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Abstract

We study the discrete tomography problem in ExperimentatHADynamics — Tomo-
graphic Particle Image Velocimetry (TomoPIV) — from thewpmint of compressed sens-
ing (CS). The CS theory of recoverability and stability ohsge solutions to underdeter-
mined linear inverse problems has rapidly evolved durirgléist years. We show that all
currently available CS concepts predict an extremely pamstwcase performance, and a
low expected performance of the TomoPIV measurement systelicating why low par-
ticle densities only are currently used by engineers intac Simulations demonstrate
however that slight random perturbations of the TomoPIV sneament matrix consid-
erably boost both worst-case and expected reconstrucédormance. This finding is
interesting for CS theory and for the design of TomoPIV measent systems in practice.

AMS Subiject Classifications: 65F22, 68U10

Keywords: compressed sensing, underdetermined systems of lineati@gs positivity constraints in
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1 Introduction

1.1 TomoPIV

Our research work is motivated by [21]. The authors intredua new 3D technique, callo-
mographic Particle Image Velocimetry (TomoPRg) imaging turbulent fluids with high speed
cameras. The technique is based on the instantaneous trectinas of particle volume func-
tions from few and simultaneous projections (2D imagesyaddr particles within the fluid.
The reconstruction of the 3D image from 2D images employsuadstrd algebraic reconstruc-
tion algorithm [22].

TomoPIV can use only few projections due to both limited cgdtaccess to wind and water
tunnels and cost and complexity of the necessary measutexpparatus. As a conseguence,
the reconstruction problem becomes severely ill-posedi path the mathematical analysis and
the design of algorithms fundamentally differ from the st@m scenarios of medical imaging.

A crucial parameter for 3D fluid flow estimation from image rm@@&ments is particle den-
sity. This parameter also largely influences the tomogbhieconstruction problem. Higher
densities ease subsequent flow estimation and increasedbleition and measurement accu-
racy. However, higher densities also aggravate ill-posssglof the reconstruction problem. A
thorough investigation of this trade-off is lacking. Oujediive is to address this problem taking
into account relevant developments in applied mathematics



TomoPIV adopts a simple discretized model for an imagesnsitoction problem known
as thealgebraic image reconstructiomodel [11], which assumes that the image consists of
an array of unknowns (voxels), and sets up algebraic equgafir the unknowns in terms of
measured projection data. The latter are the pixel entni¢isei recorded 2D images that repre-
sent the integration of the 3D light intensity distributid(x) along the pixels line-of-sight;
obtained from a calibration procedure. Thus, #ik measurement obeys

bl' N / I(z)dz ~ ZCC]/ Bj(z)dz = Zﬁﬂjazj,
Li j=1 L j=1

wherea;; is the value of theé-th pixel if the object to be reconstructed is tj#h basis function.
The values:;; depend on the choice of the basis function. Typicd#flyare cube-shaped uniform
basis functions, the classicabxels For simplicity we will adopt this discretization schemadan
stress that other choices are possible, see e.g. [27].

The main task is to estimate the weights from the recorded 2D images, correspond-
ing to basis functions and solvéx ~ b. The matrixA has dimension$# pixel =: m) x
(# basis functions= n), wherem < n. Since each row indicates those basis functions whose
support intersect with the corresponding projection raygfojection matrixA will be sparse.

1.2 Compressed Sensing

We study the tomographic problem of reconstructing partidiume functions from the general
viewpoint of Compressed Sensinghich is a central theme of current research in applied math
ematics. Compressed Sensing [9, 10, 17] is a new technigueduiring a signak™ € R™ by
incomplete linear measurement

Ar =b, Q)

whereA € R™*™ m < n, and for reconstructing* exactlyprovided that the signal is sparse
(or compressible in some basis), ile:*||o := |{z’ |z} # 0} < n.
Instead of considering the NP-hafgtminimization problem

min ||z]o s.t. Az =0, (2)
it considers the convef -minimization problem
min ||z]|; s.t. Az =0, (3)

and investigates the situations when the sarhsolve both problems (2) and (3), coined as
¢y /¢1-equivalence.

A remarkable result of Candes and Tao [10] is that if, forregke, the rows of4 are ran-
domly chosen Gaussian distributed vectors, there is aaaiStsuch that if the signal sparsity
level obeys||z*[o < C'm/log(L), the solution of (3) will be exactly the original signat with
overwhelming probability.

In fact, random measurement matrices are optimal [8, 12]48,the sense that for a given
sparsity level, the required number of samples is minimal such that; -equivalence holds.
On the other hand, for a given number of measurementbe sparsity levek of +* which
allows recovery by;-minimization is maximal. The different derivations f/ ¢, -equivalence
are quite involved and are based on the notiofReétricted Isometry Property (RIP3], see
Section 4.3, or on "counting faces” of polytopes [15, 19,.16]



When the solution is known to be sparse and positive thereruadimilar assumption on
A, k andm, all nonnegative:-sparse vectors* are the unique positive solution dfr = Ax*,
[6, 19].

Donoho and Tanner [16, 19] have computed sharp reconstruttiresholds for Gaussian
measurements, such that for any choice of spatsénd signal size:, the required number of
measurements: to recoverz* can be determined precisely.

Recent trends [3, 4, 24] tend to replace random dense matigadjacency matrices of
"high quality” unbalanced expander graphs. Here, the nreasent matricesi are sparse bi-
nary matrices.

1.3 Stylized Problem

Likewise, we will concentrate on a particular binary measuent matrix. We consider a 3D
imagel with a cubic domairi” discretized ini® voxels. Three cameras, with pixels (L; rays)
each, keep the volume under investigation in focus frometlomthogonal directions, compare
Fig. 1.3 (left). According to Section 1.1 each entry of theaswe@ement matrixd will be

Q5 = / Bj(x)dz =1 s
L;

if the line of sightL; of thei-th pixel intersects thg-th voxel B;, or a;; = 0 otherwise. By
numbering voxels and pixels according to Fig. 1.3 (left)nmatl can be written in closed form
as
1;— X Id X Id
A=| Lol el |, (4)
Id (039 Id X 1;{

where® denotes the Kronecker product, see [23]. Notice thas the adjacency matrix of a
bipartite graph with regular left degr&eand regular right degre¢ compare Fig. 1.3 (right).
Then := d° left nodes correspond to the voxels in tifé cube and thus to the entries of
x. Them := 3d? right nodes (or measurement nodes) correspond to the caixeta In a
bipartite graph connections within the variable nodes aitdinvthe right nodes do not occur.
The existing edges between the left nodes and right nodespresented by oun x n matrix

A from (4). In particular,

1, if j-th ray intersects-th voxel
G —
Y10, otherwise

foralli e {1,...,m}, je{l,...,n}

Throughout this paper we denote by the indicator vector corresponding to the original
particle distribution and assume that our measurementdbas the sampling matrid are
exact, i.eb = Ax*. Moreover, we assume that is positiveandsparse

We investigate the sparsity level of up to which the sparsest solution dfc = Az* is
unique. Furthermore, we are interested in recovetih@s minimizer of the/;-minimization
problem (3) or, as minimizer of the linear program

minl'z, Azx=0b2z>0. (5)
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Figure 1: Left: Discretization of thel x d x d volume and correspondingy? rays for the 3
orthogonal projectionsRight: A is the adjacency matrix of a bipartite graph with regulat lef
degree3 and regular right degreé

1.4 Contribution and Organization

We provide a detailed study of the TomoPIV problem from theywdoint of compressed sens-
ing. We assess the worst-case and average performance sétairely ill-posed reconstruction
problem of discrete tomography, based on corferegularization and on a range of recently
established theoretical results.

The critical parameter both in theory and in practice is tadigle density of the imaged
fluid, that in mathematical terms corresponds to the spaodithe vector to be reconstructed
from observed measurements. Of particular interest arseptiansitions of this parameter be-
low of which unique reconstructions can be assumed to hofutdntice — an essential require-
ment for subsequent processing steps for, e.g., estimétiitgflow velocity from a sequence
of reconstructed volume functions. On the other hand, uaiigrge as possible particle densi-
ties is important in practice too, in order to improve thecgptime resolution of observed fluid
structures.

After establishing basic properties of the measurementix@) in Section 2, we clarify in
Sections 3 and 4 the relationship between the regularizemhséruction problems (2), (3) and
(5) and assess the worst-case and average performancelpygppcently established results
from the theory of compressed sensing to the TomoPIV probldiaking into account that
sparse volume functions generate sparse observations;owielg in Section 5 a probabilistic
analysis of TomoPIV reconstructions based on systems &t hthve beemeducedaccordingly
in a preprocessing step. Finally, we discuss in Section &ttitéstics of numerical simulations
based on slightly and randomly perturbed measurementaeasatti

In a nutshell, we show that the TomoPIV problem is quite degate from the viewpoint of
compressed sensing, thus leading to poor performancergaasa(Sections 3, 4). On the other
hand, the probabilistic analysis of Section 5 yields avenagrformance bounds that back up
current rules of thumb of engineers for choosing particlesitées in practice. Finally, Section 6
indicates a dramatic performance boost based on only ligiddified measurement systems,



raising novel problems for theory and implications for thgroved design of real TomoPIV
measurement systems.

While Section 3 is mainly based on established theoretmatepts, all remaining sections
—and Section 3 too — contain novel material from the speciéa/point of TomoPIV and also
from the more general viewpoint of discrete tomography. antipular, our papers aims at
pointing out connections between the fields of compressesirgge and discrete tomography in
order to stimulate further research.

1.5 Notation

|X| denotes the cardinality of a finite s&. We will denote by|| - || and| - ||; the Euclidean
l5-norm and the/;-norm in then-dimensional real vector spad®. We already introduced
the pseudo-nornfjz|lo = |{i|z; # 0}| and denote the set éfsparse vectors bR} = {z €
R™|||z]lo < k}. The support of a vector € R™, supp(z) C {1,2,...,n}, denotes the set of
indices of nonvanishing componentsiofWith I*(z) = {i|z; > 0}, I°(z) = {i|2; = 0} and
I~ (z) = {i|z; < 0}, we havesupp(z) = I (x) U I~ (x) and||z||o = |supp(z)|.

If S denotes a finite set thek'(S) denotes the union of all neighbors of elementsSof
where the corresponding relation (graph) should be clean the context.

A, denotes thé-th column vector of a matrid. For given index set$, J, matrix Ay
denotes the submatrix of with rows and columns indexed biyand.J, respectively. ¢, J¢
denote the respective complement sets. Similaflgenotes a subvector of

E[-] denotes the expectation operation applied to a randomblaria

2 Preliminaries

The aim of this section is an examination of the propertiethefsystem (1) for this simple
prototype of data-collection geometry. Such propertiel lvéi also relevant for other regular
imaging geometries, e.g. when additionally using a fouaimera (projection direction).

By the nature of the problem the coefficient matrxis very sparse, in contrast to most
compressed sensing measurement ensembles. This togethehevsparsity of the original
signalx* induces a sparsity also in the measurement véotdrich in more classic scenarios is
not given. As a consequence, we can remove equations withriggit-hand side leading us to
a feasible set of reduced dimensionality as will be detailext.

Consider the feasible polyhedral set with respect @andb

F:={z| Az =b,x > 0}, (6)

where all entries;; in A are nonnegative. Let us introduce the following partitiohghe right
and left nodes

I:=1%0)={ic{l,....,m}|b =0} and I,
J=N({I)={j€{l,...,n}|Fiel:ay >0} and JC.

Further define
fred = {.%' ‘ A[cjc.%' = b[c,{L' > O}. (7)

Then we can make the simple, compare [27, Prop.1], but irapbdbservation.



Proposition 2.1. Let A € R™*" b € R™ have all nonnegative entries anél and F,..4 be
defined as if{6) and (7) respectively. Then

}':{xeR"|xJ:0andece}}ed}. (8)

Remark2.1. Assume that for a particular measurement veétarhich induces the partitions
I, I¢ and J, J¢ of the right and left nodes as defined above, we obtained ametemined
and full rank submatrixi;. ;.. Then the vector?. is the unique solution ofi;c jex = by and
x* € R", wherez” = 0, is the unique positive solution ofz = b.

Clearly, when the above situation occurs solving fhgroblem (2) amounts to solve a
feasibility problem. Moreover, any method which solves

min f(x)

zeF

for an arbitrary objective functioni will lead to the sameorrectresult.
Let us assume for the time being that we have a sufficientlysspeectorz* and a suffi-
ciently sparse measurement vediee Ax* such thatd ;. ;. is overdetermined, i.e.

NI ®)] = [1°(0)] = 1 —m .

The rank of Ajcje will equal the rank ofA jc, while the latter cannot be full if it contains a
subset of linearly dependent columns.

This observation motivates us to find an upper bound to thamabnumbers of columns
such that alk (or less) column combinations are linearly independentséful tool for achiev-
ing this task, which is in general of combinatorial natuieta investigate the null space of
A.

Proposition 2.2. [26, Prop. 2.2] Letd € N, d > 3, A from (4) and N € R**(@~1) defined as

v () (e () o
Then the following statements hold
(@ AN = 0, with A from (4).
(b) Every column inV has exactly8 nonzero elements.
(c) N is afull rank matrix andrank(N) = (d — 1)3.
(d) rank(A) = 3d> — 3d + 1.
(e) ker(A) = span{ N}, i.e. the columns aV provide a basis for the null space df

(f) i, vi = 0holds for allv € ker(A).

3 Unique Sparsest Solution
In order to study/, /¢, -equivalence forA from (4) we decompose this problem in two separate
conditions:

1. /o-unique-optimality:z* is the unique optimum of (2) ;

2. {1-unigue-optimality:x* is the unique optimum of (3) .

In this section we investigate the first subproblem, whitegsacond one will be addressed in the
next section.
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Figure 2: Matrix A from (4) ford = 5 (left) along with asparsebasis for its null space, the
columns of N from (9) (right).

3.1 Spark

Besides being one of the classical NP-hard problems, séé&j2his NP-hardness result, prob-
lem (2) has a highly nonconvex objective function and thusyriacal optima may occur. For-
tunately previous work has shown that if a sparse enoughisolto (2) exists than it will be
necessarily unique. The analysis in [20] involves the measgiark(A) which equals the mini-
mal number of linearly dependent columnsAfsee [18, 20]. In contrast tiank(A), spark(A)
is NP-hard to compute. Fortunately bounds on this measame®e derived, see [18] and Sec-
tion 4.2.

The following result is surprisingly elementary and can doenfd in [18].

Theorem 3.1. (Uniqueness) Let* be a solution of(1) with ||z*||o < . Thenz* is the

unique solution of(2).

spark(A)
2

Clearly,2 < spark(A) < rank(A) + 1. Again, Gaussian matrice$ € R"™*", m < n, are
optimal in the sense thapark(A) is maximal and equalsink(A)+1 = m+ 1. Unfortunately,
with A from (4) we come off badly.

Proposition 3.2.[26, Prop. 3.2] For alld € N, d > 3 the minimal number of linearly dependent
columns of matrixA from (4) equalsg, i.e. spark(A) = 8.

Hence, Thm. 3.1 and Prop. 3.2 yigjdiaranteeduniqueness oévery3-sparse vector*
only. This bound is tight, since we can construct tiveparse solutions® andz? such that
Az' = Ax?, compare Fig. 3.

3.2 Signature

In [20] Elad adopts a probabilistic point of view to study guéness of sparse solutions of (2)
beyond the worst-case scenario based ositieatureof a matrixA € R™*"™, This is defined as
the discrete functionig (k) € [0,1], for k € {2,...,n}, that equals the number &fcolumn
combinations inA which arelinearly dependentivided by the number of alt columns from
then existing ones. By definitiorig 4 (k) = 0, for all £ < spark(A).

Theorem 3.3.[20, Thm. 6,Thm. 5] Let := spark(A4) < rank(A) =: r andz* be a solution
Ax = b. Assume the locations of the nonzero entries*irare chosen at random with equal
and independent probability. If/20 < |z*[o =: k& < r, then the probability that™ is the

7



sparsest solution aflz = b is approximatelyl — sig 4 (k) and the probability to find a solution
of Az = b of the same cardinality is approximately

@ SEg(k — j)n— k +j>( ' )sigm ~j) or lower, it |4+ > o

(b) 0,if1/20 < ||z*||p < 0.

An upper bound on the signature was derived via arguments finatroid theory [5], under
the assumption that the spark is known.

Theorem 3.4.[20, Th. 7] LetA € R™*™ with the signature functiorig 4, spark(A) = ¢ and
rank(A) = r. Then

S (TG
(x) ’
The computation of the signature seems even harder thanutmgghe spark. However,
the signature will be close to zero férsmall enough, but growing with the dimension 4f
If spark(A) = 8 it does not necessarily mean that every 8 or more column cuatibn are
linearly dependent. In fact, only a limited numberkofolumn combinations can be dependent
without violatingrank(A) = 3d*> — 3d + 1. It turns out that this number is tiny for smaller
when compared t()Z) As k increases this number also grows and equals one only when,
compare Fig. 6.1 and Fig. 7 (left). Numerical experimentggsst that mosb.9d> column
combinations ind are linearly independent.

sigy(k) <1— 0<k<r.

4 Unique Positive Solution

This section might seem useless from a practical point af giece/,/¢,-equivalence cannot
be claimedfor all k-sparse vectors wheh exceeds3 in view of the nonuniqueness of the
Zo-minimizer in this case. However, we trace relevant coodgiyielding/,/¢;-equivalence,
review known connections between different concepts atabksh some new ones.

4.1 Relations between problemg§3) and (5)

Most Compressed Sensing results explore conditions unté&hwhe minimum of the/;-
minimization problem (3) is unique (and identical to theminimization problem (2)). We
note in this section that if the measurement mattixas equal column sum and if a positive
solutionz* to Ax = b exists, then a uniqué;-minimizer must equak*. Conversely, if the
solution of (5)x* is unigue then also thg -minimizer must be unique.

Proposition 4.1. Assume there is a positive solutioh to Az = b, with A from (4) and letz!
be the unique solution of thig-minimization problen{3). Thenz! must equal:*.

Proof. Denote byz! a (unique) solution to thé;-minimization problem (3). In view of Prop.
2.2 (H),17z = 17b/3 holds for all solutions: of Az = b. Thus we obtain

1Tx* — 1Tx1 < Hxlnl < ]_TCC* ’
where the last inequality holds singé is feasible. Thus equality must hold. O

On the other hand, we have



Proposition 4.2. ConsiderA from (4) and assume that the positive solutiohto Az = b is
unique. Thenx* will be also the unique minimizer of tlfg-minimization probleng3).

Proof. Note that ifz* is the unique minimizer of (5) then* is necessarilyi-sparse for some
k < n. Otherwise, it cannot be unique since fof with no vanishing entries™ + tv will
also solve (5) for sufficiently small andv € ker(A4). HenceS := I°(z*) # (. Moreover,
SNI-(v)#0orS NI (v)# 0holdforallv € ker(A)\ {0}, in view of the uniqueness of
x*. Fromy g v + ) icge vi = 0 we now obtain

| D sign(@)oil =1 vl <Y luil

1€S¢ 1€S¢ ieS

forall v € ker(A)\ {0}. Thisis a well known condition for the uniqueness of theninimizer,
see e.g. [28]. O

Note, that the above results hold for all matricesvith equal column sum.

4.2 Mutual incoherence

The mutual coherence of a matti denoted by.(A), is defined as the maximal absolute scalar
product between two different normalized columnsiof
(Aeis Ao j)

p(A) = max ———= (10)
) | Aeillll As ;]

It measures the similarity between the matrix’s columng.afoorthogonal matri¥, (A) = 0.
For anm < n we necessarily have(A4) > 0. Uniqueness of the sparsest solution and exact
recovery ofr* via £1-minimization can be guaranteed [18] if

[2*]jo < 0.5 (1 + @) .

Hence, there is an interest in matrices with4) as small as possible.(A) = 1 implies the
existence of two "parallel” columns, and this causes cadofui the construction of a sparse
representation of the measurement veétoin [30] it was shown that for a full rank matrix of

sizem x n
n—m

n(A) = m

and equality is obtained for a family of matrices calléchssmanian frames
The mutual coherence is often used to lower bound the spade the following relation-
ship always holds

1
spark(4) > 1+ ——.
parklA) = 1 L)

In [6], nonnegativity is taken into account. Here a one-gideherence is considered

Aoi7Ao'
(4) = max e o)

~ 7 7 11
o AP (1)
i#]

The authors obtained the following result.



Theorem 4.3.[6, Thm. 2] LetA € R™*" be a matrix with nonnegative entries such that all
solutions of Az = b satisfyl'z = ¢, wherec is some constant. If there is @onnegative
sparse solutionr* to this system withz*[|o < 0.5(1 + —*), then it is a unique solution of this

v(4)
problem.
For our particular matrix4 we obtain

Proposition 4.4. For all d € N, d > 3 and A defined in(4)
p(A) = v(4) = <.

Proof. Since every column contains exaclipnes we obtaifj A, ;||> = 3 foralli € {1,...,n}.
Thusp(A) = v(A). Since two different voxels can both be intersected by att s ray the
maximal common support length of two different columns is.ofhis immediately implies the
result. O

However, recovery bounds based on this bound are too pessirsince, due to the above
result we obtain guaranteed recovery ¥iaminimization for all k-sparse vectors ik < 2,
which is (needless to say) useless. Derivation of strongmults that refer to specific matrices
and bypass the use of the mutual coherence should be attempte

4.3 Restricted Isometry Property

In order to prove that there exist matricésvith only m = O(k log(n/k)) rows such that for all
k-sparser ¢y /¢;-equivalence holds, Candées and Tao [9] introduced a coicepoutranks the
coherence measufg A). A matrix A is said to have thRestricted Isometry Propertg! P, ., 5
if for any k-sparse vectar, the following expression is verified

(1=l < [Az|® < (1 + O)[«l*, §€(0,1). (12)

This property implies that every submatris formed by combining at mogt-columns in
A has its nonzero singular values bounded abové #ys and below byl — §. In particular,
(12) implies that a matrixd cannot satisfyR1 P, j, 5 if k > spark(A).

Candes has shown, see [7, Thm. 1.1], that i€ RIP;, o s With 0 < V2—1lallze R?
solve both (2) and (3). Moreover, there exist sensing nmegric € R™*"™ which satisfy e.g.
the RIP, 1,4, Wherek can be as large a3(m/ log(m/n)). This class includes matrices with
i.i.d. standard Gaussian dfl entries, random submatrices of the Fourier transform oeroth
orthogonal matrices.

It has been shown recently [12] that binary matrices canat$fg RI P, ; 5, unless the
numbers of rows i§)(k?). Note that the best known explicit construction of (binarginpressed
sensing matrices due to DeVore [14] yield§:?) measurements, which is worse than the bound
m = O(klog(n/k)).

Theorem 4.5.[12, Thm. 1] LetA € R™*" be any0/1-matrix that satisfies?/ P j, 5. Then

, 1-6\2 , 1-96
m > min k*, ny .
1496 1+0
For our particularA defined in (4) withspark(A) = 8 we therefore obtain taking: = 3d>
into account

10



Corollary 4.6. Leto € (0,1). Then a necessary condition fdrto satisfy theR1 P, j, 5 for all

k-sparse vectors is that
b<mind V3. 10,1
2 1-6

However, we cannot be sure thatpossesses the!F, ; 5 ;, unless we compute all sin-
gular values of allg, | S| < 7 matrices. In case of a positive result we obt&jf¢; -equivalence
for all less ther3-sparse particle distributions, even in case of obsemvativors, sincekl P
also impliesstablerecovery, provided that the observation error is small ghpeompare [7,
Thm. 1.2] for the "noisy” version result.

4.4 Binary Matrices with RIP; j, 5

In [3]itis shown that a particular class binary measurement matrices < {0, 1}™*™, namely
adjacency matrices of expander graphs, see the followirfig Dé, satisfy a different form of
restricted isometry property, the so-callBd P, ;. 5

VeeRy,  (1=d)|zli <[[Azfi = (A +0)|zl, J€(0,1). (13)

Definition 4.1. A (k, ¢)-unbalanced expander is a bipartite simple grépk- (A, B, E) with
left degree’ such that for anyX C A with | X| < k, the set of neighbor8/(X) c B of X has
size|N(X)| > (1 — e)¢| X].

The existence of expander graphs can be shown using thehilistia method without
explicitly constructing them, see [3, 24] and the refersrberein.

Conversely, any binary matrix withones in each column and satisfyify P; ;, s must be
the adjacency matrix of an unbalanced expander graph, aerfipalrhm. 2].

The significance oR/ P, ;. s is the following performance guarantee when reconstrgctin
anarbitrary (not necessarily:-sparse) vector: by solving (3).

Theorem 4.7.[3, Thm. 3] LetA € {0,1}™*" be the adjacency matrix of an unbalanced
(2k, e)-expander. Letv(e) = 2¢/(1 — 2¢). Consider any two vectors, z* such thatdz = Az*
and||z]|; < ||z*||;. Then

2
lz* = alh < Tl = 2",

2a(€)
wherez* € R7.

Proposition 4.8. Let A be the adjacency matrix of an arbitrary bipartite graph wittgular
left degree/ and denoter = spark(A). ThenA is the adjacency matrix of & — 1,1 — %)—
unbalanced expander.

Proof. Let X C {1,...,n} and|X| =k < o — 1. ThenAx is an overdetermined full rank
matrix. In particular, there exigtlinearly independent rows id x, each of them having at least
one nonzero entry. Hend&/(X)| > | X| = £(1 — (1 — 1))/ X|. O

The above proposition implies thatfrom (4) is the adjacency matrix of(&, %)—unbalanced
expander. As a consequence we obtain exact recovery for &srarse particle distribution in
view of Thm. 4.7 and Prop. 4.1.
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4.5 Neighborly Polytopes

Donoho and Tanner [15, 19] explained the/¢;-equivalence phenomenon from the viewpoint
of convex neighborly polytopes. In contrast to sufficienhditions for exact recovery, this
theory provides necessary conditions additionally.

A polytope is said to beutwardly k-neighborlyif every subset of: vertices not including
0 span a(k — 1)-face, see [19], thus a outwardkneighborly polytope behaves like a sim-
plex, at least from the viewpoint of it's lowdimensional ésc(not including0), since every
p-dimensional face (not including) is simplicial, for0 < p < k.

The main result in [19] connects outward neighborlinesshéoguestion of uniqueness of
anyk-sparse nonnegative vector. Suchrsparse vectar™ will "live” on a k-face of the convex
hull of the standard simplex iR™ and the origin, denoted bzpsg‘l. If Az* will "survive”
on ak-face ofAA{}fl = conv{A, 1,...,Asn, 0} then it will be the unique positive solution
satisfyingAxz = Axz*. If Az* falls "inside” the "transformed” pontopﬁa‘lAg‘1 thenz* cannot
be recovered by (5). For a outwardiyneighborly polytopeélTO"*1 this will never happen.

We will extend this result by the following simple obseraati

Theorem 4.9. Let A € R™*"™ be an arbitrary matrix. Then the following statements araieq
alent:

(a) Everyk-sparse nonnegative vectof is the unique positive solution gfx = Az*.

(b) The convex polytope defined as the convex hull of the oslim4 and the zero vector,
i.e.conv{A, 1,...,Asn,0} is outwardlyk-neighborly.

(c) Every nonzero null space vector has at lefast 1 negative entries.

Proof. The equivalence of (a) and (b) is the main result in [19, Thin. 1

(¢) = (a): Now, letz* be ak-sparse vector. Any other (different) positive solutiontf =
Az* must be of the form* +v such thatt* +v > 0 andv € ker(A)\ {0}. Hencel ~ (z*+v) =
(). This contradict$/ — (z* + v)| > 1 as claimed by (c).

(a) = (c): Conversely, lets assume that there exist a nonzero nuésgector with |1~ (v)| <
k. We now define two nonnegative vectarsandz? in the following way

) {v if i ¢ I~ (v)

'IZ':

0, otherwise

and
9 Vg, ifi¢ I (v)
v 0, otherwise .

Sincex! —z? = v # 0 we obtain two different solutions tdz' = Az? althougha? is k-sparse.
This completes the proof. O

From Prop. 2.2 we know the existence of null space vectors oty 4 negative entries.
This together with Thm 4.9 now yields

Corollary 4.10. The convex hull of the columns in matrixdefined in(4) and the zero vector,
i.e.conv{A,1,...,Asn,0} is outwardly3-neighborly.

Hence, the maximal sparsity levieluch that,/¢,-equivalence hold&or all £-sparse non-

negative vectors holds & Indeed, in a x d x d volume there arég)3 4-sparse vector pairs
with equal projections, compare Fig. (3).
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Figure 3: Two differenthon unique4-sparse “particle” distributions in & x 3 x 3 volume,
based on the construction in the proof of Thm. 4.9. Both caonigions (represented by black
and white dots) yield identical projections in all threeedtions.

4.6 Null Space Property

Similar to our simple observation in the previous sectioa duthors in [13] derived sparse
recovery conditions based on properties of the null spacé.ofn particular, they say that a
matrix A has theNull Space Propertyof orderk for v > 0 if

lvslli < yllvsellr (14)

holds for all setsS of cardinality less the andwv € ker(A). In [13, Thm. 4.3] it is shown that
if A has the null space property of orderk and~ < 1, it is guaranteed that evekysparse
vector is the uniqué-minimizer of (3). The null space property is a weaker varsid the

restricted/s-isometry property. Indeed, Cohen et al showed [13, Len].that if A satisfies the

RIP, 3 5, then A satisfies the null space property of or@érandy = gﬁ / }—f‘;

Independently, Zhang [31] used the general conceptlodlanceness$o study uniqueness
of the /;-minimizer. A subspacg is k-balanced (ir/1-norm) if for any .S with |S| < k

[osly < llvsell

holds for allv € X. X is calledstrictly k-balanced if the strict inequality holds. Hence,
strict k-balanceness of the null space afimplies the null space property of ordérwith
~v < 1, thus, exact recovery. In fact, the author shows in [31] thhtlanceness dfer(A)
is equivalent taconv{+A, 1,...,+tA, »,0} being (outwardly)k-neighborly. The latter is the
analogous sufficient and necessary condition for recovieail &-sparse vector when the vector
might have different signs, compare [15].

In the nonnegative case Zhang showed [32] the equivalertbe ¢dutwardly):-neighborliness
of the polytopeconv{A, 1, ..., As », 0} and the notion ohalf k-balancenessf the null space
of A. A subspaceX is half k-balanced (irf;-norm) if for any S with |S| < k

> vi < Jloselh

icS
holds for allv € X. X is calledstrictly half k-balanced if the strict inequality holds. Hence,
this different form of null space property for nonnegatiextors turns out to be sufficient and

For convenience we slightly modified the original definitiafrthe Null Space Property given in [13].
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necessary condition for uniqueness of evkrgparse nonnegative vector, in view of the first
part of Thm. 4.9. However, testing the null space propertydd@ns on generic matrices

is potentially harder than solving the combinatorigiproblem in (2) as it implies solving a
combinatorial problem to compute However, we can conclude thdtfrom (4) has the null
space property of orderwith v < 1, due to the previous observations. This ends the series of
highly pessimistic conclusions concerning our particular

5 Most Probably Unique Positive Solution

5.1 Weak Equivalence

The concept of /¢, -equivalence demands that for a given measurement mdétexjuivalence
for all instanceg A, b) generated bywny k-sparse vector holds. A weaker form of equivalence
considers equivalence famostproblem instancegA, b). In [19] it is shown that a weaker form
of neighborliness implies weak equivalence. The authdiaela polytopeP to be(k, ¢)-weakly
(outwardly) neighborly if, among alt-subsets of vertices (resp. among those not inclu@)ng
all except a fractiorr spank — 1-faces ofP.

The columns of4 are ingeneral positionf all subsets of m columns ofA are linearly
independent, thugpark(A) = m+ 1. Itis shown in [19] that if the columns of are in general
position, weak neighborliness ﬂng” = conv{A, 1,...,Asn, 0} is the same thing as saying
that AAJ~! has at leastl — ¢)-times as manyk — 1)-faces asAj~*. Thm. 2 in [19] shows
the equivalence betwedft, ¢)-weakly (outwardly) neighborliness and weak equivalenee,
uniqueness of all except a fractierf k-sparse nonnegative vectors.

However, the columns ofl from (4) are not in general position. Besides, counting $aafe
polytopes is again a combinatorial problem.

To overcome this difficulty we appeal to the observationayemade in Section 2. If the
matrix obtained by reducing zero measurements and comdspgp adjacent voxels is overde-
termined and of full rank, then the underlying solution whigenerates the sparse measurement
vector must be unique. This is also a criterion of individeglivalence for a given problem
instance( A, b). Moreover, a critical sparsity levél yielding weak equivalence fad of most
k-sparse nonnegative vectors can be derived by estimategrifbability thatk-columns are
linearly independent with probability close to one, k&, (A) ~ 0, and estimating the proba-
bility that the induced reduced matrix is overdetermined.

5.2 Probability of m,cq(k) > neq(k)

Sparse vectors give rise to sparse vectois = Ax. Based on the zero components tof
corresponding rows and columns can be removed figrieading to aeduced matrixA4, ., €
Rmrea(k)xnrea(k) - |n this section, we estimate the expected dimension of édeaed matrix
depending on the sparsikyof x.

Lemma5.1. Letz € {0, 1}d3 be a uniformly drawrk-sparse binary vector. Then the expected
number of zero measurements in any of the three projectiagemapproximately is

1 &y,
E[k, d] ::ﬁ2r<r>(d — ) Sk s (15)
r=0

whereS,, i, denotes the Stirling number of the second kind.
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Proof. Letp: K — R be any of the three projection directions considered as etitmmap-
ping | K| = k particles ontdR| = d? pixels. We wish to determine the probability thapixels,
corresponding te rows in the measurement vectgremain "empty”.

This probability is given by(,.|/|€2|, where2 denotes the set of all projectiopsi.e. || =
|R|IX], and where, ¢ Q contains functiong mappingk particles to R| — r pixels.

Assumer "empty” pixels are fixed. Then onlgurjectivemappingsp assignk particles to
all remaining|R| — r pixels without leaving any additional pixel empty. The sifehis set is
(IR —7)! Sk, r|—r» S€€ [1]. Because there a(r@) ways to locate the zero pixels, we obtain

= ('R')uRr NS (16)

r

lfi'o |2,-], and the expected number of zero pixelgj8, d] = Zlfi'o r‘%ﬁ‘. O

Clearly,|Q2] = >°

Remarks.1 We point out that (15) is just an approximation, because werigd the dependen-
cies between particles due to the third dimension. Conselyuéhe numbers (17) determined
below as a function af[k, d] are approximations as well.

Proposition 5.2. Letz € {0, 1}d3 be a uniformly drawnk-sparse binary vector. Then the
expected values of the dimension of the reduced maitix approximately are:

myea(k) ~ m — 3E[k,d] , (17a)

3
nyed(k) =~ d* — 3E[k,d] - d + z&E[kc’ld]2 — (E[i;’d]> d3 . (17b)

Figure 4 illustrates that these estimates are reasonajblly ti

Proof. The estimate (17a) is based on our assumptionitigtiniformly distributed. We simply
subtract from the total number of pixels (rows) the expectechber of zero measurements in
all three projections due to Lemma 5.1, thus obtaining thpeeted number of zero components
of the observed vectar.

Concerning (17b), any zero component of the vettmiarks voxels in the volume along the
corresponding projection ray, and corresponding columns to be removed fromd. n,..q(k)
is the number of voxels (columnsiot removed by any projection. To estimate the expected
value of this number, we have to take into account that ptiojecays intersect.

Based on the expected numidglk, d| of zero pixels in any of the three projections — see
(15), we compute:

1. Eachsingle projectiorremovesE|k, d] - d voxels.

2. Consider gair of projections e.g. thex/z-projection and they/z-projection. Fix the
commonz-coordinate. There afi@[k, d|/d zero pixels in each of the two corresponding
rows of the two projection images, eliminating togetkEfk, d] /d)? voxels because all
projection rays corresponding to the two sets of zeros niiytirdersect. As there are
d possible values of, it follows that each pair of projections removéE|[k, d|/d)? =
(E[2])?/d voxels.

3. The probability that any fixed voxel projects to a zero in fixed projection iE[k, d] /d?,
due to Lemma 5.1. Consequently, the expected number of vegeioved byall three

3
projectionsis <%> d3.
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Figure 4: Left: Expected number of zero components of the measurementrvecto Az,
generated by &-sparse random vecter The black curve showsE|k, d]/m as a function ofc%
due to (15). These numbers are related to the expected numbgik) of rows of the reduced
matrix A,.q by (17a). The gray curve shows the corresponding empiriegna computed for
d = 8, i.e. for the matrixA € R'92%512 and 1000 trials for each value bf The dashed curve
shows the asymptotit — % for small values of. Right: Expected number afolumns of the

reduced matrixA4,.4. The black curve showg%(k) as a function of%, with 7,..q(k) given
by (17b). The gray curve shows the corresponding empirigalecobtained by simulations as
described above.

nreq(k) corresponds to the number of voxels for which all three dims above dmot hold,
which due to the inclusion-exclusion principle is given &yf). O

Comparing (17a) and (17b) shows that more columns are reinthv® rows, depending
on the expected numbé&k, d| of vanishing components &f = Az. Hence for a sufficiently
k-sparse vector the reduced matri¥, ., leads to aroverdeterminedystem withm,..q(k) >
nreq(k). Solving the polynomiain,..q(k) = n..q(k) according to (17) in the variablg[k, d] for
the root in the admissible intervél, ¢2], we find that this will hold on the average fbrsparse

vectorsz that generate at least
3 2
Elk,d] ~ [1— p d (18)

zero entries in each projection. Figure 5 shows the correfipg critical values of the sparsity
parameter = k(d), numerically determined by solving,.q(k) = n,.q(k) resp. (18), as a
function of the problem sizé€. The log-log plot in the right panel of Figure 5 indicatestqui
accurately the power law

k(d) ~ 3.54d"3 . (19)

6 Towards an improvement — Perturbation of A

6.1 Increasing Spark

Having the previous results in mind we further address thestipn of improving the properties
of A from (4) with respect to the overall objectivé;/¢;-equivalence. The weak performance
of A rests upon the small spark df. In order to increase the maximal numbeof columns
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Figure 5: Left: Critical value ofk/d?, for d = 8, below of which the reduced matrit,..q
satisfiesm,..q(k) > neq(k) with high probability. The black curve shows the estimatseoha
on Prop. 5.2. The gray curve shows the empirical probalilityed on simulations as described
in the caption of Fig. 4Right: Critical value ofk/d® = k(d)/d* as a function of the problem
sized, according to (17). The log-log plot indicates the power (48).

such that alls (or less) column combinations are linearly independent dekta the entries of
A a small perturbation.
We will keep in mind the following result which might be welhé&wn.

Lemma 6.1. Let B € R™*" be any matrix of rank:, o1 > 09 > --- > o, > 0 its singular
values andB = UXV' | is singular value decomposition, where

(20
*=(5 o)
with ¥, = diag(o1,...,0,). If |E|| < o, thenrank(B + E) > rank(B). Moreover, if we
denote by

Ey Er
U'EV =:
<E21 E22>
then
rank(B + E) = rank(A) + rank(S) (20)

whereS is the Schur complemeitby — Eo1 (3, + E11) ' Eqs of

Y+ E11 Ero
Ey; Ey ) -

Proof. In view of our assumption we also hay&; || < o, sincel, VT are orthogonal. Hence
|3, LE11|| < 1 holds, which also implies the nonsingularity ©f + E;;. By writing

I 0\ (S +Eu B\ (I —(S+En)""Ew I\ _ (% +Fu 0
By (X, +Ey)7t T Ey E3 ) \0 I 0 S

we obtain he desired result (20). O

We stress that the above result holds for every matrixHowever, we are interested in
matricesE having the same sparsity structure like

We conjecture that the rank of every perturbed submatri® @fill grow by a factorO(1).
By perturbingA we will "eliminate” all 8-column combinations (the column sets corresponding
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Figure 6:1 — sig;,(A) versus perturbed — sig;, (A) for d = 10; Empirical probability obtained
from 100000 trials thak columns are linearly independent.

to nonzero entries in the null space basis vecto® jrompare Prop. 2.2). By elimination we
mean that the perturbedtuples will have complete rank since the unperturbed kyldeve rank
7 sincespark(A) = 8. Moreover, allk-linearly independent column sets dfcan be obtained
by combining linearly independetuples. By a similar argument most sukkdependent
columns inA can be transformed to independent ones by simply pertuthieig entries. This

suggests thatpark(A) will grow proportionally to the rank ofd. The numerical results in
Section 7 suggest the power lapark(A(d)) = O(d?), compare Fig. 7.

Remark6.1 For A € R"™*" let{oy,09,... ,gm} and{s,d9,...,0,} be all singular values
(nonzero as well as any zero ones) foand A = A + E, respectively. Then

lo; — a;| < ||El foreach i=1,2,...,m.

By choosingE properly it seems possible to "adjust” the singular valued such that4 will
satisfy the RI P, property. We intend to investigate this further in order tain recovery
results that are stable in the presence of errors in TomoRd&sorements.

6.2 How Neighborly will be the Perturbed Matrix?

In Section 4 we presented several concepts which quangfyettovery performance of a given
matrix A. Among these:-neighborliness and the null space property of ofdare necessary
and sufficient conditions which guarantee uniqueness ofdveparse positive vectors. In order
to address the question of equivalence between (2) andr(3) ¥ee consider neighborliness of
ANGL

Assume that by perturbing the nonnegative entriesAofve obtained a substantially in-
creased spark := spark(A + E). SetA := A + E and note thaii;; = 0 iff a;; = 0.

Theorqm 6.2. Trle convex hull of the column§ in the perturbed matriand the zero vector, i.e.
conv{A,1,...,Asn,0} isat leastoutwardly (5 — 1)-neighborly.

Proof. We will show that every nonzero null space vector aleasts /3 negative entries. Then
Thm. 4.9 will provide the desired result. Lete ker(A) \ {0} and denote bys = supp(v).

Clearly,
S| >3, (21)

and
N (S)| =75, (22)
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where N'(S) = {i € {1,...,m}[a;; > 0,j € S} indexes all neighbors of. In view of
S =TI"'(v)uI*(v)andv € ker(A), we have

NI (v)) = N(I"(v)) = N(S) (23)

since itis not possible to find a voxel corresponding to a tiegantry inv indexed byl ~ (v), or
avoxel corresponding to a positive entryiindexed byl * (v), that is not connected to both sets
of rows A/ (I~ (v)) and N (I (v)), since otherwisedv # 0 in view of a;; > 0. Summarizing
we obtain

NI~ ()] = IN(9)| = 5. (24)

On the other hand, since each voxel is connected to exactiyws we have
IV ()] < 3|7 (v)] - (25)
Combining (24) and (25) we obtain the desired result. O

This guarantees exact recovery by (5) vidor at least all(5/3 — 1)-sparse nonnegative
vectors.

We stress that it is possible to obtain a good upper boundeoggark of an arbitrary matrix
A by computing first its row echelon (which can be done effidyeiit A is sparse) and then
obtain a sparse null space vector from its row echelon.

6.3 Unique Solution of the Reduced System

Equivalence for most problem instances can be obtainedrbyasiarguments as in Section
5.2. The critical value ok such that &-sparse vector with uniform distributed nonzero entries
induces a overdetermined reduced system is ag@ih ~ 3.54d'3*. Then a lower bound to
the critical valuek such that &-sparse nonnegative vector with uniformly distributed zeyo
entries is most probably unique is

k(d) > min{3.54d"**,2.7d} ,

where we assumed that7d? or less columns combinations are most probably unique based
the results in Fig. 7.

7 Numerical Experiments

7.1 Phase Transitions

In this section we inspect empirical bounds on the requipadsity that guarantee exact recon-
struction and critical parameter values that yield a pentorce similar to the settings considered
in compressed sensing (e.g. [15, 19, 16]).

These parameter values allow us to answer the question okpavge a vector should be
(particle density) such thdt-minimization can be solved b§;-minimization or simply by the
linear program (5).

In analogy to [16] we assess the so calfgthse transitiorp as a function ofl, which is
reciprocally proportional to the undersampling raffoc (0, 1). We consider € {3,...,55},
the corresponding matrid € R3d*xd” from (4) and it's perturbed versioA and the sparsity as
a fraction ofm = 3d?, k = pm, for p € (0,1).
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This phase transitiop(d) indicates the necessary rat to recover ak-sparse solution
with overwhelming probability. More precisely, jfz|o < p(d) - m, then with overwhelm-
ing probability thely-problem of finding thek-sparsest solution can be solved by the LP (5).
For Gaussian matrices there are precise valuggdf see [16, 19], which can be computed
analytically.

Relevant for TomoPIV is the setting ~ 1024. In the case of severe undersampling, i.e.
asd — oo, astrong asymptotic thresholels(d) ~ (2¢log(2y/7d/3))~! andweak asymptotic

threshold )

2log(§)

holds for Gaussian matrice$, and nonnegative signals, where we have taken into account
A € R3*d* The weak threshold says that (d)-m-sparse nonnegative vectors &pically
the unigue solutions afiz = b while the strong equivalence between (2) and (5) héddsll
ps(d) - m-sparse signals.

In view of Section 4, the strong threshold fdrfrom (4) equals3 for all d, while for the
perturbed matrix it can be lowered according to Thm. 6.2 by

pw (d) (26)

ps(d)zw_l_

Sincespark(A) will grow with d, we obtain an improvement over the constant strong threshol
for the unperturbed matrid. Verifying the strong threshold fad empirically would be NP-
hard. However, it is possible to verify the weak thresholdgigically by running tests on a
random set of examples.

7.2 Numerical Results

For eachd € {3,...,55} we generatedd according to (4) andd by slightly perturbing it's
entries. A has the same sparsity structuresbut random entries drawn from the standard
uniform distribution on the open intervél, 1.001). We have tried different perturbation levels,
all leading to similar results. Thus we adopted this intefwaall presented results.

Then forp € [0, 1] a pm-sparse binary vector was generated to compute the riglak $ide
measurement vector and for egeh p)-point 100 random problem instances were generated.

The empirical probability that = pm columns ofA or A are linearly independent for each
parameter combination is presented in Fig. 7, while thegidity that ak = pm-sparse vector
can be recovered by the LP (5) is illustrated in Fig. 8, Fign@® Rig. 10. Two slices of a phase
transition plot ford = 50 andd = 100 are presented in Fig. 11. A threshold-effect is clearly
visible in all figures exhibiting parameter regions where pinobability of exact reconstruction
is close to one. We refer to the figure captions for detailgdamations.

8 Conclusion and Further Work

The reconstruction of particle volume functions from fewjpctions can be modeled as finding
the sparsest solution of an underdetermined linear systenuations, since the original particle
distribution can be well approximated with only a very snmalmber of active basis functions
relative to the number of possible particle positions in ad®®nain. In general the search
for the sparsest solution is intractable (NP-hard), howevéhe newly developed theory of
Compressed Sensing shows that one can computé vianimization or linear programming
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Figure 7:Top: Probability thatpm column combinations ofl are linearly independenBot-
tom: Probability thatpm column combinations of the perturbed matrbare linearly indepen-
dent. The white curve depicts the scaled rank of matrias a function otl. The lower plot
suggests that up - 0.94% = 2.7d% column combinations of the perturbed matrbare most
probably linearly independent. On the other hand, this @aclaimed only up to three times
less column combinations of.
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Figure 8: Results for matriXd from (4). Top left: Probability of correct recovery by linear
programming of a random patrticle distribution that can beressed with exactly = pm basis
functions as a function of. The dashed black curve depi€td py (d), wherepyy is the weak
phase transition (26) of linear programming, but for Gaussandom matrices. The results
indicate thatd from (4) performs ten times worse in recoverimgstsparse nonnegative signals.
Top right: Probability that the reduced matrix obtained by eliminating zero measurements
and corresponding adjacent voxels is overdetermined aloiingthe estimated critical sparsity
level 3.54d'34 relative to the number of measurements as a functiah(eblid white line), see
(19). Five times the black line equals the white oBettom: Probability that a randorh = pm
particle distribution induces an overdetermined and faikr reduced matrix. The results not
only indicate that the reason for successful recovery ie odsl are full rank overdetermined
reduced matrices, but also that solving just an overdetexthlinear system might be more
stable than linear programming, when the solution is knawbet nonnegative. The white and
black solid curve have the same meaning as above.
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k = pm sparse binary vector as a function @f The solid white curve depicts.1849-66,
compare (19) and right figurdop right: Probability that the reduced matrik,..4 is overdeter-
mined along with the estimated relative critical sparsityel 1.18d~°-¢ (solid white line) which
induces overdetermined reduced matrices;. Bottom: Probability that a randornk = pm
particle distribution induces an overdetermined and falikr reduced matrix along with the
white curvel.184-%65, In case of the perturbed matrix exact recovery is possibleeyond
overdetermined reduced matrices.
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24



(@d=50,A4

08l AN Y
. : 9
A}
0.6
0.41
021
0 . .
0 0.02 0.04
(©)d = 100, A
1
o ‘
X
08} Y
A
06} teu
.
1
1
0.4} {78
‘
.
%
021
1
[ Y
-
0 ‘ =
0 0.02 0.04 0.06 0.08

0.1

(b)d = 50, A
1 -
\.‘
0.8} el
1
1
]
0.6 '
»
[]
1
0.4f 1
1
L]
LY
0.2 s
A )
*
L
0 L LY
0 0.05 0.1 0.15
(d)d = 100, A
1 5
»
~§
-
0.8F \ %
1)
1
1
0.61 [
1
1
1 !
0.4f '
.
-
-
.
0.2 s
A3
*
+
0 A |
0 0.05 0.1 0.15

Figure 11: Slices through the contourplots Fig. 8 (top) aigd & (top); A versus the perturbed
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p) that apm-sparse binary vector is recovered exactly by the LP (5). grag line illustrates
the probability that @m-sparse binary vector induces an overdetermined reductdroifull

rank while the black line plots the probability that the reeld matrix is just overdetermined and
not necessary of full rank. Here againperforms three times better.
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the sparsest solution for underdetermined systems of ieqsaprovided that the coefficient
matrix (also called measurement ensemble) satisfies wedaditions. Testing these conditions
on generic matrices is often harder than solving the contduiiz /o-problem in (2) as it also
implies solving a combinatorial problem which is intradeagiven the huge dimensionality of
the measurement matrix within the TomoPI1V setting. Howewershowed in the present work
that all currently available recovery conditions predintextremely poor performance of the
TomoPIV measurement ensemble when we restrict to a simplealistic setup geometry. On
average, such matrices perform approximately ten timesevitran Gaussian matrices which
allow for maximal sparsity such that for all less sparseaeogxact recovery is still guaranteed.
However, when we slightly perturb the entries of such a degga measurement matrix we can
boost both worst case and expected reconstruction penfmenal hen the particle density can
be increased by a factor of three while preserving the numib@easurements. The theoretical
analysis within this work suggests that a similar procedizme applied to an arbitrary sparse
matrix with bad reconstruction performance. We will invgate this issue further for adjacency
matrices of expander graphs with bad expansion property.
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