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Abstract

We develop a concept for the median filtering of tensor datae Main part of this concept is the
definition of median for symmetric matrices. This definitisrbased on the minimisation of a ge-
ometrically motivated objective function which measures sum of distances of a variable matrix
to the given data matrices. This theoretically well-fouthd®ncept fits into a context of similarly
defined median filters for other multivariate data. Unlikensoother approaches, we do not require
by definition that the median has to be one of the given datzegalNevertheless, it happens so in
many cases, equipping the matrix-valued median even withgignals similar to the scalar-valued
situation.

Like their scalar-valued counterparts, matrix-valued imedilters show excellent capabilities
for structure-preserving denoising. Experiments on difin tensor imaging, fluid dynamics and
orientation estimation data are shown to demonstrate This.orientation estimation examples give
rise to a new variant of a robust adaptive structure tensatwian be compared to existing concepts.

For the efficient computation of matrix medians, we preserdravex programming framework.

By generalising the idea of the matrix median filters, we glesi variety of other local matrix
filters. These include matrix-valued mid-range filters amre generally, M-smoothers but also
weighted medians and-quantiles. Mid-range filters and quantiles allow alsoriesting cross-links
to fundamental concepts of matrix morphology.

Keywords
tensor image processing, local image filter, median filggradaptive structure tensor, convex opti-
misation

1 Introduction

In contemporary image processing, images whose valueseaomd-order tensors repre-
sented by symmetric matrices gain increasing importanbey Bppear as physical quan-
tities which are measured e.g. by diffusion tensor magmetonance imaging DTI [26],
or computed, as in computational fluid dynamics, or as ddripentities like thetructure
tensor[16] which plays an important role in fields like motion ddten, texture analysis
or segmentation. Fields of application also include gesjasy material science and civil
engineering.

Degradation of measured or computed tensor fields by nollsefaathe design of effi-
cient matrix-valued denoising filters that do not destrageesial image features. A natural
approach to this is to generalise existing filters for seatdned images. Median filters
lend themselves as a good choice because of their simplaffigiency and robustness.
However, the straightforward approach to apply a scalarfith the matrix components
separately, which works fine for linear filters like Gaussiamvolution, is not viable for
non-linear filters like median filters. In [36], a matrix-uald median filter has been in-
troduced which is based on the principal idea of abandorang orders in favour of a



minimality condition as defining property of medians. Thesapproach was used to pro-
vide mid-range filters and the more general class of M-sn@stfor matrix data in [37].
As an important algorithmic improvement for the computatid matrix-valued medians
and mid-range filters, convex optimisation techniques weoposed in [35] and [6].

The present paper summarises the previous work and extdamndadding related tech-
nigues and a broader theoretical foundation. It presemtsrtedian definition, numeri-
cal techniques and applications from [36, 35, 37] as welhasnbid-range filter and M-
smoothers for matrix-valued data introduced in [35, 37].wNeaterial includes the use
of the nuclear norm in these filter definitions, a more dedadieidy of relevant properties
like semidefiniteness preservation, and the adaptatidmeafiimerical methods to the new
filter variants. We also introduce here for the first time rixatalued weighted median fil-
ters and matrix quantile filters. We also discuss the raiataf our mid-range and quantile
filters to the supremum- and infimum-based matrix field fitgriechniques which were
established in [11, 12]. For the mid-range case, a shortioreof this link has already
been made in [37].

The paper is organised as follows. In Sec. 2 matrix-valuediamefilters are defined,
important properties discussed and illustrated by expamtmon DTI and fluid dynamics
data sets. Sec. 3 is devoted to numerical techniques. Aticapiph to robust structure
estimation is the topic of Sec. 4. The following sections Begcribe matrix-valued M-
smoothers, weighted median and quantile filters. Sec. 8 suises the results.

Related work. Denoising techniques for tensor data have been under inéeinsestiga-
tion recently, mainly in connection with DTI data, see theehlr approaches by Westin et
al. [38] or the nonlinear ones by Hahn et al. [20]. Nonlineker$ need to take into ac-
count the inherent relations of data matrices, either byiebhbcoupling as in Tschumperlé
and Deriche [31], or by working on derived quantities likgexidecompositions [27, 31]
or fractional anisotropy [25].

Median filtering in signal processing has been establislyetuzey [32] and has now
become a standard technique in image processing, see Dtyghd Astola [15] or Klette
and Zamperoni [22]. The matrix-valued median definitionegivoy Welk et al. in [36]
stands in the context of earlier attempts to vector-valuedian filtering, see e.g. [3], [23].
In an image processing context, we mention Astola et al. jtfl@aselles et al. [13]. Both
definitions are built on the property of the median to be on¢hefgivenvectors, with
a slight extension by admitting also their arithmetic meaujli. This property is also
required in [4] by Barni et al. who otherwise use Euclideastatice sum minimisation
similar to [36]. Surprisingly, for 2-D vectors already Aimss 1959 paper [2] proposes the
exact analog of the definition given in [36]. Austin also gieegraphical algorithm which
can be considered a direct predecessor of the gradientdedgerithm in [36]. Seymour’s
1970 reply [29] to Austin discusses algorithmical diffiéedt and improvements of this
procedure. Moreover, vector-valued medians and mid-raafyees (often by the name of
1-centres) have also been investigated in the literatufaaility location problems, see the
papers by Megiddo [24], Fekete et al. [17] and the refereticagin.

The convex programming method discussed in this papesretieconcepts which can
e.g. be found in the book by Boyd and Vandenberghe [7]. FoliGgifons in image pro-
cessing contexts we mention Keuchel et al. [21].

The structure tensor has been established by Forstnerialiet (36]. It is constructed
by Gaussian smoothing of the outer product matrideSlu’ of the image gradient. To
adapt better to orientation discontinuities, a modifiaatialled nonlinear structure tensor
has been proposed by Weickert and Brox [34, 8]. Here, Gaussi@othing is replaced by
a nonlinear diffusion process. Nonlinear structure tembare proven their use in texture
segmentation [8, 28] and motion analysis [10]. Another waintroduce structure adap-
tivity into the structure tensor has been opened by van demigaard and van der Weijer
[33]who proposed a concept of robust structure tensor wikialso linked to matrix-valued
medians. For both adaptive structure tensor concepts)s@fOh



2 Median Filtering of Tensor-Valued Data

2.1 Scalar-Valued Median Filters

Given a finite set of real numbers, their median is defined asludle element in the
sequence that contains these numbers ordered accordiizg tdtsan be considered as a
robust average since it is insensitive to outliers in thegiglata set. The median operation
commutes with monotone transformations of the data.

Without any reference to ordering, the median of theiple S= (a,...,an) can be
characterised as the minimiser of the convex function

B9 = 5 b ®

where|x— a| is the Euclidean distance of real numbers.

The median concept gives rise to a local image filter withrgggng propertieMedian
filtering requires the specification of a neighbourhood for each pixeth is commonly
chosen either as @k + 1) x (2k+ 1) square or a discretely approximated disc centred
at the pixel. The new grey-value of a pixel is obtained as tleglian of the old grey-
values within the neighbourhood. Median filtering can beaited and so constitutes a
discontinuity-preserving denoising process. The ingiitgiof medians to outliers enables
median filtering to cope even with extreme types of noise likéorm or impulse noise.
Unlike Gaussian smoothing, median filtering possessescoastant steady states called
root signals

For a space-continuous variant of median filtering, Guidhemd Morel [19] have
proven that it approximates mean curvature flow, therebgbéishing a remarkable link
between a nonlinear local filter and a PDE-based image ewnlut

2.2 Matrix-Valued Median Filters

Pollution of tensor image data with noise makes it a desiderdo provide a discontinuity-
preserving and robust denoising filter for such data. To riteéetneed, we want to gen-
eralise median filtering to matrix-valued images. The masktin doing so is to give an
appropriate notion of medians for matrices since the caostm of the local image filter
by applying the median to input values from a neighbourhoaifers straightforward.

While not all properties of scalar-valued medians can bamet! by such a generalisa-
tion, the following requirements are essential from the aliog) viewpoint:

Preservation of symmetry. The median of symmetric matrices must again be a symmetric
matrix.

Scaling invariance. For a real numbek, the median med should satisfy
med(AAy,...,AA) = Amed(Ay,...,An)
for arbitrary input matricegy, ..., An.

Rotational invariance. Rotating all input matrices by the same rotation maRighould
result in equal rotation of the median:

medR'AIR,...,RTAR) = R medA;,...,An)R.

Embedding of scalar-valued median.If all input matrices are scalar multiples of the same
non-zero matrib4, the median should reduce to the scalar median:

medAiA, ..., AnA) = medAy,...,An)A.



Preservation of positive semidefinitenessSince positive semidefiniteness is an indispens-
able property of some sorts of matrix data, such as DTI oc#ire tensor fields, a
sensible filter for such data should not destroy it.

Since matrices lack a linear ordering, a rank-order appréadefining matrix medians is
impractical. Instead, we generalise the minimising prop).

Definition 1 Given atuple S= (Aq,...,Ay) of dx d matrices, the minimiser of
n
Es(X) = [X—A| 2
2,

where||-|| is a matrix norm is called median of S and denotedr®dS).

While Es is convex for any nornfj-||, rotational invariance and semidefiniteness preserva-
tion restrict the choice off-||. Before discussing possibilities, we notice one propefty o
the median which is independent of the norm.

Lemmal Let X=medAy,...,A,). If each Ais replaced by A:= X + ki(Ai — X) with
real k > O, then X is also the median of A.., A,

Accordingly, the matrices; can be shifted along the rays frofto A; without affecting
the median. The statement follows directly from the scapingperty||kA|| = |k| ||Al], k €
R. It can be considered a restricted form of the indepenelencoutliers known from the
scalar-valued median.

2.2.1 Choice of possible norms

We consider three norms fat x d matrices. All are constructed from the eigenvalues
A1(A),...,Aq(A) of A, which guarantees rotational invariance.

e The first norm is the so-callatliclear normwhich is given by
d
1Al =3 [A5(A)]
=1

For positive semidefinite matrices, we ha\d| ;) = tr(A). Typically, however, even
when theA; are positive semidefinite, the differencés- A aren't.

e Second, we consider the Frobenius norm which can also bewtechgirectly from
the matrix entriesyy, j,k=1,...,d, of A,

d

d
All oy = (A2 = a2 .
Al 2) ,;' iA)| j;ﬂ ik

e Third, we have the spectral norm

Al (@) = j_n}axd|/\j(A)| :

e

We remark that these norms are examples of the family of norms

d 1/p
lAll(g) = (Z |A1(A)|p> , p2>1
=1

which includes the spectral norm as limit cgse» co.

For brevity, we shall refer to medians defined via these na@snsiclear mediamed,,
Frobenius mediaimed andspectral mediaimmed,. We turn now to study their further
properties.



2.2.2 Properties of the Frobenius median

We start our discussion of the Frobenius median with a simpgervation.

Proposition 2 The Frobenius mediamed:(S) of a tuple S= (Aq,...,A;) of dx d matrices
is a convex combination ofiA .., An.

Proof. The Frobenius norm coincides with the Euclidean norm ifdhed matrices are
interpreted as vectors inR We identify therefore matrices with vectors and denote by
(-,-) the corresponding Euclidean scalar product. Assume notwdliga matrix outside
the convex hull ofA,...,As. Then a hyperplank separateX from Ay, ...,An. LetY be

the orthogonal projection of ontoh, i.e.X —Y is perpendicular tb. Then(X —Y,Y — A;)

is positive fori = 1,...,n. Hence,

(X = A, X = A) = (Y = A,Y = A) = (X, X) — 20X, A) — (Y, Y) +2(Y,A)
=2(X=Y,Y =AY+ (X=Y,X=Y) >0

which proves thak is not the minimiser of (2). d

Since convex combinations of positive semidefinite masrimes positive semidefinite,
the following corollary is obvious.

Corollary 3 The Frobenius mediamed(S) of a tuple S= (Ay, ..., An) of positive semidef-
inite symmetric d« d matrices is positive semidefinite.

The matrix—vector identification used in the proof of Proshdws that this median
definition is not restricted to square matrices but worksadiglon non-square matrices,
including vectors. For R Austin’s bivariate median [2] is recovered.

This simple planar Euclidean case of 2-dimensional veetibog/s us to illustrate sim-
ple geometric properties of our median concept. Three painthe plane which span a
triangle with all angles smaller than 120 degrees have astiesglian the so-called Fermat—
Torricelli or Steiner point. From this point, each connegtiine between two of the given
points appears under a 120 degree angle. If instead one afhtyle triangle is larger or
equal 120 degrees, then its vertex is the median. In the ¢dsargoints spanning a con-
vex quadrangle, the median is the intersection point of thgahals. The median of four
points whose convex hull is a triangle is the one of the pairiteh is not a corner of this
triangle. Combinatorial and geometric complexity pregesimilar elementary geometric
considerations for more points or higher dimensions. lvident, though, that although
our definition does not force the median to be one of the giega points, this still happens
to be true in many generic cases. Only if none of the givenesls located sufficiently
well in the middle of the data set, a new value is created.

2.2.3 Properties of the nuclear median

With the nuclear norm, the energy (2) displays non-strictveaity in a broader range
of configurations, leading to non-unique minimisers. Ouwufeon semidefiniteness is
therefore weaker than before.

Proposition 4 Letatuple S= (A4,...,An) of positive semidefinite dd matrices be given,
and consider the objective functios ®ith the nuclear norm. If Eis minimised by a matrix
which is not positive semidefinite, then there exists alsositipe semidefinite argument
for which Es attains the same value.

Proof. We consider a symmetric matr whose smallest eigenvalyeis negative. The
difference matrixX — A; for anyA; has two eigenvaluel > A, whereA, < p. The matrix



X — ul — A has the same eigensystemXas A;, with both eigenvalues shifted y. From
A2 < it follows that

X =l = Aill gy = 1As = pl+ [A2 = pf < [Aaf + |+ [A2] = [u] = [IX = Aill gy -

This proves the statement of the proposition. d

As another remarkable property of the nuclear median, wetiorethat it reveals an
insensitivity w.r.t. outliers which goes beyond the oneadigéed in Lemma 1 and is in fact
close to the corresponding property of its scalar-valuechterpart.

Lemma5 Let X = med (Ay,...,Ay). Assume that for the data matrix,Ahe difference
X — A is positive or negative definite. If 4 replaced by some othef for which X— A{
has the same (positive or negative) definiteness-ag\then X is also the nuclear median
OfAl,...,Ag,...,AW

A disadvantage of this behaviour is that the orientatiomefrhediarX depends exclu-
sively on thosey; for which X — A; is indefinite.
2.2.4 Properties of the spectral median

The spectral median deviates from the previously discusaednts in that it does not
always preserve positive semidefiniteness. The threeiymsgiefinite 2x 2 matrices

295 042 295 —-042 4 0 . .
( > ( > ( ) form a counter-example since their

0.42 Q07 -0.42 Q07 0 001
[ 2.95+0.07V/3 0 3.0712 0 e
spectral media 0 0.07—0.07V/3 ) ~ ( o _00512 ) iSindefinite.

For symmetric Z 2 matrices, the following statement can be proven by exgalcu-
lation of the stationarity conditions.

Lemma 6 Let n symmetri@ x 2-matrices A, ..., A, be given whose spectral median is X.
Assume that A= ( 2 Ei_ ) i=1,...,n,and X= ( )z( ;) Then the following are

( (
true:

e The trace of X is a scalar median of the traces gf.A ,A, (in the sense that it
minimiseg1)).

e The vector{x—y,22)" is the bivariate median w.r.t. Euclidean norm of the vectors
(a—bi,2c),i=1,...,n.

2.2.5 Examples

To demonstrate the denoising capabilities of median filtewe use two test images. First,
we show in Fig. 1 (a, b) a 2-D slice from a diffusion tensor metgrnresonance data set and
a noisy version of it where 30% of all matrices have been ceguldy noise matrices. The
eigenvector orientations of the noise matrices are unifpdistributed on the circle while
the eigenvales are uniformly distributed over an intef@d\] that covers the eigenvalue
range of the original measurements.

In the grey-value visualisation each sub-image shows theesaf one matrix compo-
nent over the whole image. A middle grey-tone represents 2¢ote that the upper right
and lower left sub-images are equal because of the symmifettng onatrices. For positive
semidefinite tensor data such as DTI, the main diagonalesntrithe upper left and lower
right sub-image contain only nonnegative values while tfieliagonal entries can be of
either sign but have smaller variation.

Fig. 1 (c—i) shows results of iterated median filtering. Toye tow illustrates the effect
of increasing numbers of iterations with 3 stencil. Note that the third and fourth image



Figure 1: 2-D DTI data median filteringTop, left to right: (a) One slice from a DTI
brain scan. Only tensor components belonging to the cuepaa shown(b) 30% of the
matrices of (a) have been replaced with uniform noise (umifm directions and uniform
in both eigenvalues)c) Image (b) filtered by Frobenius medianx3 stencil, 1 iteration.
Middle, left to right: (d) Frobenius median, 8 3 stencil, 5 iterations(e) 25 iterations(f)
125 iterationsBottom, left to right:(g) Frobenius median, X 7 stencil, 25 iterationgh)
Nuclear median, % 7 stencil, 25 iterationgi) Spectral median, ¥ 7 stencil, 25 iterations.
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Figure 2: 2-D DTI data and median filtering results visualibg ellipses (see text) eft
to right: (a) Corpus callosum detail from original imag@) Same from noisy image(c)
Frobenius median, 8 3 stencil, 1 iteration(d) 5 iterations.

hardly differ, evidence that root signals occur also in imatalued median filtering. The
second row shows the progressive simplification of shapésdogasing stencil size. It also



Figure 3: Frobenius median filtering of a tensor field contajrindefinite matrices. The
data are deformation tensors originating from a fluid dyregmsimulationLeft to right: (a)
Initial data, 124x 101 pixels.(b) 10 iterations, 3 3 stencil.(c) 100 iterations. From [37].

demonstrates that ttelapeof objects in the median-filtered images depends not sdyious
on the particular norm chosen in the median computation. é¥ew under spectral me-
dian filtering the matrices tend to higher magnitudes (higloatrast in the main diagonal
entries) and faster reduction of anisotropy (low contnastff-diagonal parts).

An alternative visualisation is used in Fig. 2 which showsde&iews from the original
and median-filtered images. Here each matrix is represdmyteh ellipse whose princi-
pal axis directions coincide with the eigenvector direasi@f the matrix. The principal
axis lengths are proportional to the eigenvalues. Howeath ellipsis as a whole has
been rescaled such that the areas are proportional to tltertts of the determinants,
instead of the determinants themselves. Compared to aseiegion with constant scale
for all matrices, we achieve so a better representation dficea with large variations in
magnitude within the image, without reducing eccentesiti

Our second example in Fig. 3 uses a deformation tensor setdoonputational fluid
dynamics. Here, the eigenvalues of the tensors are of diffesigns. The structure-
preserving smoothing effect of the median filter is agaiiblés

3 Algorithms for Computing Matrix Medians

Only in simple cases it is possible to compute matrix meditrestly. In general numerical
approximation methods are required. We discuss two appesac

3.1 Computation by Gradient Descent

In computing Frobenius medians of matrices, the conveXitig$X) and its differentia-
bility except atX = A; motivate the use of gradient descent techniques. One difficas
to be overcome: Since the gradient vedtfjA; — X|| ;) has equal length for aK # A, it
lacks any information about the distance®o This deficiency is inherited by the gradient
of Es. Though clearly indicating thdirectionfor descent, it is useless in determining how
far to go in one step. A remedy for this is to use an adaptie-size control which uses
information from the over- and undershoots encountereithgiteration.

The algorithm starts by identifying th& € Swith the smallesEs(A;). If for this Aj,
we have|O 5 ||A = Aj|||| < 1, thenA| is also the global minimiser, so we stop. Otherwise
we choose'dh arbitrary initial step sigg> 0 and proceed by gradient descent in the direc-
tion of —OEg(X). After each iteration step, the step size is adapted asislldssume that
the matrixXy_; has been replaced in stepy Xy, = Xx_1 — SK<OEs(Xk-1). We compare now
the projection of IEs(Xy) onto OEs(X«_1) to detect over- and undershoots. Our indicator
is the quotient

(OEs(Xk—1), DEs(Xk))
(JEs(X), DEs(X))



If r < 0, an overshoot has occurred, while-0 signals an undershoot. The ratids
then used in two ways. First, the step size for the next stegglépted by a rule like
S+1 = %/(1—r). In practice, one limits the adaptation factor per iteratitep e.g. to
[1/2,2]. Second, in case of extreme overshoots ri€.rit With reie € (—1,0), stepk is
rolled back and repeated with the new step size.

3.1.1 Adaptation to the nuclear and spectral median

While the Frobenius norm is differentiable everywhere gxe zero, the spectral norm
displays additional singularities along the hypersurfagematrices with multiple eigen-
values. Similarly, the nuclear norm is non-differentiahtesingular matrices. As a con-
sequence, als&s(X) for the nuclear or spectral median possesses these hyjaeesur
singularities which arise from the maximum operation aggptn two differentiable func-
tions f1(X) and f2(X) (absolute values of different eigenvalues for the specivaih, an
eigenvalue and its negative for the nuclear norm). By reéptamax f1(X), f2(X)) with
w1 (X) + (1 —w) f2(X) wherew = w(f1(X) — f2(X)) is a smoothed Heaviside function,
we achieve differentiability everywhere outside the The gradient descent algorithm
then works as before.

3.2 A Convex Optimisation Approach

Another attractive method to compute matrix medians whigbalsses elegantly the diffi-
culties of the gradient descent starts directly from thénoigation form of our definition.
By a chain of transformations, the median definition is ttatiesl into a convex optimisa-
tion problem that admits the use of established and effialgatrithms. This approach has
been described in [35] and, more detailed, in [6].

3.2.1 Frobenius median
First we develop the framework in the case of the Frobeniudiane In the definition
mead(Aq,...,An _argmanHX Allz) (3)
Xesd

we identify again matrices from the space of symmaedricd matrices,#9, with vectors

in RY. By introducing a vector = (t3,...,t,)" of additional variables the problem (3) can
be rewritten as

XeRY teR"

Note that each vect@XT,t;)T varies within a convex constraint gtwhich can be written
as a translated convex cone,

Q:(%‘)+Zdz+l, PPl {xeRd“‘xdz l>,/x§+...+x§2}.

With the weight vectoe = (1,...,1)" we finally formalise our optimisation problem as
X n
inf  (et), (t> €G- (4)
xeR% teRn i=1

Since the intersection of convex sets is again convex, anolfective function is linear,
this is a convex optimisation problem.

We continue by transforming this problem into a convex paogthat allows the appli-
cation of a numerical interior-point algorithm.



With then(d2 + 1) x (d2+ n)-matrixF and the vectog € R"%+1) given by
F 01

s g=1: 1.

Fn On

— [ Yoz Og2xn (A P
I:I._<Ol><d2 e )7 97\0) '=1...n

wherel, denotes an x munit matrix andg = (0,...,0,1,0,...,0) thei-th unit row vector,
we can rewrite (4) as

F =

it (et), F(f)-ge%. ®)

XeR9 teRM

n
Here, the convex con&” is given by. 7 = (.i”dz“) . The problem (5) is a convex conic
program.
In general, a convex conic program

inf (¢,X), Fx-ge.

xeR

with some cone” C R™ corresponds to the dual conic program

supg,y), F'y=c,yex"
y

whereZ* is the dual cone for?”. If at least one of the problems — the original or the dual
one — is bounded and strictly feasible, tHeqy} is a pair of optimal solutions if and only
if the duality gap(c,x) — (g, V) is zero.

In (5) the cone is self-dualy” = ¢ *. The dual conic problem thus reads

sup (Y.,A| ZLY 0, [NMllp<1i=1,..
Y,eR4?i=

By virtue of( Z ,X) = 0 the objective function can be rewritten gs(Y.,Al X). The
=1 =1
vanishing of the dual|ty gap vyields

i”x —Alllg = _i(Yi,Ai - X)

which together with the constrainfsi(| , <1 directly lead to the solution

A —X .
Vs AN P T
" IA =Xl

n
which after substitution intoy Y; = 0 reproduces the stationarity condition known from
i=1

an A||(2)

the previous sections
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3.2.2 Spectral median

The definition of the spectral median,

meds(Ag,...,An _argmanlHX Al (o) (6)

Xezd
is treated analogously by introducing a vedtar R" of auxiliary variables and the corre-

sponding constraints
||X—A|||(°°)St|, i=17"'7n'

In this case, the constraints can be decomposed into theeetgnts
tilg—(X=A)eZd,  tlg+ (X=A) ez, |i=1...,n,

that must be satisfied simultaneously. Note tKa#; are to be read as matrices here.
One finds that again ea¢)',t;)" is confined to a convex set obtained from intersecting
the affine set from the left-hand side with the convex conecsitive definite symmetric
d x d-matricesﬂf. Abbreviating these constraint sets 8y, , Ci—, i =1,...,n, (6) is
transformed into |
inf  (et), (X) € N(G.eNGi) ™)
Xe.79 teR" t) i1

which is easily identified as a convex optimisation probleroduse of its convex constraint
set and linear objective function.

If positive semidefinite data are processade .#9,i = 1,...,n, the constraints repre-
sented by th€; _ constitute no restriction and can therefore be discarded.

The conditions can again be cast into a conic program fortonla

. X 2
inf (et), F —-Ge.oMd
Xey’d,teR“< ) (t ) -

F(X,t) =diag...,tilg—X,...,tilg+X,...)
G=diag...,-A,...,+A,...).
3.2.3 The nuclear median

Similarly like the Frobenius median, the nuclear medianndefiby

med (Aq,...,An) = argmmzl”X Al (8)
Xe.zd
is translated into the optimisation problem
inf (et), [[X—Aly<t, i=1...,n.
Xe.7d teRN

The constraint sets are easily checked to be convex againtbat we have a convex
optimisation problem.

4 Robust Structure Estimation

As a discontinuity-preserving matrix smoother, the matnidian can be used to smooth
orientation information that is extracted from texturedagnes via structure tensors. This
application has been exposed in [35, 6].

Structure tensors [16] are computed by Gaussian smootliitigemuter product ma-
tricesCulu’ of an imageu. They encode local orientation estimation integrated iwith
neighbourhood on the scale of the Gaussian which is used.
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Figure 4: Left to right: (a) Image containing oriented texture with inhomogeneitigs.
Structure tensors computed by smoothing the outer prodiudfsi™ with 15x 15 Gaus-
sian. Gradients have been calculated by 3 derivative-of-Gaussian filtering. The final
matrix field has been subsampled for visualisati@pResult of Frobenius median filtering
of (b) with 7 x 7 stencil, subsampled. From [35].

Table 1: Average angular errors (AAE) measured in oriemmagistimation. Method-
specific parameters in brackets include stencil diametdrit@nation count for median,
mands (see [33]) for Boomgaard—\Weijer tensor.

Method AAE AAE AAE
undisturbed impulse noise | Gaussian noise
gradient direction 3.387 20.612 31429
Frobenius median 1597 (7,1) 1914 (9, 4) 3.207 (9, 5)
Frobenius median, norm). 1.312 (7, 1) 1.655 (5, 5) 3.43% (15, 4)
Boomgaard—\Weijer 1.634 (0.1,3) | 1.489 (0.05,5)| 3.657 (0.05,9)

A matrix median filtering step can now be employed for a robiltgring of these
structure tensors. This is demonstrated by Fig. 4. Purdghisddea further, the Gaussian
smoothing can even be omitted; one then applies the mediarnirfg directly to the rank
one outer product matrices. When processing structurenr&tion from images with no
or moderate noise, see e.g. Fig. 5 a favourable smoothirtnis\eed which keeps discon-
tinuities in the orientation field fairly sharp.

For images contaminated with stronger noise, see Fig. 6qulaéty of the results is
still less satisfactory. Improvements of the orientatistireation are made using two mod-
ifications which can be used separately or combined. Firstesve are only interested
in directional information, the gradients (or, equivalgnthe outer product matrices) can
be normalised before median filtering. Second, medianifiggtself can be iterated. The
experiments in Fig. 7 reveal that in case of impulse noiseh e&these ideas is capable of
sharpening the discontinuity. For Gaussian noise, itdnatedian filtering gives the greater
gain in performance. The combination in this case does nobffasignificantly. Table 1
juxtaposes quality measurements based on average angalarfer the different methods.

To end this section, we want to point out another aspect. Tssical structure tensor
smoothes outer product matrices by means of the Gaussitesggace which is simple
and efficient but insensitive to features. In [34], compadse §], Weickert and Brox have
replaced Gaussian smoothing, which is in fact a linear siiffa process, by a feature-
preserving nonlinear diffusion process, yieldingi@nlinear structure tensor. Assigning
the role of the smoothing process to iterated median fikggrrhich also constitutes a scale
space, stands in analogy to this procedure and can be seamstsuction of arobust
structure tensor.

The notion of robust structure tensor has also been used byngaard and Weijer
in [33], see also [9]. They propose the minimisation of areotiye function which leads to
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Figure 5: Left to right: (a) Synthetic image with oriented textures, inspired by [3@])
Local orientations computed via derivatives of Gaussi@rgentations have been mapped
to grey-values. Note that the orientations representeddmkland white are close neigh-
bours. (c) Orientations after median filtering of the orientation ricas with Frobenius
norm and a disk-shaped structure element of diametét)7Same with structure element
of diameter 9(e) Spectral norm median filtering, diameter 9. From [35].

A B b

-
Al nm o
o

b, i =

Figure 6:Top, left to right:(a) Testimage with 20 % impulse noisga) Orientation field of
(a). (c) Structure tensor orientation obtained by Gaussian smugihii the outer product
matrices with standard deviation 1@) Same after median filtering with Frobenius norm
and disk-shaped structure element of diametéePMedian filtering of (a) with Frobenius
norm and disk-shaped structure element of diameteBb&om, left to right:(f) Testimage
perturbed by Gaussian noise of standard deviati@r{\Where grey-values vary between 0
and 1). (g) Orientation field of (f). (h) Structure tensor orientation as in (¢j) Median
filtering as in (d).(k) Median filtering as in (e). From [35].

a (noniterated) weighted median, compare Sec. 6 beloweS$lirecweights are defined by a
Gaussian, the Boomgaard—Weijer tensor in fact combinegameahd diffusion operations
in one filter. We include orientation estimates with the Boaard—\Weijer tensor in Fig. 7
and Table 1.

5 Matrix M-Smoothers and Mid-Range Filters

The minimisation approach underlying the matrix medianritédin can easily be extended
to a larger class of local image filters, cf. [37].

5.1 Mid-Range Values and Mid-Range Filters

Given a sefS of real numbers, its mid-range value is simply the arithmetean of their
maximum and minimum. A mid-range filter is then obtained tyrtg the mid-range value
of the grey-values within a suitable neighbourhood of a Ipikéid-range filters are rarely
used for denoising purposes since they perform reasonabfyrofairly special situations
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Figure 7:Top row: Modified local orientation filtering for the impulse-noiseage, Fig. 6
(a). Left to right: (a) Frobenius median filtering of normalised outer product rmegrwith
disk-shaped stencil of diameter $b) As (a) but with stencil of diameter 19(c) Four
iterations of the median filter from Fig. 6 (d)d) Five iterations of median filter with
normalisation, stencil diameter §e) Orientation estimate from the Boomgaard—\Weijer
robust structure tensor, parameters (see [88} 0.05, s= 5. Bottom, left to right:
Filtering of Fig. 6 (f). (f) Frobenius median filtering with normalisation and stené€il o
diameter 9(g) Same with diameter 1gh) Median filtering as in Fig. 6 (i), five iterations.
(i) Four iterations of median filter with normalisation, stémigameter 15(k) Boomgaard
and Weijer's robust structure tensor= 0.05,s= 9. From [35].

el

(noise distributions with “thin tails”). They can, howeyée used in the construction of
more relevant filters.

A generalisation to matrix data is easily derived from thealation that the scalar
mid-range value minimises the convex function

Es(x) = i:rr11axn|x— ail -

The generalisation is then straightforward.

Definition 2 Given a tuple S= (Ay,...,An) of symmetric matrices, its mid-range value
midr(S) is the minimiser of the convex function

Es(X) = max [[X - Al ©)

with a matrix norm|-||.

Based on similar requirements as for the median, suitatweeh include once more
nuclear, Frobenius and spectral norm. An example of a nmdediltered image is shown
in Fig. 8.

5.2 M-Estimators and M-Smoothers

Replacing the distancgs — a;| in the function (1) by theip-th powers,p > 0, yields a
more general class of nonlinear averages for real numbeénémiders of

n

Es(X) 5=‘Z‘|X—<’v‘i|p

are calledM-estimatorg5]. Like the median and mid-range value, M-estimators gise
to local image filters which are denotedssmoother$30, 39].
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Figure 8:Left to right: (a) Frobenius mid-range filtering of Fig. 1 (a}) M-smoothing of
Fig. 1 (a) with Frobenius norm arm= 0.1. Global minimisers have been searched by grid
search.

Special cases of M-estimators include the mediamferl but also, in the least-squares
casep = 2, the arithmetic mean. As limit case fpr— o, the mid-range value as well fits
into the framework. M-estimators far< 1 are more difficult to handle since their objective
functions are not longer convex — instead, they have localmd at all input values and
are strictly concave in the remainder of the real line. N#hadess, the corresponding M-
smoothers display attractive properties for applicatginse they exceed the median filter
in robustness and are able evertdhancesdges.

Definition 3 Let S= (Aq,...,An) be a tuple of symmetric @ d matrices, and p a positive
real number. A symmetric matrix which minimises the corwegtfon

Es(X) = 5 IX—AI”

with some matrix nornij-|| is a matrix-valued M-estimator for S.

Clearly, the matrix-valued median is recoveredfios 1. Forp > 1, there exists a unique
minimiser for Eg because of the strict convexity of that function. As in thalac case,
one faces a more complex situation fox 1 which we discuss here exemplarily for the
Frobenius norm. First of all, we note that each of the givetricesA is a local minimum
of Es. Second, there can now exist additional minima of the objedtinction. A remark-
able fact is that these keep a minimum distance toAheSince the gradient magnitude
|0(]|x = Aj]|”)| grows over all limits wher$ approaches the singularity Af, there exists

a radiusp = p(p,S) which depends on the expongmiand the data se$ such that the
gradient](]|X — Aj||”) dominates the sur_r;_ 0O(]|X — Aj||") within the p-neighbourhood

i#]

of eachAj, thus preventing any additional minimum to come closer fhémanyA;.

Because of the non-convexity, proper selection of the miminis an important issue
for p< 1. In Fig. 8 (c,d) we show the result of a grid search for thebglaninimum.
Alternatively one can also think of a down-focussing stgtstarting from the unique
median, see [37].

5.3 Algorithmic Aspects

For M-smoothers with kX p < o, the gradient descent algorithm can be applied simi-
larly as for the median, taking care of the necessary reigaléons in case of the spectral
norm. Since the gradient magnitude for- 1 contains information on the distance to the
minimum, the step-size control mechanism can be replaced.
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In the case of the mid-range filter, the maximum operatiotiagfo the normg/X — Aj|
induces additional singularities of the objective funatibat require an analogous regular-
isation as in the case of the spectral norm. Moreover, tie g control mechanism is
indispensable in this case.

A representation of the mid-range operator by a convex agdition problem works
along the lines described for the spectral median, with ifferdnce that only a scalar
auxiliary variable is needed. For details we refer to [6].

6 Matrix-Valued Weighted Median Filters

As demonstrated before, matrix median filtering allows ditieht and edge-preserving
denoising. However, fine details which are smaller than teecd size still experience a
degradation even by a single iteration of median filterindheW denoising images which
contain only moderate amounts of noise, the preservatiesmafl details can be improved.

We achieve this by using weighted medians. Unweighted sgadian filtering changes
each pixel which has not exactly the middle value within #gghbourhood. If instead the
central pixel is repeated more than once within the ordexgdence, its value survives even
if it is just close to the middle value. Only pixels whose \&dare close to the extrema
within their neighbourhood are treated as outliers andefloee changed.

Definition 4 Given a tuple S= (A4,...,An) of d x d matrices, a vector of nonnegative
weights w= (wy,...,wy) and a norm||-||. The weighted mediamed Sw) is defined as
the minimiser of

Esw)(X) = .ZWi IX—All -

Fig. 9 demonstrates denoising of tensor images by weightdxmimedian filtering.
We use a 3k 3 stencil in which the weight of the central pixel is varied.cAn be seen
that fine structures can be retained that are removed by ghtegi median filtering even
with small stencils. The admissible weight for the centiaépdepends sensitively on the
noise level. In our noisy test image, a weight of 2 or sliglathove for the central pixel
considerably enhances structure preservation while highights lead directly to stronger
noise.

7 Matrix-Valued Quantiles

The possibility to transfer the notion of median, thus a 5Qdéantile, to matrix data moti-
vates us to check whether even other quantiles can be definddd type of data. Indeed,
the a-quantile gy (S), 0 < a < 1, of a real data tupl&= (ay,...,an) admits a charac-
terisation by a minimisation property similar to that foetmedian. One has that g(6)
minimises the convex function

Esa(X) := i fa(X— &)

wherefy(2) is a piecewise linear but asymmetric (exceptdoe 1/2) function replacing
the absolute value,

(2-2a)|7, z>0,

10
207, z<0. (10)

fa(2) =7+ (1—2a)z= {
In defining matrix-valued quantiles, we require again thepprties of scaling and rota-
tional invariance as well as the embedding property for ttadas-valued quantiles. The
way of generalising is mostly analogous to the median cassveier, matrix equivalents
of fy has to be used.
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Figure 9: Weighted median filtering. The noisy DTI image hasrbfiltered with a % 3
stencil, 5 iterations, Frobenius norm. The weighof the central pixel was varied while
that of the remaining pixels was fixed toTop, left to right:(a) Standard median filtering
(w=1). (b) w= 2. (c)w=2.2. Bottom, left to right:(d) w= 2.5. (e)w = 5.

Definition 5 Let S= (Ay,...,An) be a tuple of symmetric @ d matricesQ < a < 1, and
let a norm||-|| be given. Ther-quantilequ, (S) of S w.r.t||-|| is defined as minimiser of the
convex function

n
Esa(X) =) lIfa(X-A)l
a i; a
with the function § defined in(10).

As usual, the operation of, on a symmetric matrixf is defined by action on the
eigenvalues. More explicitly, ¥ = Q diag(As,...,Aq)Q" with orthogonal, then

fa(Y) := Qdiag(fa (A1), .-, fa (An))Q" .

For ||-|| one might consider again nuclear, Frobenius and spectrah.n¢lowever, the
necessity to apply, to the matrices by diagonalisation prevents any genetalisaf this
guantile definition to other than symmetric square matrices

7.1 Relation to Matrix Suprema and Infima

Scalara-quantiles include the minimum and maximum of a tuple of neahbers as special
cases fora =0 anda = 1. The minimisation characterisation is not fully suffidiém
this case since e.@so(x) is equally minimised by all lower bounds of the given data.
Similarly, the characterisation of matrix-valued quaegifrom Def. 5 becomes deficient
for a = 0 (a = 1), admitting as minimisers al for which X — A; are uniformly negative
(positive) semidefinite.

Conditions of this type were also used in [11, 12] where sapi and infimum notions
for matrix tuples were defined in order to establish morpgiial filters. The semi-ordering
used in [12] (so-called Loewner ordering) is defined exabilythe definiteness of the
X — A while the geometrical semi-ordering used in Sec. 4 of [1&gsivalent to the same
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condition for the difference of squared matricé$— AZ. By an additional criterion, the
supremum (infimum) is then selected among all matrices waieHower (upper) bounds
of the given tuple w.r.t. the semi-ordering. In [11] a lexdcaphic ordering of eigenvalues
plays this role while in [12] the matrix with smallest traseselected as supremum.

In the quantile framework, the limit proceast 1 (a | 0) lends itself as a way to dis-
ambiguate the supremum (infimum). It turns out that fordhgquantiles formed with the
nuclear norm, the limit process 1 1 leads to the supremum matrix of minimal trace as
in [12]. We remark that a robustness property similar to LexBrensures the indepen-
dency of the supremum on thoBefor which X — A; is positive definite. — The quantiles
formed with Frobenius or spectral norm tend éot 1 to different suprema for which this
independency is not guaranteed.

By the following proposition we establish an additionaklibetween matrix suprema
and matrix filters defined via minimisation.

Proposition 7 Let a tuple S= (Aq,...,An) of symmetric ck d matrices be given. Provided
that the spectral mid-rangmidr.(S) is uniquely determined, we have

midre (S) + (izn}axnumidrm(S) —Al|)1 =sup9) (12)

where E is the objective function frorf®) with spectral norm andup(S) is the matrix X
with smallest trace for which all X A; are positive semidefinite.

The scalar-valued equivalent of (11) is the equation

midr(ag,...,an) + imaxn|midr(al,...,%) —aj| =maxay,...,an) . (12)
An important difference to the scalar case is that (11), wéhsible treatment of the non-
unique case, could also be used to define and compute matriraa since the maximisa-
tionin (11) is scalar-valued. A similar “definition” usingZ) to introduce scalar maximum
via the mid-range value would be circular.

8 Summary

A concept of matrix-valued median filters has been presentech is based on the min-
imisation of a geometrically motivated objective functidmnis function measures the sum
of distances of a variable matrix to the given data matridgdss median concept is the-
oretically sound, fits well into the context of other multizae median approaches and
possesses favourable mathematical properties.

The computation of matrix-valued medians has been addtésse/o ways. One ap-
proach is based on gradient descent. Moreover, a convergamoging framework has been
established which allows an efficient numerical evaluation

Two main application fields have been discussed. First,ixaettued median filters
can be employed as an efficient tool for structure-presgraegnoising of tensor-valued
images. Second, median filtering allows to smooth oriemrtagistimates, giving rise to a
variant of an adaptive (robust) structure tensor.

The proposed minimisation idea allows generalisationsiaraber of directions, yield-
ing a family of further matrix-valued local image filters landing mid-range filters, M-
smoothers, weighted median filters and quantiles which eamsked to emphasise various
types of structures. Moreover, mid-range filters (with $p@amorm) and quantiles (with
nuclear norm) offer close connections to matrix supremuifinium concepts that have
been established as foundation for matrix-valued morgholo

Acknowledgements. We are thankful to Anna Vilanova i Bartroli and Carola var,Pu
both TU Eindhoven, for providing us with the DTI data set aigtdssing data conversion
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Figure 10: a-quantile filtering of 2-D DTI data with & 5 stencil. Top: With Frobenius
norm. Left to right: () a = 0.1. (b) a = 0.5 (i.e. median).(c) a = 0.9. Bottom,left to
right: (d)—(f) Same as above but with nuclear norm.

issues. The fluid dynamics data set is owed to Wolfgang Kallm@ C Davis) and Gerik
Scheuermann (University of Leipzig). Susanne Biehl angl&ia Zimmer helped us by
writing data conversion tools.
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