
Depth and Intensity Based Edge Detection in
Time-of-Flight Images

Henrik Schäfer, Frank Lenzen, Christoph S. Garbe
HCI, Heidelberg University

Speyererstr. 6, 69115 Heidelberg, Germany
Email: henrik.schaefer@iwr.uni-heidelberg.de

IVCI, Saarland University
Campus E2 1, 66123 Saarbrücken, Germany

Abstract—A new approach for edge detection in Time-of-Flight
(ToF) depth images is presented. Especially for depth images,
accurate edge detection can facilitate many image processing
tasks, but rarely any methods for ToF data exist. The proposed
algorithm yields highly accurate results through combining edge
information both from the intensity and depth image acquired by
the imager. The applicability and advantage of the new approach
is demonstrated on several recorded scenes and through ToF
denoising using adaptive total variation as an application. It is
shown that results improve considerably compared to another
state-of-the art edge detection algorithm adapted for ToF depth
images.

Index Terms—depth imaging; Time-of-Flight cameras; edge
detection; depth edges; intensity edges; shadow removal; denois-
ing

I. INTRODUCTION

Fig. 1. Photograph of test setup (left) and result of our proposed method
(right) as overlay to depth data. (All figures contain color. Please refer to the
electronic version of the paper.)

Edge detection has always been an important discipline in
image processing. Most of the relevant information of natural
scenes is contained in the edge maps. This is especially true for
depth images, where depth discontinuities separate foreground
objects from the background and can be used for many image
processing tasks, such as denoising, segmentation or optical
flow [6]. Standard edge-detection algorithms work well on
scenes with large depth differences, but because of the strong

noise of current Time-of-Flight (ToF) cameras, especially in
weakly reflecting areas, small changes of depth are often hard
to detect.
In this paper we present a new complex approach to edge
detection. We adapt Canny’s edge detector [2] to make it more
robust to noise and apply it to depth and intensity image.
The results of the edge detection is significantly improved
by selectively fusing edge information from both channels of
the ToF camera, which are recorded by the same sensor and
therefore have no displacement issues. Problems persisting in
these two modalities individually can be successfully resolved
with this approach.
Particularly for depth edges hardly observable in the depth
image we can significantly improve results from previous
approaches. The data is acquired with a PMD CamCube 3
Time-of-Flight camera, but the presented method is not limited
to this specific imager. The PMD system consists of two
continuously modulated light sources, mounted left and right
of the camera lens and suppresses background illumination.
The sensor has a resolution of 200x200 pixels.

A. Related Work

Range scanners have been available for a long time. Dif-
ferent approaches have been proposed for edge detection on
this type of data (e.g. [4], [8], [1], [15]). But only a few
publications exist on edge detection for ToF data, despite
strong similarities in terms of application.
Ye and Hegde [19] proposed an algorithm to find straight
edges. Lejeune et al. [11] discuss edge detection tailored for
ToF cameras and Kinect. They used an implementation of the
Canny edge detector [2] that changes sensitivity according to
the noise level. In [12] we presented an approach for edge
detection in ToF images for denoising the depth data that gave
a probability for a present edge, not a binary decision.
Concluding, to the best of the authors knowledge, besides
our work the only general edge detection algorithm dedicated
to ToF data is by Lejeune et al., adapting the sensitivity of
Canny’s algorithm but only applying it to the depth data, while
we present a method incorporating intensity edges into the
process. There is also a number of publications (e.g. [9], [13],

A C++ implementation of the algorithm described in this paper is publicly available, see
http://hci.iwr.uni-heidelberg.de/Staff/flenzen/tof denoising.php for details.

http://hci.iwr.uni-heidelberg.de/Staff/flenzen/tof_denoising.php

[14]) that use input from additional cameras to process the
depth data, but only for denoising or upsampling directly, not
edge detection.

II. THEORY

To achieve a highly accurate edge image, we perform edge
detection on depth and intensity image of the ToF camera an
then fuse the different results into one final edge map.
We start with the intensity edges and remove shadows and
texture edges. Then we add the shadow-casting depth edges
and high-threshold depth edges.

A. Edge Detection Algorithm

In order to find the edges we start the analysis with
a structure tensor approach [5], [7] with an enhancement
proposed by Köthe in [10]: for correct sampling, the point
wise multiplication of the tensor elements requires doubling of
the frequency of the derivatives. This is done by applying the
derivative filters at each full and half pixel position. The square
root of the eigenvalues and the corresponding eigenvectors are
used as input data for Canny’s algorithm [2], instead of the
usual gradients.
To better cope with the strong noise of the depth images,
we make a few assumptions and extend the hysteresis step.
The standard hysteresis of Canny uses two thresholds th and
tl to select edges. A connected set of potential edge points
above the lower threshold tl is only accepted if at least one
of the points has a value above the higher threshold th.
Since we know the (normal) direction at each edge pixel,
a direction penalty that does not allow sudden changes of
the edge direction can be included in the algorithm. This is
realized by calculating the scalar product of the two adjacent
normal vectors. If the product is above a threshold ts ≤ 1,
the pixels are part of the same set. This helps us to break up
edges that go around a corner and treat them separately later
on. Finally, we can remove edges that do not have a minimum
length nm, to get rid of some of the very short edges we find
only due to noise. These extensions to Canny’s hysteresis step
leave us with an edge detector, much more robust to noise,
yet still not robust enough to simply apply it to noisy depth
images. If the parameters are tuned to find most depth edges,
there are still plenty of false positives in the noisy areas.
To cope with this problem, we fuse three different edge images
into one. We start with an edge image from the depth data and
set the thresholds very high to avoid any false positives. This
leaves us with a set of definite depth edges (cf. Fig. 2 left),
but the finer edges are missing.
Then we lower the thresholds to get all depth edges, but also
some false positives in the noisy areas of the image (cf. Fig.
2 right). We cannot use these edges directly, but we will
need them later on to detect shadow edges (cf. II-B) from
the intensity image.
Finally, we apply the algorithm to the intensity image of the
ToF camera as well. These images suffer from less noise
and edge detection gives more accurate results. Even areas of
the same material and surface properties, but different depths

Fig. 2. Edge pixels in depth data with high (left) and low (right) thresholds.

Fig. 3. Edge pixels in intensity data and closeups with highlighted shadow
edges in blue.

are usually distinguishable, since the main light source is
mounted on the camera and thus, the brightness decreases
with 1/r2 in depth. For scenes with little texture, the intensity
edges coincide well with the actual depth edges. And thus,
a combination of the confident depth edges (cf. Fig. 2 left)
and the intensity edges seems to be a good solution already.
But if we look closely at an intensity image, we see intensity
discontinuities and thus edges, that are not caused by depth
differences (cf. Fig. 3).

B. Removing Shadow Edges

Because the light sources of the ToF cameras cannot be
mounted at the exact same position as the lens, parts of the
light sources are always occluded close to depth discontinu-
ities, causing shadows in the intensity image. These shadows
are then detected as additional edges (cf. Fig. 3). In case of
the PMD CamCube, the light sources are mounted left and
right of the lens (cf. Fig. 4). Since the camera setup – in
particular the position of the light sources – is known and
the depth information d of the scene is given by the camera,
the angle α′ of a data point towards the light source can be
calculated. All we need is the depth di of the pixel i and
the horizontal distance to the optical axis xi. The distance of
camera and light source a is fixed and the horizontal angle α
can be deduced from the opening angle of the camera and the
column the examined pixel belongs to. The vertical angle or
distance to the optical axis is not important because it is the

2

Fig. 4. Geometry of camera and light paths.

same for both camera and light source. We retrieve α′ from

tan(α′1) =
d1

a+ x1
=

d2
a+ x2

= tan(α′2) (1)

with xi = di tanαi (cf. Fig. 4).
This means that due to the horizontal alignment of the light
sources and the camera, wide shadows are cast by non-
horizontal edges. So if we find a non-horizontal edge in the
intensity image that is located at the same angle α′ towards
one light source as an edge in the depth image parallel to it, the
probability is very high, that the former is just a shadow. It is
possible to see both edges only because each is at a different
depth d1/d2 and angle α1/α2 towards the lens. The shadow
has to be right of the depth edge, if α′ is calculated towards
the left light source, and to the left of the depth edge, if the
angle is calculated towards the right light source. Therefore
these edges can be removed. In addition, this indicates, that
the shadow casting depth edge is a real depth edge and not due
to noise or artifacts and can be included in the edge image.
On very close inspection, we also see very small shadows
at horizontal edges. These shadows occur because the light
sources are LED clusters with a certain extend. At horizontal
edges, parts of the light sources are occluded. But since the
vertical expansion much smaller than the horizontal, this effect
is only noticable at large depth differences of foreground and
background, but it can be calculated in the same way and
should be considered for an accurate edge detection. In a
similar way the algorithm can be changed to work on other
camera systems. Raskar et al. used a similar approach to detect
depth edges with Multi-Flash Imaging (cf. [16]).

C. Removing Texture Edges

Apart from shadows, there can also be texture edges, caused
by different surface reflectivity without depth changes which
have to be removed (cf. Fig. 5). We do this straight forward by
calculating the difference in depth of two pixels on opposite

Fig. 5. Edge pixels without shadows in intensity data before (left) and depth
data after (right) removing texture edges.

sides of an edge pixel. The opposing pixels are selected
along the normal vector ~n. This can be done for a small
neighborhood of N pixels, e.g. N = 2. The difference is then
averaged for all pixels in a neighborhood along the connected
edge E. If the depth difference

ddiff =
1

|E|N
∑
~x∈E

N∑
j=1

|d(~x+ j~n)− d(~x− j~n)| (2)

is below a threshold td, the whole set can be considered a
texture or color edge.

In case of a ridge edge pointing directly towards or from
the camera, this method might fail. To avoid the removal of
ridge edges we perform a similar calculation for the gradient
magnitude of the depth data.
The large number of parameters is in practice not a big issue,
since most of them can remain the same for different datasets.
The main parameters are the standard thresholds for the Canny
part, which mostly depend on the noise level.

III. EXPERIMENTS

As test data we use one data-set of an office chair (cf. Fig.
6), two different views of a test scene with different geometric
objects arranges in a box and a scene with a child’s toy.
The first data-set of the box (cf. Fig. 7) is recorded from a
short distance with very little depth noise. The second data-
set (cf. Fig. 8) of a slightly changed setup is recorded from
a larger distance with a shorter integration time and contains
significantly more noise in the depth-data. The shapes (cf. Fig.
9) are recorded with medium integration time and noise level.
For the first set of depth edges and the intensity edges of each
dataset, we choose parameters that rule out any noise edges,
while for the second set of depth edges we low the thresholds
far enough to detect all depth edges high enough to cast a
shadow.
In the chair scene, most edges have a large depth difference
towards the background. The advantage of using the intensity
image shows at the rear leg of the chair, close to the wall
and the carpet skirt along the wall, which is a very shallow
depth edge. But the mere intensity data has its problems with
the black legs of the chair in front of the dark carpet. We did
not apply the texture edge-removal step here, since there are

3

(a) photograph of the box (b) depth data and our depth edges (c) depth and results of method
from [11]

(d) our final result

Fig. 7. If we compare (c) and (d), the main improvement are the detected ridge edges at the cost of a few texture edges.

Fig. 6. Edge pixels on depth data, calculated with method from [11] (left)
and our final result (right)

hardly any texture edges.
Applying only our proposed edge detection algorithm to the
first data-set of the box (cf. Fig. 7b), we see that it produces
satisfactory results and finds all of the jump edges. Compared
to the gradient based approach (cf. Fig. 7c) introduced by
Lejeune et al. in [11] there is no major difference, except for
the higher resolution of our approach.
If we apply our algorithm to the intensity image only, we find
a lot more edges. Many of them are just texture edges, but
some are ridge edges, such as the far corner of the box, or
the socket of the sphere, which was completely covered up by
noise in the depth image. After removing texture and shadow
edges (cf. Fig 7d), we are left with the original depth edges,
some additional ridge edges and a few left-over texture edges
that were not properly removed because of the intensity related
distance error [13]. The double edges are due to a mismatch of
intensity and depth edges, because of noise and the nonlinear
behavior of divided depth pixels.

The performance of both – the proposed and Lejeune’s
algorithm – on depth images changes a lot, when a different
setup is used in which the box is recorded from a greater
distance and with a shorter integration time (cf. Fig. 8).
The lower intensity leaves us with much more noise in the
depth data and makes edge detection very difficult. Lejeune’s
method produces a lot of false positive detections in the

noisy area, resulting in a poor quality of the final edges.
Moreover, it misses some of the obvious depth edges (cf.
Fig. 8c). In contrast, the proposed approach is robust against
the strong noise in the ToF data. After the first step of our
algorithm, there are almost no false positive detections caused
by noise (Fig. 8b). There are, however, false positive detections
originating from shadows and textures in the intensity image.
In some parts of the image, we observe the occurrence
of multiple edges, where only one edge should be found.
Examples of this are in the lower part of the test image,
where the polystyrene spheres and the cylinder are located.
These multiple edges are caused by the surface properties of
the polystyrene and the shallow viewing angles, reflecting less
and less light towards the camera and creating a very strong
intensity gradient inside the actual object boundaries.
Some of these false or multiple edges are successfully removed
in the shadow and texture edge removal steps of our approach.
Some extra texture edges remain at areas where the intensity
related distance error is not negligible or noise and scene
geometry interfere with the texture removal.
For the fourth dataset (cf. Fig. 9) we see again, that our method
(f) handles the noisy areas very well. Also for edges with a
small depth difference, the combined approach works better.
It detects e.g. the depth edges between the two cuboids or the
right edge of the triangular brick.
To sum up, the proposed approach is able to find a larger set of
relevant edges than the method proposed by Lejeune, together
with a much higher robustness against noise, only with the
drawback that some false detections occur.

IV. APPLICATION – DENOISING TOF IMAGES

Edge detection algorithms often are employed to acquire
input data for other image processing tasks. As an example we
consider here the task of denoising, where edge information
can be used to avoid smoothing across edges. We use the
example of ToF denoising to further demonstrate the benefits
of the proposed edge detection method. For denoising ToF
data we proposed in [12] an approach based on adaptive
total variation (TV) regularization, which requires information
about the position and orientation of edges. Such information

4

(a) ToF intensity (b) depth and depth edges of our
algorithm

(c) depth and results of method
from [11]

(d) our final result

Fig. 8. The gain of our proposed approach in (c) compared to (b) can be seen clearly at the noisy regions as well as at the edges between the sides and the
back of the box.

can be provided by the proposed approach. We show in
the experiments below that using the edge information from
the proposed approach instead of other edge detectors ([11],
[12]) improves the denoising results. Before presenting these
experiments, we briefly recall the approach presented in [12]
for the readers convenience and describe some modifications
to adapt this approach to the new edge data.

A. Adaptive Total Variation Denoising

In the following, adaptive TV denoising is described in a
discrete setting. To this end, we consider a regular pixel grid of
size n×m, on which the ToF data d0 ∈ Rn×m are provided.
We retrieve denoised depth data d ∈ Rn×m by solving the
convex optimization problem

min
d∈Rn×m

1

2

 n,m∑
i,j=1

wi,j(di,j − d0i,j)2
+R1(d) +R2(d), (3)

where wi,j are weights accounting for locally changing noise
variance (cf. [12]), and R1(d) and R2(d) are regularization
terms of first and second order, respectively, defined in detail
below.

The first term provides an anisotropic total variation regu-
larization:

R1(d) :=

n,m∑
i,j=1

√
(Ld)>ijAi,j(Ld)i,j , (4)

where (Ld) := (Dxd,Dyd)
> is the discrete gradient of d

based on discrete derivative operators Dx, Dy of first order
(cf. [18]) and the matrices Ai,j ∈ R2×2 define the local
anisotropy of the regularization. To determine this anisotropy,
we require the location of depth edges encoded by a variable
si,j ∈ [0, 1], i.e. si,j ≈ 1 if an edge is located at pixel (i, j)
and si,j ≈ 0 otherwise, as well as normalized edge normals
vi,j ∈ R2. These data are provided by the proposed edge de-
tection method. We use Ai,j := α̃2

i,jvi,jv
>
i,j +β

2(Id−vi,jv>i,j)
in order to penalize gradients in normal direction by a factor
α̃i,j and in orthogonal direction by a factor β. To achieve
an anisotropic smoothing (α̃i,j � β, i.e. a smoothing mainly

parallel to edges) only at edges, and a homogeneous smoothing
(i.e. Ai,j = β2Id) elsewhere, we set α̃i,j := si,jα+(1−si,j)β
with fixed smoothing parameters 0 < α� β.

The second regularization term is given as

R2(d) := γ

n,m∑
i,j=1

|(Hd)i,j |2 (5)

with smoothing parameter γ ≥ 0, where Hd :=
(Dxxd,Dxyd,Dyxd,Dyyd)

> is the discrete Hessian of d
based on discrete derivative operators Dxy, Dxy, Dyx, Dyy of
second order (cf. [18]).R2(d) serves the purpose of smoothing
surfaces in the depth map and, in particular, preventing stair-
casing effects which standard TV regularization [17] is known
for. However, we do not want such a smoothing over edges.
To this end, we slightly modify the approach in [12] and take
into account the double resolution edge indicator set provided
by the proposed approach, i.e. in Hd differences of d between
adjacent pixels are artificially set to zero, if our approach finds
an edge in-between these pixels.

We solve (3) numerically by applying a primal-dual algo-
rithm [3].

B. Denoising Results

We apply the above denoising method to the ToF depth
maps shown in Figs. 1 and 7 (see also top row of Fig. 10).
We compare three different variants of adaptive TV denoising,
which are based on different algorithms for edge detection.
Firstly, we consider the our previous approach in [12] (second
row), where the edges are also detected by jointly applying
a structure tensor to intensity and depth data, but without
any post-processing. Secondly, we use the denoising method
described above in combination with Lejeune’s edge detection
(third row). Finally, we combine the above denoising method
with the edge information from the proposed approach (bottom
row).

The method from [12] handles the noisy areas quite well,
but also blurs the edges (cf. stairs in first column/house in
second column). The results of the adaptive TV denoising
with the edges from Lejeune’s algorithm generate sharp depth

5

(a) photograph of the shapes setup (b) depth and results of method from [11] (c) ToF intensity with edges

(d) ToF intensity (e) our depth edges (f) our final result

Fig. 9. Our method (f) performs better than (b) in noisy areas and at small depth steps, like the wooden bricks left and right of the house.

edges, but the additional edges in the noisy areas of the
images prevent a proper smoothing of these areas. Instead
of a smooth slope in the depth map, several plateaus of
constant depth are generated. Adaptive TV denoising only
in combination with the proposed edge detection algorithm
is able to completely eliminate the strong noise while at the
same time both preserving sharp object boundaries and smooth
slopes of planar surfaces.

We remark that in the results of our edge detection algorithm
some additional texture edges from the intensity image may
still remain, for example in the box data set at the stairs or
the ramp, or in the shapes data set between the two cubic
objects (see close-up in third column). These additional edges,
depending whether they coincide with real depth edges (cubic
objects) or not (stairs/ramp), have a positive or negative effect
on the denoising result. In the box data set the additional
texture edges prevent the denoising algorithm from smoothing
the complete surfaces, while in the shapes data set they make
some structures like the two cubic objects distinguishable
in the depth image, where the other two algorithms fail to
separate the different depths. We conclude that, when using

additional edge information from the intensity data, it has to be
verified that additional edges indeed coincide with real depth
edges. As mentioned before, deriving additional criteria for
that is part of our future work.

V. CONCLUSION & OUTLOOK

We have introduced a new algorithm for edge detection in
Time-of-Flight depth images and evaluated it by comparing
it to another recent approach, tailored for ToF depth images.
Our proposed algorithm uses both the depth and the intensity
image to find depth edges, allowing it to outperform other
algorithms which exclusively rely on the depth or the intensity
image. In order to achieve highly accurate results, shadows in
the intensity images are detected and their edges removed by
the new approach. With this technique we created an algorithm
that overcomes the essential problems of edge detection in ToF
images.
As an exemplary application, which requires edge detection
as a preprocessing step, we have considered an adaptive
denoising method. We have shown that the performance of
this denoising method significantly increases, when our edge
detection results are used instead of other state-of-the-art

6

algorithms.
In our approach, we assume an illumination model with point-
light sources, which is a sufficiently accurate approximation
for most cases. However, future models of shadow detection
could include spatially expanded light sources and therefore
also work for cameras with concentrically aligned leds, which
also suffer from shadows, but less distinctly. The partly
occluded light source does not only change the intensity by
casting shadows, but also the average time of flight for non-
center pixels, which is why it should definitely be considered
for high accuracy measurements.
For future work, we will focus on improved accuracy of the
approach, such as exact matching of depth and intensity edges,
scene geometry and a distinction between step and ridge edges,
which is an important issue for denoising or optical flow.

ACKNOWLEDGEMENTS

The work presented in this article has been co-financed by
the Intel Visual Computing Institute. The content is under sole
responsibility of the authors.

REFERENCES

[1] P. Boulanger, F. Blais, and P. Cohen. Detection of depth and orientation
discontinuities in range images using mathematical morphology. In
Pattern Recognition, Proceedings, 10th International Conference on,
1990.

[2] J. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 1986.

[3] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. JMIV, 2011.

[4] S. Coleman, B. Scotney, and S. Suganthan. Edge detecting for range
data using laplacian operators. IEEE Trans. Image Process., 2010.

[5] W. Förstner. A framework for low-level feature extraction. In ECCV,
LNCS, 1994.

[6] S. B. Gokturk, H. Yalcin, and C. Bamji. A time-of-flight depth sensor-
system description, issues and solutions. In Computer Vision and Pattern
Recognition Workshop, 2004. CVPRW’04. Conference on. IEEE, 2004.

[7] G. Harris and M. Stevens. A combined corner and edge detector. Proc.
of the 4th Alvey Vision Conference, 1988.

[8] X. Jiang and H. Bunke. Edge detection in range images based on scan
line approximation. Computer Vision and Image Understanding, 1999.

[9] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral
upsampling. In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07. ACM,
2007.

[10] U. Köthe. Edge and junction detection with an improved structure tensor.
In Proc. of the 25th DAGM Symposium on Pattern Recognition, LNCS.
DAGM, 2003.

[11] A. Lejeune, S. Piérard, M. Van Droogenbroeck, and J. Verly. A new jump
edge detection method for 3D cameras. In International Conference on
3D Imaging (IC3D), 2011.

[12] F. Lenzen, H. Schäfer, and C. S. Garbe. Denoising time-of-flight data
with adaptive total variation. In Advances in Visual Computing, LNCS.
Springer Berlin / Heidelberg, 2011.

[13] M. Lindner and A. Kolb. Calibration of the intensity-related distance
error of the pmd tof-camera. In Optics East. International Society for
Optics and Photonics, 2007.

[14] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon. High quality
depth map upsampling for 3d-tof cameras. In Computer Vision (ICCV),
2011 IEEE International Conference on, 2011.

[15] B. Parvin and G. Medioni. Adaptive multiscale feature extraction from
range data. Computer Vision, Graphics, and Image Processing, 1989.

[16] R. Raskar, K.-H. Tan, R. Feris, J. Yu, and M. Turk. Non-photorealistic
camera: depth edge detection and stylized rendering using multi-flash
imaging. In TOG. ACM, 2004.

[17] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Phys. D, 1992.

[18] S. Setzer, G. Steidl, and T. Teuber. Infimal convolution regularizations
with discrete l1-type functionals. Comm. Math. Sci., 2011.

[19] C. Ye and G.-P. Hegde. Robust edge extraction for swissranger sr-3000
range images. In ICRA. IEEE, 2009.

7

Fig. 10. Denoising depth data. Original depth image (top row), denoising as described in [12] (second row), anisotropic TV with edges calculated with
algorithm described by Lejeune et al. [11] (third row) and with edges from the proposed approach (bottom row). The third column is a close-up of the second
column with enhanced contrast. We observe better quality of the denoised depth map (sharpness of edges, regularity of faces) using the edge information of
the proposed algorithm.

8

	Introduction
	Related Work

	Theory
	Edge Detection Algorithm
	Removing Shadow Edges
	Removing Texture Edges

	Experiments
	Application – Denoising ToF Images
	Adaptive Total Variation Denoising
	Denoising Results

	Conclusion & Outlook
	References

