT image and the
obtained depth maps were then calculated. Both methods show similar results
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Data Method Mean Std. dev. 1st Quart. Median 3rd Quart.

TOF-data upsampling 2.75 3.76 0.81 1.69 2.95
TOF-data glob. meth./std. TV 2.92 3.85 0.81 1.72 3.14
TOF-data glob. meth./adapt. TV 2.73 3.85 0.80 1.63 2.86
Stereo SGM 2.92 3.89 0.84 1.78 3.24
Fusion local method 2.78 3.81 0.81 1.70 2.98
Fusion glob. meth./adapt. TV 2.57 3.53 0.75 1.58 2.78

Table 1. Summary of GT evaluation on regions without interreflections.

with differences to GT on the box sides due to interreflection. Interreflection
is not accounted for by our confidence measures, thus the confidence is overes-
timated. The results without interreflecting regions are shown in Table 1. Our
fusion methods are compared with pure TOF upsampling, SGM stereo as well
standard and adaptive TV regularized smoothing applied to the TOF data only.
The fusion methods improve on the results of TOF or stereo alone and also of
to global methods using TOF data alone. The best method having a median
error of 1.58 cm compared to 1.78 cm using stereo alone and 1.69 cm using TOF
alone. This justifies the combination of stereo with TOF data. Among the fusion
methods the local one produces results very close to pure TOF. The first two
quartiles of the local method error are almost equal to pure TOF and the third
quartile slightly higher. From this (and from visual inspection) we can assume
that the slight increase in error here is introduced by a few localized outliers. In
retrospect this is quite clear as this scene contains too few stereo cues to use in
a purely local ansatz. On such data regularization is required to propagate good
stereo cues to the other regions. When stereo cues are present the local method
also improves on each individual method (cf. Fig. 4).

To give some further insight, relief plots (Fig. 7) along rows of the depth
images were made. Our method produces results that are less corrupted and
resemble the GT relief more closely than SGM. This can be seen on a) the stairs
where the stereo results could be interpreted as a slope, b) the sphere and c) the
slope. The effects of interreflection can be observed in d) and e) .

8 Conclusion and Future Work

We have combined stereo and TOF depth data to overcome their respective
limitations. Our method is based on fidelity measures derived from TOF inten-
sities and depth gradients as well as horizontal image gradients and stereo photo
consistency. This information was fed into a local and a variational framework.
Both approaches yield semantically similar results, while the local approach is
faster but noisier and the TV approach is less noisy but slower. We also created
a publicly available millimeter-accurate ground truth dataset for the evaluation
of sensor fusion systems. With this we could show that our method improves on
the results of individual methods. Yet, further investigation is needed on how to
handle interreflection.
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Fig. 6. Top: local method. Bottom: variational method. From left to right: disparities,
3D reconstruction and difference between reconstruction and GT in cm.

Fig. 7. Reliefs of row 50, 280 and 500. Regions of importance (a-f) are discussed in 7.2

Acknowledgements

This work is part of a joint research project with the Filmakademie Baden-Württemberg, Institute of
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