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Abstract

Example-based learning of codes that statistically en-
code general image classes is of vital importance for com-
putational vision. Recently, non-negative matrix factoriza-
tion (NMF) was suggested to provide image codes that are
both sparse and localized, in contrast to established non-
local methods like PCA. In this paper we adopt and gener-
alize this approach to develop a novel learning framework
that allows to efficiently compute sparsity-controlled invari-
ant image codes by a well-defined sequence of convex conic
programs. Applying the corresponding parameter-free al-
gorithm to various image classes results in semantically rel-
evant and transformation-invariant image representations
that are remarkably robust against noise and quantization.

1. Introduction and Related Work

Originally proposed to model physical and chemical pro-
cesses [20, 19], non-negative matrix factorization (NMF)
has become increasingly popular in machine learning, sig-
nal processing, and computer vision applications [25, 9, 21].
One reason for this popularity is that NMF codes natu-
rally favor sparse, parts-based representations [11, 2] which
in the context of recognition can be more robust than
non-sparse, global features. Especially for computer vi-
sion applications, researchers suggested various extensions
of NMF in order to enforce very localized representa-
tions [12, 7, 23]. Along this line, it was recently pro-
posed [8] to extend NMF by adding explicit sparsity con-
straints.

In a different direction, to compute representations that
are robust against geometric transformations, it was pro-
posed to integrate transformation-invariance into mixture
models, treating transformations as hidden variables in an
EM-framework [4]. We show that NMF also benefits from
such treatment, leading to sparse and descriptive image
bases.

Figure 1: Translation-invariant NMF. Results of trans-
lation-invariant NMF on the artificial data set from [4]. The
first row shows the image primitives used. Shifted and noise
corrupted versions of these were used for training (second
row). NMF successfully constructs a suitable image base
(third row). Note that the basis functions are not simply
centroids in image space: they represent parts which must
be composed to form the images. Thus, they are potentially
more general without sacrificing image quality/sharpness.

Our contributions in this paper are threefold:

• We generalize the NMF optimization problems to sup-
port supervised recognition, general constraints to con-
trol sparsity, and translation-invariant representations.

• We mathematically formulate the generalized NMF
problem in a reverse-convex programming framework
in terms of second-order convex cones. We then pro-
pose a novel parameter-free algorithm to efficiently
compute a solution by solving a sequence of convex
optimization problems.

• In the experimental section, we provide evidence that
NMF coding can lead to semantically relevant local
image bases that are robust against disturbances in
the scene and against quantization errors in coefficient
space.
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In Bayesian terms the NMF problem we examine cor-
responds to a Gaussian data likelihood p(V |W, H) with a
noninformative prior over the non-negative orthant for the
parameters W and H . Taking a statistical prior into ac-
count, this leads to a Bayesian approach to ICA and corre-
sponding inference algorithms [14, 6].

Rather than pursuing this research direction, we focus
here on the additional constraints for the NMF problem en-
forcing sparse and parts-based representations for computer
vision, and on a corresponding novel optimization approach
based on convex programming (Sec. 3). We will show, how-
ever, how available prior information, compatible with our
optimization approach, can be considered (eqn. (7)).

Outline. In Section 2, we formally state the NMF opti-
mization problems and give a brief link to signal approxi-
mation. Section 3 introduces a new optimization algorithm
for sparse NMF. Experimental results are discussed in Sec-
tion 4. We conclude in Section 5.

Notation. For any m × n-matrix M , we denote its i-th
column by M∗i, and its row by Mi∗. V ∈ R

m×n
+ is a non-

negative matrix containing n images, and W ∈ R
m×r
+ is

a corresponding basis with r-dimensional coefficients H ∈
R

r×n
+ . ‖x‖p denotes the `p-norm for vectors x, and ‖M‖F

the Frobenius norm for matrices: ‖M‖F =
√

tr(M>M).
Finally,⊗ denotes Kronecker’s matrix product and vec(M)
the concatenation of the columns of M .

2. Variations of NMF

We consider the NMF optimization problem:

min
W,H

‖V −WH‖2F
s.t. 0 ≤W, H.

(1)

When the images in V are subject to transformations that
are to be factored out, the problem reads:

min
W,H,θ

‖Tθ(V )−WH‖2F
s.t. 0 ≤W, H.

(2)

where T is an operator, parametrized by θ, mapping V to
transformed images.

Although NMF codes often are sparse without any in-
terventions, it has been suggested to control sparsity di-
rectly. This can lead to considerably improved basis func-
tions (Fig. 2). Thus, Hoyer [8] recently proposed to use the
following sparseness measure for vectors x ∈ R

n, x 6= 0:

sp(x) :=
1√

n− 1

(√
n− ‖x‖1‖x‖2

)

. (3)

Since 1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1, this sparseness measure

is bounded: 0 ≤ sp(x) ≤ 1. In particular, sp(x) = 0 for

minimally sparse vectors with equal non-zero components,
and sp(x) = 1 for maximally sparse vectors with all but
one vanishing components. By a slight abuse of notation,
we also write sp(M) ∈ R

n, meaning sp(·) is applied to
each column of matrix M ∈ R

m×n.
Note that sp(x) is invariant against permutation of the

components of x and satisfies

(xi − xj)

(

∂

∂xi

sp(x)− ∂

∂xj

sp(x)

)

≥ 0 , x ∈ R
n
+ .

(4)
Thus, it is Schur-convex on R

n
+, that is −sp(·) is Schur-

concave [15]. As such, it is well-suited as criterion for best
sparse basis selection [17, 10].

Consequently, Hoyer [8] proposed to use sp(x) =
const. to constrain the set of admissible solutions of (1).
Slightly generalizing this approach to obtain a feasible set
with a non-void interior, we formulate:

min
W,H

‖V −WH‖2F
s.t. 0 ≤W, H

smin
w ≤ sp(W ) ≤ smax

w

smin
h ≤ sp(H>) ≤ smax

h

(5)

where smin
w , smin

h , smax
w , smax

h are user parameters to control
sparsity.

Alternatively, it can be convenient to trade sparsity for
reconstruction accuracy by relaxing the hard constraints:

min
W,H

‖V −WH‖2F − λhe>sp(H>)− λwe>sp(W )

s.t. 0 ≤W, H. (6)

Furthermore, for object recognition it is generally useful
to integrate available information about object labels into
the process of learning image bases [23]. We will see that
with our approach it is particularly efficient to restrict, for
each class i and for each of its vectors j, the coefficients
H∗j to a cone around the class center µi

min
W,H

‖V −WH‖2F
s.t. 0 ≤W, H (7a)

‖µi −H∗j‖2 ≤ λ‖µi‖1 ∀i, ∀j ∈ class(i). (7b)

Given class label information, the µi are completely deter-
mined by the coefficient matrix H . Thus, they are computed
implicitly by the optimization algorithm.

3. Reverse-Convex Optimization

In this Section we describe algorithms for solving the op-
timization problems stated above. They are meant to com-
plement methods based on projected gradient descent that
can be slow or unstable.
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3.1. Second Order Cone Programming

The computational framework we will be working in is
that of second order cone programming [13]. It is con-
cerned with minimizing a linear objective function, subject
to the constraints that several affine functions of the vari-
ables are required to lie in a second order cone Ln+1 ⊂
R

n+1, i.e., in the convex set

Ln+1 =

{(

x
t

)

= (x1, . . . , xn, t)>
∣

∣

∣
‖x‖2 ≤ t

}

. (8)

With this notation, the general form of a second order cone
program (SOCP) is given by

inf
x∈Rn

f>x

s.t.
(

Aix + bi

c>i x + di

)

∈ Ln+1 , i = 1, . . . , m. (9)

SOCPs are convex programs for which efficient, large scale
solvers are available.

3.2. SOCP and Sparseness

Importantly, the sparseness measure (3) and second or-
der cones are closely related: on the non-negative orthant
the vectors no sparser than s are exactly those within the
second order cone

C(s) =

{

x ∈ R
n

∣

∣

∣

(

x
(
√

n− (
√

n− 1)s)−1e>x

)

∈ Ln+1

}

.

(10)
Thus, when only max-sparsity constraints are given, smin

h =
smin

w = 0, program (5) can be written1 as

min
W,H,t

t

s.t.
(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1

W ∈ R
m×r
+ ∩ Cw(smax

w )

H ∈ R
r×n
+ ∩ Ch(smax

h ).

(11)

This is a biconvex program that can be solved by a sequence
of SOCPs that alternately minimize for H and for W . Thus,
NMF with max-sparsity constraints is in principle no more
difficult than ordinary NMF [19].

The presence of min-sparsity constraints, however, com-
plicates matters: they lead to reverse-convex constraints

min
W,H,t

t

s.t.
(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1

W ∈ (Rm×r
+ ∩ Cw(smax

w )) \ Cw(smin
w )

H ∈ (Rr×n
+ ∩ Ch(smax

h )) \ Ch(smin
h ).

(12)

1We abbreviate Cw(s) = {W ∈ R
m×r | W∗i ∈ C(s), ∀i} and

Ch(s) = {H ∈ R
r×n | Hi∗ ∈ C(s),∀i}.

Even when optimizing alternately for H and W the indi-
vidual steps are no longer convex. In this sense, NMF
with min-sparsity constraints is more difficult than ordinary
NMF.

3.3. The RC-Algorithm

In order to solve (12) we start with an arbitrary non-
negative initialization and alternately optimize for W and
for H , while keeping the other constant. Since both opti-
mizations are symmetric, we focus our presentation on the
H step only.

Our algorithm for optimizing H is motivated by results
from global optimization [22] and consists of two com-
plementary steps: one maximizes sparsity subject to the
constraint that the objective value must not increase. Du-
ally, the other optimizes the objective function f(H) =
‖V −WH‖2F under the condition that the min-sparsity con-
straint may not be violated.

Let H0 ∈ ∂Ch(smin
h ) be an initialization on the bound-

ary of the min-sparsity cone. It may be computed by
solving (11) for H without min-sparsity constraints (i.e., a
SOCP) and projecting the solution onto ∂Ch(smin

h ). Akin to
logarithmic penalty functions [24] the projection can be ef-
ficiently implemented by multiplication in the log-domain.
I.e., each element xi in x is exponentiated and replaced
by c · xα

i , with α ≥ 1 chosen appropriately. The factor
c = c(x, α) ensures that the `2-norm of x is not affected by
this transformation.

After initialization we set k ← 0 and, in the first step,
consider the program

max
H

g(H) ≡ min
j
{sp(Hj∗)}

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h )

f(H) ≤ f(Hk)

(13)

that maximizes sparsity of the least sparse Hj∗ subject to
the constraint that the solution may not measure worse than
Hk in terms of the target function f . This is a convex max-
imization problem on a bounded domain. As such, it can
in principle be solved to global optimality [22]. However,
practical algorithms exist for small-scale problems only.

Thus we will content ourselves with a local improvement
that is obtained by replacing sp(x) by its first order Taylor
expansion at Hk, resulting in the SOCP

max
H,t

t

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h ) (14)
(

vec(V >)− (W ⊗ I)vec(H>)
f(Hk)

)

∈ Lrn+1

t ≤ sp(Hk
j∗) + 〈∇Hj∗

sp(Hk
j∗)

>, Hj∗ −Hk
j∗〉 ∀j.
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Let Hsp denote the corresponding solution. Note that Hk

is a feasible point of (14) and the sparsity cone is convex.
Thus, optimization will in fact yield g(H sp) ≥ g(Hk).

In the second step we solve the SOCP

min
H,t

t

s.t.
(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1 (15)
(

Hj∗ −Hsp
j∗

minq∈C(smin

h
) ‖q −Hsp

j∗‖2

)

∈ Ln+1 ∀j

H ∈ R
r×n
+ ∩ Ch(smax

h ).

This problem is identical to (12) restricted to H , except for
the reverse-convex min-sparsity constraint that is replaced
by a convex proximity constraint: each Hj∗ is restricted to
lie within a “save” distance from H sp

j∗ .
In summary, our algorithm for optimizing H consists of

the following steps:

1.) H0 ← solution of (11) projected on ∂C(smin
h ), k ← 0

2.) repeat
3.) Hsp ← solution of (14)

4.) Hk+1 ← solution of (15)
5.) k ← k + 1

6.) until |f(Hk)− f(Hk−1)| ≤ ε

Akin to [22], convergence to a local optimum can be proven
under mild restrictions (notably, that W is not degener-
ate). Proof and remarks regarding alternative optimization
schemes will be presented in an extended paper.

3.4. Relaxed Formulation

The relaxed form of sparsity-controlled NMF described
in (6) is optimized similarly by linearizing sp(x) around
Hk, yielding the SOCP

min
H,t,s

t− λhs

s.t.
(

vec(V >)− (W ⊗ I)vec(H>)
t

)

∈ Lrn+1 (16)

s ≤ sp(Hk
j∗) + 〈∇Hj∗

sp(Hk
j∗)

>, Hj∗ −Hk
j∗〉 ∀j

H ∈ R
r×n
+ .

Thus, in order to solve (6) for H we iteratively solve in-
stances of (16) until convergence.

3.5. Exploiting Information from Class Labels

The supervised variant (7) of the NMF problem is readily
solved by the RC algorithm since (7b) translates, for each
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Figure 2: Paatero experiments. The data set is displayed in
Fig. 2(a) and 2(b): Gaussian and exponential distributions
are multiplied to yield matrix V . In the experiments, a small
amount of Gaussian noise η ∼ N (0, 0.1) is added to the
product. The results for different values of the min-sparsity
constraint are shown in Fig. 2(c) and 2(d): Only an active
sparsity constraint makes recovery of W and H successful.

class i and for each coefficient vector H∗j belonging to class
i, into a second order constraint

(

1/niH(i)e−Hj∗
λ/nie

>H(i)e

)

∈ Ln+1, ∀i, ∀j ∈ class(i). (17)

Here, the r × ni-matrix of coefficients belonging to class
i is abbreviated H(i) and we recognize µi = 1/niH(i)e.
Adding these constraints to (14) and (15) yields an algo-
rithm for solving supervised NMF.

3.6. Dealing with Image Transformations

We assume a finite set of linear transformations mapping
the input data V ∈ R

m×n into Tθ(V ) ∈ R
m×n. θi specifies

the transformations active for image i ∈ {1, . . . , m}.
After each iteration we greedily replace the image data

V by its most probable transformation, i.e., setting V ←
Tθ∗(V ) with

θ∗ = argmin
θ
‖Tθ(V )−W kHk‖2F . (18)

As long as the identity is part of the possible transforma-
tions this operation never increases the objective value to
be minimized. It also does not affect convergence. How-
ever, for large images and many possible transformations
it can be a very slow operation to compute. In this case,
variational techniques and FFT offer greatly improved per-
formance [3].
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Table 1: Performance comparison. We run the reverse-convex algorithm (rca) and the projected gradient descent (pgd)
to compute sparse decompositions of the digit data set. Runtime (sec.) and residual error ‖V −WH‖2F are reported. rca
operates faster than pgd while achieving similar accuracy.

sparsity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time rca 23.97 25.10 31.80 53.76 58.14 56.27 47.07 49.07 37.55
time pgd 286.61 961.21 433.06 53.92 87.02 408.22 73.49 228.61 1223.56
quotient 11.96 38.29 13.62 1.00 1.50 7.26 1.56 4.66 32.59
error rca 0.82 0.76 0.73 0.73 0.78 0.91 0.99 1.07 1.12
error pgd 0.85 0.79 0.74 0.72 0.77 0.88 0.99 1.07 1.12
quotient 1.04 1.03 1.02 0.98 0.99 0.97 0.99 1.00 1.00

4. Experiments

In this Section we show that sparseness-controlled,
transformation-invariant NMF bases are useful for com-
puter vision and compare the RC algorithm to projected gra-
dient descent.

4.1. Analyzing Synthetic Data

To examine the performance of the sparsity-controlled
NMF algorithm we repeated an experiment suggested by
Paatero [18]: He considered a synthetic dataset consist-
ing of products of Gaussian and exponential distributions
designed to resemble data from spectroscopic experiments
in chemistry and physics (Fig. 2(a)–(b)). This data set is
not easily analyzed: without prior knowledge, NMF is re-
ported to fail to recover the original factors in the dataset
(Fig. 2(c)). As a remedy, Paatero implemented a “target
shape” extension to NMF. Fig. 2(d) shows that with a min-
sparsity constraint on W our algorithm finds the correct fac-
torization.

4.2. Comparison with Established Algorithms

To see how the reverse convex algorithm (rca) com-
pares against an established method we computed sparsity-
controlled decompositions into r = 4 basis functions for a
subset of the USPS handwritten digits data set using rca and
projected gradient descent (pgd) as proposed in [8]. For dif-
ferent choices of sparseness we report runtime and residual
error in Tab. 1. Note that the stopping criterion used was
different for rca and for pgd: rca stopped when after a full
iteration the objective value did not improve at least by a
constant, the pgd implementation used2 stopped as soon as
the norm of the gradient was smaller than some ε. As the er-
ror measurements shown in Tab. 1 demonstrate, both stop-
ping criteria yield comparable results. Regarding running

2We used the pgd code kindly provided by the author of [8], and re-
moved all logging and monitoring parts to speed up calculation. Our SOCP
solver was Mosek 3.2 from MOSEK ApS, Denmark, running under Linux.

time we see that rca was faster in most cases and showed
much less variation between individual runs.

4.3. Transformation-Invariant Image Bases

In Fig. 1 we show the results of transformation-invariant
NMF (TNMF) applied to the artificial data described in [4]:
four image primitives are translated using circular shifts in
both image dimensions and Gaussian noise is added. The
resulting training data set contained 1000 randomly trans-
lated images. For these, we learned image based using a
feathering mask to encourage centered bases3. The result-
ing image basis not only models the data well, it also has
a nice complementary structure: even without additional
sparseness constraints it tends to avoid modeling the same
image location multiple times [11], leading to a true parts-
based representation. A possible explanation for this behav-
ior is that the parts-based representation offers more degrees
of freedom, making a better fit to the data in the presence
noise.

In a more realistic scenario we learned image bases for
a skyscraper image (Fig. 3): while NMF correctly captures
the dominant horizontal and vertical lines, it is forced to
model the same structure multiple times to fit the data well.
TNMF removes this burden, allowing for much finer detail
to appear in the basis functions. In fact, looking closely
one can recognize parts of the building and key architectural
structures being modeled.

We also used the PCA and the TNMF image bases for
reconstruction: the original image was divided into 20× 20
patches and for each patch we determined the optimal trans-
lation w.r.t. the given image bases. The patches were then
reconstructed and assembled to form images 3(b) and 3(c).
As expected, translation-invariance ensures that the TNMF
reconstruction looks notably sharper. It is also closer to the
original image: the Frobenius norm of the residual image
was about 7% larger for the PCA reconstruction than for
the TNMF reconstruction.

3I.e., each basis function was weighted with a Gaussian s.t. pixels near
the boundary had slightly less influence than pixels near the center.
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(a) Original (b) TNMF reconstruction (c) PCA reconstruction

PCA:

NMF:

TNMF:

Figure 3: Image modeling. Different image bases learned for image 3(a) are shown. PCA learns global properties of image
variation. The individual base images carry no apparent semantic meaning. NMF learns sparse, localized image features,
but represents the dominant image elements (horizontal and vertical bars) multiple times. Transformation-invariant NMF
(TNMF) is less redundant and captures very detailed image structure which can sometime be recognized as parts from the
building. In Fig. 3(b) and 3(c) reconstructions for TNMF and PCA are displayed. The TNMF reconstruction appears sharper
and is slightly more accurate (see text).
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Figure 4: Recognition and segmentation. Based on sparse
NMF, a model for the digits 2 – 5 (first columns) is built
and presented with superimposed digits (third column) af-
ter training. The model consistently assigns the highest
probabilities (fourth column) to the digits forming the im-
age. This shows that NMF models can be relatively stable
against disturbances. A subsequent local optimization re-
trieves the original digits (last columns).

4.4. Recognition with Conditional MaxEnt

It has previously been reported that localized NMF is
relatively robust against occlusions and disturbances [12].
To verify this claim for sparse NMF we repeated an image
recognition experiment, previously approached with credi-

bility networks [5]: a model for the individual digits 2,3,4,5
from the USPS digit database was built, then new, more
complicated, images were constructed by superimposing
images from two different digits (Fig. 4). Our model con-
sisted of sparse NMF codes (r = 20, smin

w = 0.6) for the
single digits and a conditional maximum entropy (cMax-
Ent) classifier p(y|h) for class labels y and given coeffi-
cients h, using mean coefficient values and distance to ran-
domly chosen reference coefficients as features [16]. For
each combined image we computed h and evaluated p(y|h)
for y ∈ {2, 3, 4, 5}. On a test data set we counted how often
the two top-ranking digits, w.r.t. p(y|h), were the correct
digits composing the image.

Five self-selected human subjects (students) achieved
classification rates between 65% and 80% (mean 75%) on
our data. The NMF-cMaxEnt classifier described above
scored 77% correct on 500 test samples. For the more com-
plex credibility networks a recognition rate of 78.3% is re-
ported [5] on a test set of 120 binarized images.

Once a decision is made for two digits y1, y2, we can vi-
sualize the corresponding segmentation by solving the non-
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(a) NMF: W ∗ δ(h > ε) (b) PCA: W ∗ δ(|h| > ε)

Figure 5: Robustness against quantization. The 64 faces corresponding to previously learned 6bit NMF/PCA image codes
after quantization of the coefficients. The top left image corresponds to the binary coefficient vector #b000000, the bottom
right image to #b111111. The NMF faces suffer less from quantization than their PCA counterparts.

convex program

max
h1,h2

p(y1|h1)p(h1) · p(y2|h2)p(h2)

s.t. h = h1 + h2

0 ≤ h1, h2

(19)

i.e., we factor the reconstruction coefficient h into h1 and h2

such that the probability of the detected digits is maximized.
Depending on the features used for training cMaxEnt and
the form of the prior densities p(h) this can be a very dif-
ficult problem. It turns out that for our choice of features
and a Parzen estimator for p(h) a conjugate gradient search
already yields meaningful reconstructions (Fig. 4).

4.5. Modeling a Low-Entropy Image Class

Human faces, aligned, cropped and evenly lit, lead to
highly structured images with relatively low entropy. With
such images, sparse NMF appears robust against quantiza-
tion: we learned a sparse image code (r = 6, smin

h = 0.3)
for face images [1] and a PCA code for comparison. Then
we enumerated possible reconstructions by setting each en-
try of the coefficient vector to 0 or to 1. The resulting
26 = 64 images are shown in Fig. 5: while most NMF “re-
constructions” look remarkably natural the corresponding
PCA images mostly suffer severe degradation.

4.6. Supervised Training

To show that the supervised label constraints (7b) can be
useful we trained NMF codes (r = 4) on only 100 sam-
ples from the handwritten digit data described above. We
used different values for the parameter λ and a very sim-
ple conditional maximum entropy model p(y|h) with mean
coefficient values E[hi] as only features for classification.
The number of errors on a 300 sample test dataset is given
below:

λ 1e4 1e2 1 1e-2 1e-4 1e-6
#errors 108 82 75 60 58 56

When λ is large, i.e., the supervised label constraint is in-
active, the error is about 36% (108 out of 300 samples).
This is slightly worse than a corresponding PCA basis (95
errors) would achieve. As the label constraint is strength-
ened the classification performance improves and finally is
almost twice as good as in the unsupervised case.

5. Summary and Conclusions

We introduced a fast and reliable optimization scheme
for sparse non-negative matrix factorization. It treats
sparsity-constrained NMF as a reverse convex program-
ming problem that is solved by a series of second order cone
programs. Unlike optimization schemes relying on the gra-
dient descent idea there are no parameters to be chosen, thus
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overcoming the traditional trade-off between speed and re-
liability w.r.t. a learning rate.

By adding or removing individual constraints we exer-
cise very precise control over sparseness and generalize the
original formulation of sparse NNF [8] along multiple di-
rections. For instance, we added supervised constraints
keeping coefficient vectors belonging to the same object
class within a cone around their mean. In an experiment
this constraint already doubled the recognition rate com-
pared to classical NMF or PCA. In a different direction, we
relaxed the strict sparseness constraints by penalizing non-
sparseness in the objective function similar to [17]. With
NMF, this again leads to a sequence of convex programs.

Last but not least, the stable performance of the con-
vex programs allows for intervening optimization of im-
age transformations: by factoring out operations like trans-
lation, rotation or scaling very compact, qualitatively new
image representations emerge that robustly encode image
classes by local parts.

Future work concerns integration of additional a priori
knowledge in form of new constraints on the feasible set.
Also, the encouraging results w.r.t. quantization robustness
lead us to investigate discrete probability models for well-
defined image classes.
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