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Computer Vision, Graphics, and Pattern Recognition Group, Department of Mathematics and
Computer Science, University of Mannheim, D-68131 Mannheim, Germany

E-mail: ruhnau@uni-mannheim.de, astahl@uni-mannheim.de and
schnoerr@uni-mannheim.de

Received 21 August 2006, in final form 28 November 2006
Published 24 January 2007
Online at stacks.iop.org/MST/18/755

Abstract
We present a variational approach to motion estimation of instationary
experimental fluid flows from image sequences. Our approach extends prior
work along two directions: (i) the full incompressible Navier–Stokes
equation is employed in order to obtain a physically consistent
regularization which does not suppress turbulent variations of flow
estimates; (ii) regularization along the time axis is employed as well, but
formulated in a receding horizon manner in contrast to previous approaches
to spatio-temporal regularization. This allows for a recursive on-line
(non-batch) implementation of our variational estimation framework.
Ground-truth evaluations for simulated turbulent flows demonstrate that due
to imposing both physical consistency and temporal coherency, the accuracy
of flow estimation compares favourably even with advanced
cross-correlation approaches and optical flow approaches based on higher
order div–curl regularization.

Keywords: particle image velocimetry, optical flow, Navier–Stokes equation,
variational methods, mixed finite elements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Overview and motivation

Image sequence analysis of fluid flows constitutes an active
research field with a high industrial impact. Corresponding
real-world measurements in concrete scenarios complement
numerical results from direct simulations of the Navier–Stokes
equation, particularly in the case of turbulent flows, and for
the understanding of the complex spatio-temporal evolution
of instationary flow phenomena. More and more advanced
imaging devices (lasers, high-speed cameras, control logic,
etc) are currently developed that allow us to record fully time-
resolved image sequences of fluid flows at high resolutions.
As a consequence, there is a need for advanced algorithms for
the analysis of such data, to provide the basis for a subsequent

pattern analysis, and with abundant applications across various
areas.

The image measurement process proceeds as follows:
first, the flow medium is seeded with small particles that are
designed such that they accurately follow the fluid’s motion.
Next, entire velocity fields are measured by taking two or
more images of the flow within short time intervals, and by
estimating and interpolating the displacements of individual
particles from frame to frame.

A basic requirement for any motion estimation scheme
in this connection is physical consistency. Otherwise, the
information provided by a subsequent motion analysis is
limited. Current approaches to PIV [19] do not address
this issue as part of the motion estimation scheme. As a
consequence, this calls for a novel combination of motion
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estimation and the Navier–Stokes equation which governs the
real unknown flow in all applications.

Our contribution reported in this paper is a novel spatio-
temporal variational approach to the estimation of motion
fields constrained by the Navier–Stokes equation.

1.2. Related work

Recently, variational optical flow techniques from the field
of computer vision have been adopted and extended for the
purpose of PIV [5, 10, 20–22]. Besides combining a carefully
designed data term and coarse-to-fine estimation schemes
with a standard first-order regularizer [21], a physically
more plausible regularization has been suggested recently
[22]. Because this approach is based on the Stokes equation,
however, it is based on related assumptions which are strictly
valid only for low Reynold numbers, i.e. non-turbulent flow.
Another competitive research direction concerns the design
and use of higher order regularizers [5, 10, 27]. By separately
penalizing the gradient of the divergence and the curl of
flows, the major disadvantage of first-order regularization
that penalizes flow variations too much is alleviated. Issues
such as well posedness, accurated discretization and numerical
stability, on the other hand, become more involved.

To add physically motivated prior knowledge to cross-
correlation PIV methods, physics-based nonlinear dynamic
models [16] have been introduced. The velocity is obtained
by minimizing a measure which consists of the residues
of the Navier–Stokes equation, the continuity equation, and
the difference between estimated and observed image data.
The resulting nonlinear optimization system is solved using
methods from evolutionary programming [13]. This procedure
is repeated until the difference between the observed and the
estimated image is sufficiently small. This method allows a
reliable estimation of velocity fields and pressure estimates.

One may criticize, however, that little insight can
be gained from the viewpoint of optimization because a
general-purpose framework for intricate problems was used
(evolutionary programming). It does not take into account the
structure of the underlying problem. This is in contrast to
our approach presented below where the computational flow
estimation scheme with provable properties (well posedness,
numerical stability) is directly derived from an adequate
variational problem formulation.

Finally, we point out that the vorticity transport equation
has been used before in the field of computer vision in order to
‘inpaint’ images and videos (cf, e.g., [1] and [17, chapter 3]).
In this completely different context, the same transport
mechanism is used to infer from surrounding image parts
spatial image structures within local image regions that may
result from removing corrupted image parts, disturbing text,
etc.

1.3. Contribution

We present a framework for fluid motion estimation that
utilizes as prior knowledge the fact that flows have to
satisfy the incompressible vorticity transport equation. This
equation relates to the full (incompressible) Navier–Stokes
equations and therefore is also valid in turbulent scenarios.
Furthermore, rather than considering image pairs, our

estimation scheme takes into account the whole image
sequence. As a result, it takes into account previous
estimation results so as to enforce spatio-temporal coherency
and regularization, however, without penalizing flow structures
that are characteristic of instationary turbulent flows. Finally,
analogous to the corresponding concept from control theory,
our overall algorithm works in a receding horizon manner, that
is flow velocities can be computed as soon as their respective
frames have been recorded. By this, we avoid a significant part
of the computational costs associated with common temporal
regularization and control schemes [7, 26].

1.4. Organization

We sketch in section 2.1 the derivation of the vorticity transport
equation, which embodies the prior knowledge we use for flow
estimation. Section 2.2 motivates and describes our variational
approach and details the resulting constrained optimization
problem. Corresponding numerical issues are dealt with in
section 3. Numerical experiments for evaluating the approach
are presented in section 4. We conclude and indicate further
research directions in section 5.

2. Approach

2.1. The vorticity transport equation

Let u = (u1, u2)
�, u = u(x, t), x = (x1(t), x2(t))

� denote a
two-dimensional velocity field. The Navier–Stokes equation,
the governing equation for incompressible homogeneous flow
(density ρ = ρ0 = const), reads

∂u

∂t
+ (u · ∇)u = −∇p′ + ν�u, ∇ · u = 0, (1)

where ν is the coefficient of kinematic viscosity and p′ =
p/ρ0. Applying ∇× to the Navier–Stokes equation1, we
obtain

∇ × ∂u

∂t
+ ∇ × (u · ∇)u = −∇ × ∇p′ + ν∇ × �u. (2)

Taking into account the incompressibility constraint ∇ ·
u = 0, and by setting ω = ∇ × u, it follows from elementary
calculus that (2) can be rewritten as

Dω

Dt
= ∂

∂t
ω + u · ∇ω = ν�ω, ω(x, 0) = ω0. (3)

This equation is known as the vorticity transport equation. It
describes the evolution of the fluid’s vorticity over time. Note
that in the absence of external forces acting on the fluid, this
equation describes the flow completely.

2.2. Variational model

Let I (x1, x2, t) denote the grey value of an image sequence
recorded at location x = (x1, x2)

� within some rectangular
image domain � and time t ∈ [0, T ]. We adopt the basic
assumption underlying most approaches to motion estimation
that I is conserved. Thus, the total (material) derivative of I
vanishes:

DI

Dt
= u · ∇I + It = 0. (4)

1 Throughout this paper, we consider 2D flows only. We therefore define
∇ × u = ∂u2

∂x1
− ∂u1

∂x2
.
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The spatial and temporal derivatives of I of the optical flow
constraint (4) are estimated locally by using FIR filters. As the
focus of this paper is on physically consistent regularization
and not on design of the data term, we refer the interested
reader to [21] for a detailed description.

As is well known, equation (4) alone cannot be used to
reconstruct the velocity field u, because any vector field with
components u · ∇I = −It at each location x satisfies (4).

The standard approach is to minimize the squared residual
of (4) over the entire image domain � and to add a variational
term that either enforces smoothness of the flow (first-order
regularization) [24]2

∫
�

{(u · ∇I + It )
2 + α|∇ · u|2 + β|∇ × u|2} dx, (5)

or smoothness of the divergence and vorticity (second-order
regularization) [25]∫

�

{(u · ∇I + It )
2 + α|∇(∇ · u)|2 + β|∇(∇ × u)|2} dx. (6)

We emphasize that both approaches (5) and (6) take only
into account spatial context and determine a vector field for a
fixed point in time t ∈ [0, T ].

Therefore, following the ideas of [23], our present work
is an attempt to elaborate a dynamic representation of fluid
flow. To this end, we solve equation (3) for the time interval
[0, T ] between a subsequent pair of image frames, where ω0

denotes our current vorticity estimate. As a result, we obtain
a transported vorticity field ωT := ω(x, T ), which can be
regarded as a predicted vorticity based on the assumption that
our fluid is governed by the Navier–Stokes equation. The
regularization term that we employ penalizes derivations from
the predicted vorticity values and forces incompressibility:

1

2

∫
�

{(u · ∇I + It )
2 + λ(∇ × u − ωT )2} dx,

s.t. ∇ · u = 0. (7)

We apply Neumann boundary conditions (i.e., ∂u/∂n = 0
on ∂�). Note that, while the regularization term of (7)
penalizes deviations between the current vorticity estimate
ω and the propagated vorticity estimate of the preceding
frame ωT , it does not enforce smoothness of the current
vorticity. In practice, an implementation of (7) therefore
leads to increasingly noisy vorticity estimates. Increasing the
parameter ν reduces the problem only slightly: ωT becomes
smoother, but smoothness of ω is still not enforced directly.

To overcome this problem, we add a term that mimics
the small viscous term (Laplacian) on the right-hand side of
equation (3). Expressing the new second-order regularization
term equivalently through a first-order regularizer and an
additional linear constraint, we finally obtain

E = 1

2

∫
�

{(u · ∇I + It )
2 + λ(ω − ωT )2 + κ|∇ω|2} dx,

s.t. ∇ · u = 0, ∇ × u = ω. (8)

As we usually do not have a vorticity estimate at the very
first frame of an image sequence, the overall estimation process
is initialized with a vorticity estimate ω0 = 0.

2 It can be shown easily that the Horn and Schunck approach [9] is just the
special case of this regularization where α = β.

The novel vorticity transport regularizer in (8), in
connection with (3), can be perceived as a special second-
order div–curl regularizer: estimated flows from a given
image sequence have vanishing divergence and a curl field
(vorticity) that should be smooth and as close as possible to
the transported vorticity.

3. Discretization and optimization

3.1. Discretization of the vorticity transport equation

We solve the time-dependent vorticity transport equation (3)
with a second-order conservative finite difference scheme. The
method is upwind and two-dimensional in that the numerical
fluxes are obtained by solving the characteristic form at cell
edges (i.e., edges between adjacent pixels), and all fluxes
are evaluated and differenced at the same time. The finite
difference method that we employ is the Fromm–Van-Leer
scheme [18].

The basic idea is to satisfy Godunov’s theorem in a
‘natural’ way. Roughly speaking, Godunov’s theorem says
that all methods of accuracy greater than order one will produce
spurious oscillations in the vicinity of large gradients, while
being second-order accurate in regions where the solution
is smooth. Accordingly, Fromm–Van-Leer’s scheme detects
discontinuities and adapts its behaviour such that the higher-
order accuracy of Fromm’s scheme is preserved for smooth
parts of the solution, while spurious oscillations are avoided
through first-order accuracy at detected discontinuities. For
further details, we refer to [18].

3.2. Variational approach

For every image pair (two consecutive frames of the image
sequence), we have to solve the optimization problem (8)
which comprises a convex functional and two linear constraint
equations. We transform this constrained optimization
problem into a saddle point problem. Accordingly, the unique
vector field u(x) minimizing (8), along with the vorticity ω

and multipliers p, q, are determined by the variational system

a((u, ω)�, (ũ, ω̃)�) + b((p, q)�, (ũ, ω̃)�)

= ((f, g)�, (ũ, ω̃)�), ∀ũ, ω̃

b((p̃, q̃)�, (u, ω)�) = 0, ∀p̃, q̃. (9)

The bilinear and linear forms read

a((u, ω)�, (ũ, ω̃)�)

:=
∫

�

{u · ∇I∇I · ũ + λωω̃ + κ∇ω · ∇ω̃} dx,

b((p, q)�, (ũ, ω̃)�) := −
∫

�

{p∇ · ũ + q(∇ × ũ − ω̃)} dx.

(10)

The right-hand side reads

((f, g)�, (ũ, ω̃)�) :=
∫

�

{−It∇I · ũ + λωT ω̃} dx. (11)

We choose a regular tessellation of the image domain �

and discretize (9) using finite elements. It is well known
from computational fluid dynamics (cf Stokes equation) that
standard first-order finite element discretizations of saddle
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Figure 1. Sketch of 2D Taylor–Hood elements: biquadratic velocity
elements (squares) and bilinear pressure elements (circles).

point problems may result in instabilities or even in so-called
locking effects, where the zero velocity field is the only
one satisfying the incompressibility condition. Therefore,
when solving saddle point problems, mixed finite elements
are traditionally used [3]. An admissible choice is the so-
called Taylor–Hood element based on a square reference
element with nine nodes (figure 1). Each component of the
velocity field is defined in terms of piecewise quadratic basis
functions ψi located at each node (the solid squares in figure 1),
whereas the Lagrange multipliers p and q and the vorticity ω

are represented by linear basis functions φi attached to each
corner node (indicated by circles in figure 1). The graphs of
these basis functions are depicted in figure 2. It can be shown
that Taylor–Hood elements fulfil the so-called Babuska–Brezzi
condition [3], making the discretized problem well posed.

Indexing the velocity nodes (squares in figure 1) by
1, 2, . . . , N , we obtain

u1(x) =
N∑

i=1

uiψi(x) (12)

and similarly for u2(x) (where u = (u1, u2)
�) and the

components of ũ. By analogy, we obtain for the M Lagrange
multiplier nodes (circles in figure 1)

p(x) =
M∑
i=1

piφi(x) (13)

and similarly expressions for q, ω, p̃, q̃, ω̃. Hence, each
function u, ũ is represented by 2N real variables, and each
function p, q, ω, p̃, q̃, ω̃ is represented by M real variables.
For the sake of simplicity, we will use the same symbols to
denote the corresponding vectors. The discretized system (10)
then reads

A(u, ω)� · (ũ, ω̃)� + B�(p, q)� · (ũ, ω̃)�

= (f, g)� · (ũ, ω̃)�, ∀ũ, ω̃

B(u, ω)� · (p̃, q̃)� = 0, ∀p̃, q̃. (14)

Because these equations have to be satisfied for arbitrary
ũ, p̃, q̃, ω̃, we finally obtain

A

(
u

ω

)
+ B�

(
p

q

)
=

(
f

g

)
, B

(
u

ω

)
= 0. (15)

In order to numerically solve the saddle point problem (15), we
want to employ the Uzawa algorithm (cf, e.g., [2]). However,
this requires A to be positive definite which is not the case here,
because the relations u and ω defining A in (10) are mutually
independent and u is only involved through a degenerate

quadratic form. This problem can be removed by

• including a penalty term related to the divergence
constraint into our Lagrange multiplier formulation to
obtain an augmented Lagrangian formulation [6], and by

• splitting the vorticity matching term into two equivalent
terms, one containing ∇ × u and the other one containing
ω.

This yields the following modification of the bilinear form
(10):

ap((u, ω)�, (ũ, ω̃)�)

:=
∫

�

{
u · ∇I∇I · ũ +

λ

2
(ωω̃ + (∇ × u)(∇ × ũ))

+ µ(∇ · u)(∇ · ũ) + κ∇ω · ∇ω̃

}
dx. (16)

We point out that this modification is done for numerical
reasons only. It does not change the optimization problem (8).
Matrix Ap resulting from the discretization of (16) is positive
definite and, because u and ω do not explicitly depend on each
other, can be split into two systems:

• The system containing u is the linear system with a simple
first-order div–curl regularization (cf, e.g., [24], and (5)).

• The system containing ω corresponds to a simple first-
order quadratic functional.

Because Ap is invertible and well conditioned, we solve
the first equation of the system (15), with A replaced by Ap,
for the unknown u(

u

ω

)
= A−1

p

[(
f

g

)
− B�

(
p

q

)]
, (17)

and insert the result into the second equation:

BA−1
p

[(
f

g

)
− B�

(
p

q

)]
= 0. (18)

This problem only involves the adjoint variables p, q:
(
BA−1

p B�) (
p

q

)
= BA−1

p

(
f

g

)
. (19)

The matrix
(
BA−1

p B�)
is symmetric and positive definite.

Therefore, we apply the conjugate gradient iteration to (19).
This requires a single matrix inversion in every iteration step.
For computational efficiency, this is accomplished using multi-
grid iteration (cf [8]).

3.3. Relaxing the assumption of a vanishing divergence

Due to out-of-plane motion (that can hardly be totally avoided),
the assumption of a vanishing divergence will usually not hold
in practice.

Let us therefore relax the assumption and minimize

E = 1

2

∫
�

{(u · ∇I + It )
2 + λ(ω − ωT )2 + κ|∇ω|2 + µ|d|2} dx,

s.t. ∇ · u = d, ∇ × u = ω, (20)

where the 2D divergence d (which is assumed to be small)
actually corresponds to the derivative of the out-of-plane
component of u in the out-of-plane direction (i.e., d = ∂u3/

∂x3). Note that we do not change the vorticity transport
equation itself—we still assume that the 2D vorticity transport
equation is able to give a good approximation for the transport
process. Therefore, (20) should only be used to analyse 2D
projections of incompressible fluids.
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Figure 2. Left: basis function φ of a bilinear finite element. Right: basis function ψ of a biquadratic finite element.

4. Experimental evaluation

This experimental section is divided into three parts:

• Section 4.1 shows numerical results on ground truth fluid
image sequences (2D flows) obtained with our approach
in comparison with cross-correlation and optical flow with
first-order and with higher order regularization.

• Section 4.2 shows numerical results for a synthetic
flow where the out-of-plane component is not negligible
(3D flow). We perform the analysis with the method
introduced in section 3.3.

• In section 4.3, we finally show results for a real-world 2D
image sequence.

4.1. Synthetic 2D flows

This section shows numerical results on ground truth fluid
image sequences obtained with our approach in comparison
with cross-correlation and optical flow with first-order
regularization and higher order regularization.

The synthetic PIV image sequence that we used for testing
was provided by [4]. The underlying velocity field was
computed by a so-called pseudo-spectral code that solves the
vorticity transport equation in Fourier space and evaluates a
subgrid model for simulating small-scale turbulent effects on
the larger scales of the flow. These latter effects are not known
in practice, of course, and consequently they were ignored
while evaluating our approach.

In order to simulate the intensity function of real PIV
images, the computed velocity fields are used to transport
collections of (images of) particles that are typically used for
the seeding of flows so as to make them visible (cf section 1.1).
The scheme resembles the one described in [14]. We used the
first 100 frames of the synthesized PIV image sequence and
compared the following three approaches:

• Multi-pass cross-correlation [11]. Advanced cross-
correlation approach (LaVision Davis 7.1.1.34). Initial
interrogation window size 32 × 32, final interrogation
window size 8 × 8 and 50% overlap manually selected
for best performance. In order to interpolate the velocity
vectors to the fine grid (i.e., one vector per pixel), second-
order spline interpolation is used.

• Horn and Schunck [9]. First-order regularization,
temporal coherency is not exploited, no incompressibility
constraint is imposed. The smoothness parameter λ =
0.005 was manually selected for best performance.

• Second-order regularization [27]. These authors
used higher order regularization with an additional
incompressibility constraint. Instead of mixed finite
elements (as we do), the authors used the so-called
mimetic finite differencing scheme. Temporal coherency
is not exploited. Parameters: λ1 = 0.5, λ2 = 0.05,
manually selected for best performance.

• Optical Stokes flow [22]. Optical flow approach that
incorporates physical prior knowledge. Admissible flow
fields are restricted to vector fields satisfying the Stokes
equation. Parameters: µ = 1, α = 100, β = 100, γ =
200 manually selected for best performance. Temporal
coherency is not exploited.

• Vorticity transport approach (this paper). As
described above, higher order regularization is used, the
incompressibility constraint is imposed, and temporal
coherency is exploited in an on-line manner. Parameters:
λ = 0.005, µ = 0.005, ν = 0.1, κ = 0.0005. As
for the other approaches, we selected the regularization
parameters λ,µ, κ by hand. Note that the viscosity
coefficient ν is not a free user parameter but characterizes
the physical nature of the fluid flow. Choosing a
different value may affect the accuracy of the predictor
(3). Parameter λ is the only intrinsic user parameter of our
approach that weights the influence of the prediction ωT

in (8), whereas µ and κ are merely constants to achieve
numerical stability as explained in connection with (8)
and (16).

Figure 4 compares the errors of all five approaches over
time. The multi-pass cross-correlation approach’s estimate
has the highest RMS error. This is due to the very high
velocity frequencies that are present in the image data and that
cannot be recovered by correlation. First-order regularization
yields a higher error than second-order regularization which is
much more accurate. The quality of the estimation can further
be improved by applying optical Stokes flow. The errors of
all four of these approaches stay constant over time because
each subsequent image pair is independently evaluated and
temporal coherency is ignored.

For the first frame, the approach presented in this
paper, utilizing the vorticity transport equation, shows worse
performance than the other optical flow-based algorithms.
During the subsequent period of time, however, the error of the
vorticity transport approach decreases considerably, because
not only is higher order regularization used but temporal
coherency is successfully exploited as well.
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Figure 3. Left: 100th frame of the synthetic image sequence with ground truth velocity field. Right: estimated velocity field for the 100th
frame. The background intensity shows the absolute RMS error (brighter = larger error), which is about 0.055 px. on average (cf figure 4).
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Figure 4. Average absolute RMS error (in pixels) for frames 1–100, using five different methods. Cross-correlation gives the worst results
for this highly non-rigid image pair. First-order regularization performs worse than second-order regularization, while optical Stokes flow is
slightly better than second-order regularization. All four of these error curves are constant because temporal coherency is not exploited. The
approach based on vorticity transport starts with a rather low accuracy (assumption of ω = 0, which is not valid) but then becomes
significantly more accurate than the other techniques due to the physically consistent regularization over time. This novel spatio-temporal
regularization is achieved with an on-line computational scheme and fixed storage requirements, irrespective of the length of the image
sequence. The decay of the error curve within the first ten frames clearly displays the usage of this implicitly encoded ‘memory’.

We emphasize that temporal coherency does not mean
smoothness. Rather, the flow exhibits high spatio-temporal
gradients as turbulent fluids do. Temporal coherency relates
to a physically consistent transport mechanism interacting
with flow estimation from an image sequence. Due to the
on-line computational scheme, fixed computational resources
are needed no matter how long the image sequence is. The
decay of the error curve over several frames in figure 4 shows,
however, that the approach is able to memorize the history
longer than just the previous frame.

Figure 3 displays the estimated velocity for the 100th
frame, along with the respective RMS errors. The
reconstructed velocity field is surprisingly exact, in view of
the highly non-rigid motion we are dealing with. Figure 5
shows that even the vorticity related to flow derivatives is
reconstructed quite well under these difficult conditions. We
expect such quantitative data to be valuable information in
connection with imaging-based fluid mechanics.

4.2. Flows with out-of-plane velocity component

In order to assess our approach’s performance when it comes to
tackling image sequences with a high out-of-plane component,
we analysed the VSJ image sequence 301 [15]: it shows a
3D jet shear flow with an out-of-plane component up to 4
pixels3. Due to the large out-of-plane velocity component,
the assumption of vanishing divergence does not hold in this
example. This is why we weaken the assumption of vanishing
divergence as shown in section 3.3.

Figure 6 compares the results of our vorticity transport
approach with those of an advanced cross-correlation approach
(DaVis). For the evaluation, we chose the following
parameters:

• Multi-pass cross-correlation. Initial interrogation
window size 32 × 32, final interrogation window size

3 Note that we assume that the imaginary grid in the out-of-plane direction
has the same resolution as the in-plane grid.
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Figure 5. Left: true vorticity of frame 100. Right: estimated vorticity ω for frame 100. For the first frame, the estimation process was
initialized with ω = 0, corresponding to ‘nothing is known in advance’. The result on the right shows that not only has the vorticity
transport equation been successfully adapted to the observed image sequence, but that it improves the accuracy of flow estimation in terms
of u, too (cf figure 4). As a consequence, flow derivatives can be estimated fairly accurate, as shown in the right panel. Such quantitative
information is very important in connection with imaging-based experimental fluid mechanics.
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Figure 6. Average absolute RMS error (in pixels) for frames 1–140 of the VSJ 301 image sequence, using cross-correlation and novel
optical flow technique with spatio-temporal regularization (with modification of section 3.3). Both approaches have similar accuracy.

16 × 16 and 50% overlap, manually selected for best
performance.

• Vorticity transport approach (this paper). λ = 0.005,

µ = 0.005, ν = 0.1, κ = 0.005, manually selected for
best performance.

Figure 6 shows the absolute RMS error of both approaches
along with the average absolute out-of-plane motion over time.
While both error curves are quite similar, the cross-correlation
approach tends to give better results at time instances when the
out-of-plane velocity is rather large (i.e., t ≈ 40 and t ≈ 125)
whereas the optical flow results are better when the out-of-
plane component is rather small (i.e., t ≈ 1 and t ≈ 70).

The fact that the brightness of particles that travel out of
the illuminated plane fades, while particles gain brightness if
they travel towards the illuminated plane is in contradiction
with the optical flow constraint that we use. This introduces
errors in scenarios where high out-of-plane velocities are

present. We would like to stress, however, that cross-
correlation approaches have the same problem (as they also
assume brightness conservation), it just seems to be slightly
less pronounced. In section 5, we will briefly discuss possible
improvements that might enhance the quality of optical flow
based approaches in environments with high out-of-plane
velocities.

4.3. Real-world 2D flows

Figure 7 shows a sample image of the experimental evaluation
of the spreading of a low diffusivity dye in a 2D turbulent
flow, forced at a large scale. The passive scalar is a mixture of
fluorescein and water. For more details about the experimental
setup, we refer to [12]. Cross-correlation approaches are not
able to extract valid velocity fields for this type of input data
(passive scalar images). Figure 7 shows, however, that our
approach using the vorticity transport equation is capable of
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Figure 7. Left: sample real-world passive scalar image (frame 80, size: 512 × 512). Right: recovered velocity field (with colour-coded
vorticity) with vorticity transport approach.
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Figure 8. Iso-surface plot of the vorticity distribution over time.
Blue denotes positive vorticity (ω > 0.75) and red denotes negative
vorticity (ω < −0.75).

extracting a very reasonable velocity distribution. Figure 8
shows the temporal evolution of individual vortices.

5. Conclusions and further work

We presented an approach to fluid motion estimation that
uses the vorticity transport equation for physically consistent
spatio-temporal regularization. The approach combines
variational motion estimation with higher order regularization
and motion prediction through a transport process. For
motions that conform to our assumption (i.e., fluids that are
governed by the incompressible 2D Navier–Stokes equation),
a temporal regularization effect, computed in a recursive
manner, was demonstrated. In these scenarios, our approach
outperforms cross-correlation approaches as well as advanced
variational approaches for optical flow estimation.

In our future work we will focus on two major issues:

• Adaptive optical flow constraint. While we have adapted
our regularization term to handle large out-of-plane
motions, the optical flow constraint forming the data
term in our current approach is only valid for 2D flows.
In the future, we will replace the simple optical flow

constraint by a more advanced data term that is able to deal
with brightness variations that are caused by out-of-plane
motion and illumination changes in 2D scenarios.

• Three-dimensional flow analysis. Imposing physical
constraints is much more straightforward in 3D (no need
to handle out-of-plane motion separately, cf section 3.3),
but poses new computational challenges as well. As
there is a lot of progress regarding capturing devices (e.g.,
scanning PIV or tomographic PIV), we will concentrate
on full 3D flow analysis and related variational models
and computational estimation schemes.
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