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Abstract. Reverse-convex programming (RCP) concerns global opti-
mization of a specific class of non-convex optimization problems. We
show that a recently proposed model for sparse non-negative matrix fac-
torization (NMF) belongs to this class. Based on this result, we design
two algorithms for sparse NMF that solve sequences of convex second-
order cone programs (SOCP).

We work out some well-defined modifications of NMF that leave the
original model invariant from the optimization viewpoint. They consid-
erably generalize the sparse NMF setting to account for uncertainty in
sparseness, for supervised learning, and, by dropping the non-negativity
constraint, for sparsity-controlled PCA.

1 Introduction and Related Work

Reverse-convex programming (RCP) is a powerful framework from global op-
timization which, among others, subsumes d.c. programming [1]. Motivated by
a recently proposed model for sparse non-negative matrix factorization [2], we
employ RCP for solving sparsity-controlled NMF.

NMF was originally proposed to model processes in the physical sciences [3,
4]. In recent years, it has become increasingly popular in machine learning, signal
processing, and computer vision as well [5, 6, 7]. One reason for this popularity is
that NMF codes naturally favor sparse, parts-based representations [8, 9] which
in the context of recognition can be more robust than non-sparse, global features.
Especially for computer vision applications, where robustness against occlusion
is a constant concern, researchers suggested various extensions of NMF in or-
der to enforce very localized representations [10, 11]. Locality is closely related
to sparseness which is a desirable property from a machine-learning perspec-
tive [12, 13] as well as from biological considerations [14]. We found (Sec. 3) that
a particularly accurate sparsity measure introduced in [2] is accurately modeled
using second order conic constraints.

From a computational viewpoint, second order conic constraints are attrac-
tive: Being convex, efficient and robust solvers are available [15, 16] that cover
a surprisingly large variety of problems [17]. However, with sparsity-controlled
NMF difficulties arise since the conic constraints are reversed : Admissible are
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points lying outside a second order cone. For such reverse-convex programs
solvers were proposed that find a globally optimal solution [18, 19, 1]. However,
to the best of our knowledge, there currently exists no globally optimal algo-
rithm that is practical for solving the large-scale problems common in computer
vision and pattern recognition.

In this paper we exploit the geometry of the sparsity-controlled NMF opti-
mization problem to derive two algorithms that efficiently yield locally optimal
solutions of the respective reverse-convex problems. The algorithms complement
existing solvers based on projected gradient descent [2]. However, with our ap-
proach, there is no need to select optimization parameters (e.g., stepsize) and
performance is superior in some relevant situations (Sec. 6). In addition, the
reverse-convex framework allows to easily extend the sparsity-controlled NMF
model by additional constraints. As proof-of-concept we show how additional
convex constraints can account for prior knowledge available in supervised clas-
sification. Along a similar line, we present an algorithm for sparsity-controlled
PCA [20, 21, 22] that uses reverse-convex solvers as subroutine.

In summary, the contributions of this paper1 are

– two algorithms based on reverse-convex optimization for solving variations
of the NMF problem,

– extensions of the sparsity-controlled NMF model to account for prior knowl-
edge and uncertainty in sparseness, and

– a reverse-convex algorithm for sparsity-controlled PCA.

Outline. In Section 2 we present the models considered in this paper. This
includes the original model by Hoyer [2] as well as some useful extensions. In
Section 3 we explain how, precisely, the sparsity measure used relates to second
order cones. Section 4 presents the tangent-plane approach, a fast and prac-
tical algorithm based on first-order approximation of the sparsity constraints.
Section 5 gives an algorithm based on a dual optimization idea. We present
experimental results in Section 6 before we conclude in Section 7.

Notation. For any m × n-matrix M , we denote its i-th column by M∗i, and
its row by Mi∗. Unless stated otherwise, V ∈ R

m×n
+ is a non-negative ma-

trix containing n data points, and W ∈ R
m×r
+ is a corresponding basis with

r-dimensional coefficients H ∈ R
r×n
+ . ‖x‖p denotes the �p-norm for vectors x,

and ‖M‖F the Frobenius norm for matrices: ‖M‖F =
√

tr(M�M). Further, ⊗
denotes Kronecker’s matrix product and � the element-wise matrix multiplica-
tion. vec(M) is the concatenation of the columns of M . Special matrices we will
encounter are Ir×r, the r × r identity matrix, and Ea×b, the a × b matrix with
all entries equal to unity. Finally, e is the vector with entries equal to unity.

1 Note that a shorter paper with focus on Computer Vision appears in ICCV. In this
shorter paper translation-invariant image bases were treated, but the tangent-plane
approach (Sec. 4) and the sparse PCA algorithm (Sec. 5.1) as well as some theoretical
and experimental results had to be omitted due to lack of space.
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(a) True W and H .
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(b) NMF, smin
w = 0.0.
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(c) NMF, smin
w = 0.6.

Fig. 1. Paatero experiments. The data set is displayed in Fig. 1(a): Gaussian and
exponential distributions are multiplied to yield matrix V . In the experiments, a small
amount of Gaussian noise η ∼ N (0, 0.1) is added to the product. The results for
different values of the min-sparsity constraint are shown in Fig. 1(b) and 1(c): Only a
non-trivial sparsity constraint makes recovery of W and H successful.

2 Sparsity Control for NMF and PCA

2.1 Sparse NMF

We consider the NMF optimization problem:

min
W,H

‖V − WH‖2
F

s.t. 0 ≤ W, H.
(1)

Although NMF codes are often sparse, it has been suggested to control spar-
sity by more direct means. This can lead to considerably improved basis functions
(Fig. 1). We will employ the following sparseness measure recently introduced
in the NMF context by Hoyer [2]:

sp(x) :=
1√

n − 1

(√
n − ‖x‖1

‖x‖2

)
, x ∈ R

n \ {0}. (2)

Since 1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1, (2) is bounded: 0 ≤ sp(x) ≤ 1. In particular,

sp(x) = 0 for minimal sparse vectors with equal non-zero components, and
sp(x) = 1 for maximally sparse vectors with all but one vanishing components.
By a slight abuse of notation, we will sometimes write sp(M) ∈ R

n, meaning
sp(·) is applied to each column of matrix M ∈ R

m×n.
Originally, it was proposed to use sp(x) = const. to constrain the set of

admissible solutions of (1) [2]. Slightly generalizing, we formulate:

min
W,H

‖V − WH‖2
F

s.t. 0 ≤ W, H

smin
w ≤ sp(W ) ≤ smax

w

smin
h ≤ sp(H�) ≤ smax

h ,

(3)
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where smin
w , smin

h , smax
w , smax

h are user parameters to control sparsity. To obtain a
feasible set with non-void interior, we usually choose smin

h/w strictly smaller than
smax

h/w.
Alternatively, it can be convenient to trade sparsity for reconstruction accu-

racy by relaxing the hard constraints:

min
W,H

‖V − WH‖2
F − λhe�sp(H�) − λwe�sp(W )

s.t. 0 ≤ W, H.
(4)

Furthermore, for object recognition it is generally useful to integrate available
information about object labels into the process of learning basis functions [11].
With our approach it is particularly efficient to restrict, for each class i and for
each of its vectors j, the coefficients Hj∗ to a cone around the class center µi

min
W,H

‖V − WH‖2
F

s.t. 0 ≤ W, H (5a)
‖µi − Hj∗‖2 ≤ λ‖µi‖1 ∀i, ∀j ∈ class(i). (5b)

Given class label information, the µi are completely determined by the coefficient
matrix H . Thus, they are computed implicitly during optimization.

2.2 Sparse PCA

For data that is non-negative by nature, e.g., image data, certain physical prop-
erties, probabilities, or equities, NMF is particularly well-suited. However, in
situations where negative values occur we want to allow for negative bases and
coefficient vectors as well. This leads to a sparsity-controlled setting similar to
PCA [20, 21, 22]. In particular, the problem considered reads

min
W,H

‖V − WH‖2
F

s.t. smin
w ≤ sp(W ) ≤ smax

w

smin
h ≤ sp(H�) ≤ smax

h ,

(6)

which equals (3) except for the non-negativity constraints that are omitted.

3 Sparsity and Second Order Cones

In this section we show how our sparsity measure relates to second order cones.
Through their close link algorithms based on convex programming become useful
for sparsity-controlled NMF.

The second order cone Ln+1 ⊂ R
n+1 is the convex set [17]:

Ln+1 :=
{(

x
t

)
= (x1, . . . , xn, t)�

∣∣
∣ ‖x‖2 ≤ t

}
, (7)
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The problem of minimizing a linear objective function, subject to the constraints
that several affine functions of the variables are situated in Ln+1, is called a
second order cone program (SOCP):

inf
x∈Rn

f�x

s.t.
(

Aix + bi

c�i x + di

)
∈ Ln+1 , i = 1, . . . , m (8)

Note, that linear constraints and, in particular, the condition x ∈ R
n
+ are impor-

tant special cases. Our approach to sparsity-constrained NMF, to be developed
subsequently, is based on this class of convex optimization problems for which
efficient and robust solvers exist in software [15, 16].

On the non-negative cone we can model the sparseness-measure (2) using the
family of convex sets parametrized by sparsity-parameter s ∈ [0, 1]:

C(s) :=
{

x ∈ R
n

∣∣
∣

(
x

e�x/cn,s

)
∈ Ln+1

}
, cn,s :=

√
n − (

√
n − 1)s. (9)

Inserting the bounds 0 ≤ sp(x) ≤ 1 for s, we obtain

C(0) =
{
λe , 0 < λ ∈ R

}
and R

n
+ ⊂ C(1). (10)

This raises the question as to when we must impose non-negativity constraints
explicitly.

Proposition 1. The set C(s) contains non-positive vectors x 	= 0 if:
√

n −
√

n − 1√
n − 1

< s ≤ 1 , n ≥ 3 (11)

Proof. We observe that if x ∈ C(s), then λx ∈ C(s) for arbitrary 0 < λ ∈ R,
because ‖λx‖2 − e�(λx)/cn,s = λ(‖x‖2 − e�x/cn,s) ≤ 0. Hence it suffices to
consider vectors x with ‖x‖2 = 1. According to definition (9), such vectors tend
to be in C(s) the more they are aligned with e. Therefore, w.l.o.g., put xn = 0
and xi = (n − 1)−1/2 , i = 1, . . . , n − 1. Then x ∈ C(s) if cn,s <

√
n − 1, and

the result follows from the definition of cn,s in (9). Finally, for n = 2 the lower
bound for s equals 1, i.e., no non-positive vectors exist for all admissible values
of s. ��

This argument shows that C(s′) ⊆ C(s) for s′ ≤ s. To represent the feasible
set of problem (3), we combine the convex non-negativity condition with the
convex upper bound constraint:

{
x ∈ R

n
+

∣
∣ sp(x) ≤ s

}
= R

n
+ ∩ C(s) , (12)

and impose the non-convex lower bound constraint by subsequently removing
C(s′): {

x ∈ R
n
+

∣
∣ s′ ≤ sp(x) ≤ s , s′ < s

}
=

(
R

n
+ ∩ C(s)

)
\ C(s′) (13)
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To reformulate (3), we define accordingly, based on (9):

Cw(s) :=
{
W ∈ R

m×r
∣
∣ W∗i ∈ C(s) , i = 1, . . . , r

}
(14)

Ch(s) :=
{
H ∈ R

r×n
∣
∣ Hi∗ ∈ C(s) , i = 1, . . . , r

}
(15)

As a result, the sparsity-constrained NMF problem (3) now reads:

min
W,H

‖V − WH‖2
F

s.t. W ∈
(
R

m×r
+ ∩ Cw(smax

w )
)

\ Cw(smin
w )

H ∈
(
R

r×n
+ ∩ Ch(smax

h )
)

\ Ch(smin
h )

(16)

This formulation makes explicit that enforcing sparse NMF solutions introduces
a single additional reverse-convex constraint for W and H , respectively. Conse-
quently, not only the joint optimization of (W, H) is non-convex, but individual
optimization of W and H are also.

4 Tangent-Plane Approach

In this section, we present an optimization scheme for sparsity-controlled NMF
which relies on linear approximations of the reverse-convex constraint in (16).
We process W and H alternately, leaving one fixed while optimizing the other.
For presentation, we consider the H-step:

min
H

f(H) = ‖V − WH‖2
F

s.t. H ∈
(
R

r×n
+ ∩ Ch(smax

h )
)

\ Ch(smin
h ).

(17)

The W -step is analogous. Throughout this paper, we assume smin
h < smax

h , i.e.,
the interior of the feasible set is non-empty. Furthermore, we assume that every
basis vector W∗i contains at least one non-zero entry.

Step one. The algorithm starts by setting smin
h = 0 in (17), and by computing

the global optimum of the convex problem: min f(H), H ∈ R
r×n
+ ∩ Ch(smax

h ),
denoted by H̃0. Rewriting the objective function:

f(H) = ‖V � − H�W�‖2
F

= ‖vec(V �) − (W ⊗ I)vec(H�)‖2
2 ,

(18)

we observe that H̃0 solves the SOCP:

min
R

t , H ∈ R
r×n
+ ∩ Ch(smax

h ) ,

(
vec(V �) − (W ⊗ I)vec(H�)

t

)
∈ Lr·n+1.

(19)
Note that H̃0 will in general be infeasible w.r.t. the original problem because
the reverse-convex constraint of (17) is not imposed in (19). In case H̃0 already
is feasible the reverse-convex min-sparsity constraint is superfluous and the al-
gorithm terminates returning H̃0 as solution.
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Table 1. Tangent-plane approximation algorithm in pseudocode

1.) H0 ← solution of (19), J0 ← ∅, k ← 0
2.) repeat

3.) H̃k ← Hk

4.) repeat

5.) Jk ← Jk ∪ {j ∈ 1, . . . , r : H̃k
j∗ ∈ Ch(smin

h )}
6.) tkj ← ∇C(smin

h )(π(H̃k
j∗)) ∀j ∈ Jk

7.) H̃k ← solution of (20) replacing Hk by H̃k

8.) until H̃k
j∗ feasible

9.) Hk+1 ← H̃k, Jk+1 ← Jk, k ← k + 1

10.) until |f(Hk) − f(Hk−1)| ≤ ε

Step two. Using an iteration counter k initialized to 0 we determine in step two
the index set Jk ⊆ {1, . . . , r} of those vectors H̃k

j∗ violating the reverse-convex
constraint, that is H̃k

j∗ ∈ C(smin
h ). Let π(H̃k

j∗) denote the projections of H̃k
j∗

onto ∂C(smin
h ), ∀j ∈ Jk, and tkj the normals to Ch(smin

h ) at these points, and Hk

the matrix H̃k rectified accordingly. Given Jk, we re-solve (19) with additional
linear constraints enforcing feasibility of each Hk

j∗ , j ∈ Jk:

min
R

t , H ∈ R
r×n
+ ∩ Ch(smax

h ) ,

(
vec(V �) − (W ⊗ I)vec(H�)

t

)
∈ Lr·n+1

〈
tkj , Hj∗ − π(Hk

j∗)
〉

≥ 0 , ∀j ∈ Jk (20)

Geometrically, the linear constraints force Hk
j∗, j ∈ Jk onto the non-negative side

of the plane tangential to the min-sparsity cone running through π(Hk
j∗). Thus,

in the solution H̃k+1 of (20) all H̃k+1
j∗ , j ∈ Jk, will be feasible. However, it is

possible that new vectors H̃k+1
j∗ corresponding to unconstrained indices j 	∈ Jk

have become infeasible. When this happens we augment Jk accordingly, adjust
the tangent planes to reflect the new position of H̃k+1

j∗ , and re-solve (20) until
the solution is feasible. The result is denoted by Hk+1, the corresponding index
set by Jk+1. Finally, we increment the iteration counter: k ← k + 1 and check
whether Hk+1 satisfies the termination criterion

∣∣f(Hk+1) − f(Hk)
∣∣ ≤ ε. If it

does not we continue with step two. The algorithm is summarized in Tab. 1.

4.1 Convergence Properties

In the following discussion we will use matrices T k = (tkj )j∈J that have tangent
plane vector tkj as j-th column when j ∈ Jk and zeros elsewhere.
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Proposition 2. If the cone constraints are regular2 the tangent-plane algorithm
yields a sequence H1, H2, . . . of feasible points, every cluster point of which is a
local optimum.

Proof. (Sketch). Our proof follows [18–Prop. 3.2]. First, note that for every k >
0 the solution Hk of iteration k is a feasible point for the SOCP solved in
iteration k + 1. Therefore, {f(Hk)}k=1,... is a decreasing sequence, bounded
from below and thus convergent. By assumption, no column of W ≥ 0 equals
the zero vector. Then, {H : f(H) ≤ f(Hk)} is bounded for each k. Consequently,
the sequence {Hk}k=1,... of solutions of (20) and the corresponding sequences
{T k}k=1,... of tangent planes are bounded and contain converging subsequences.
Let {Hkν }ν=1,... and {T kν }ν=1,... be subsequences converging to cluster points
H̄ and T̄ .

Because Hkν is the global solution of a convex program we have

f(Hkν ) ≤ f(H), ∀H ∈ C(smax
h ) with T kν�H ≥ 0, (21)

and in the limit ν → ∞

f(H̄) ≤ f(H), ∀H ∈ C(smax
h ) with T̄�H ≥ 0. (22)

We assumed the tangent plane constraints are regular. Then the constraints
active in T̄ correspond to entries H̄j∗ ∈ ∂Ch(smin

h ), j ∈ J . According to (22) there
is no feasible descent direction at H̄ and, thus, it must be a stationary point.
Since the target function is quadratic positive-semidefinite it is an optimum. ��

While the individual optimization of H for given W converges (and vice
versa), the same cannot be claimed for the alternating sequence of optimizations
in W and H necessary to solve (3): The intervening optimization of W prevents
us from deriving a bound on f(H) from a previously found locally optimal H .
In rare cases, this can lead to undesirable oscillations.

4.2 Practical Remarks

Two things are remarkable regarding the tangent-plane algorithm: First, multiple
tangent-planes with reversed signs can also be used to approximate the convex
max-sparsity constraints. Then (20) reduces to a quadratic programming (QP)
problem. Except for linear programming, QP solvers are often among the most
efficient mathematical programming codes available. Thus, a speedup might be
gained by using QP instead of SOCP solvers, in particular, for the important
case when no max-sparsity constraints are specified (i.e., smax

h = smax
w = 1).

A second remark concerns the termination criterion (step 10 in Tab. 1).
While it can be chosen almost arbitrarily rigid, an overly small ε does not help
in the overall optimization w.r.t. W and H . As long as, e.g., W is known only
approximately, there is no need to compute the corresponding H to the last
digit. In Sec. 6 we chose relatively large ε so that the outer loop (steps 2 to 10
in Tab. 1) executed only once or twice before the variable was switched.

2 According to Proposition 1 this is the case iff s �=
√

n−
√

n−1√
n−1 and the interior of the

feasible set is non-empty.
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5 Sparsity-Maximization Approach

In this section we present an algorithm that alternately maximizes sparsity and
minimizes the objective function, in effect replacing the reverse-convex constraint
by a sequence of convex proximity constraints. Unlike the tangent-plane ap-
proach presented above, this algorithm can easily be employed to yield monoton-
ically decreasing sequences of objective values in H and in W , i.e., f(Hk, W k) ≥
f(Hk+1, W k) ≥ f(Hk+1, W k+1) ≥ · · · , with f(H, W ) = ‖V −WH‖2

F . This rules
out oscillations that are rare, but cumbersome to avoid with the tangent-plane
approach.

5.1 Sparse NMF

In order to solve (16) we again alternately optimize for W and for H , keep-
ing the other constant. Since both optimizations are symmetric, we focus our
presentation on the H step.

Our algorithm is motivated by results from global optimization [18] and con-
sists of two complementary steps: One maximizes sparsity subject to the con-
straint that the objective value must not increase. Dually, the other optimizes
the objective function f(H) = ‖V − WH‖2

F under the condition that the min-
sparsity constraint may not be violated.

Initialization. Let H0 ∈ ∂Ch(smin
h ) be an initialization on the boundary of

the min-sparsity cone. It may be computed by solving (19) for H , i.e., ignoring
min-sparsity constraints and projecting the solution onto ∂Ch(smin

h ). Set k ← 0.

Step one. In the first step, consider the program

max
H

g(H) = min
j

{sp(Hj∗)}

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h )

f(H) ≤ f(Hk)

(23)

that maximizes sparsity of the least sparse Hj∗ subject to the constraint that
the solution may not measure worse than Hk in terms of the target function f .
This is a convex maximization problem on a bounded domain. As such, it can in
principle be solved to global optimality [18]. However, practical algorithms exist
for small-scale problems only.

Thus, we will content ourselves with a local improvement that is obtained by
replacing sp(x) by its first order Taylor expansion at Hk, resulting in the SOCP

max
H,t

t

s.t. H ∈ R
r×n
+ ∩ Ch(smax

h ) (24)
(

vec(V �) − (W ⊗ I)vec(H�)
f(Hk)

)
∈ Lrn+1

t ≤ sp(Hj∗) + 〈∇Hj∗ sp(Hk
j∗)

�, Hj∗ − Hk
j∗〉 ∀j.
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Table 2. Sparsity-maximization algorithm in pseudocode

1.) H0 ← solution of (19) projected on ∂Ch(smin
h ), k ← 0

2.) repeat
3.) Hsp ← solution of (24)

4.) Hk+1 ← solution of (25)
5.) k ← k + 1

6.) until |f(Hk) − f(Hk−1)| ≤ ε

Let Hsp denote the corresponding solution. Note that Hk is a feasible point
of (24) and the sparsity cone is convex. Thus, optimization will in fact yield
g(Hsp) ≥ g(Hk).

Step two. In the second step we solve the SOCP

min
H,t

t

s.t.
(

vec(V �) − (W ⊗ I)vec(H�)
t

)
∈ Lrn+1 (25)

(
Hj∗ − Hsp

j∗
minq∈C(smin

h ) ‖q − Hsp
j∗‖2

)
∈ Ln+1 ∀j

H ∈ R
r×n
+ ∩ Ch(smax

h ).

This problem is identical to (16) restricted to H , except for the reverse-convex
min-sparsity constraint that is replaced by a convex proximity constraint: Each
Hj∗ is restricted to lie within a “save” distance from Hsp

j∗ .
Akin to [18], convergence to a local optimum can be proven under mild

restrictions (notably, that W is not degenerate and contains at least one non-
zero entry in each column). A proof will be presented in an extended paper.

Assuming convergence for a moment, it is easy to see that for any given
feasible H0 the algorithm terminates with an Hk that performs at least as well
as H0 in terms of f , i.e., f(Hk) ≤ f(H0). This is, because in each iteration i the
current estimate Hi is a feasible point of the convex program (25) minimizing
f so that f(Hi+1) ≤ f(Hi), i = 0, . . . , k − 1. When the sparsity-maximization
algorithm runs multiple times, alternately optimizing H for fixed W and vice
versa, one will, after the first iteration, not initialize the algorithm by solving (19)
and projecting subsequently, but use the current estimates for H and W as
initializations. This way, one obtains a monotonically decreasing sequence of
objective values ‖V − W kHk‖2

F .

Relaxed Formulation. The relaxed form of sparsity-controlled NMF described
in (4) is optimized similarly by linearizing sp(x) around Hk, yielding the SOCP
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min
H,t,s

t − λhe�s

s.t.
(

vec(V �) − (W ⊗ I)vec(H�)
t

)
∈ Lrn+1 (26)

sj ≤ sp(Hk
j∗) + 〈∇Hj∗sp(Hk

j∗)
�, Hj∗ − Hk

j∗〉 ∀j

H ∈ R
r×n
+ .

Thus, in order to solve (4) for H we iteratively solve instances of (26) until
convergence.

Exploiting Information from Class Labels. The supervised variant (5) of
the NMF problem is readily solved by above algorithms since (5b) translates,
for each class i and for each coefficient vector Hj∗ belonging to class i, into a
second order constraint

(
1/niH(i)e − Hj∗

λ/nie
�H(i)e

)
∈ Ln+1, ∀i, ∀j ∈ class(i). (27)

Here, the r × ni-matrix of coefficients belonging to class i is abbreviated H(i)
and we recognize µi = 1/niH(i)e. Adding these constraints to, e.g., (24) and (25)
yields an algorithm for solving supervised NMF.

5.2 Sparse PCA

Next, we show how to optimize for H when both, W and H may contain negative
entries. The idea is that we can factorize any non-zero matrix M ∈ R

m×n into
M± ≡ sign(M) ∈ R

m×n and M+ ∈ R
m×n
+ s.t. M = M± � M+. Since sparsity is

not affected by sign changes or multiplicative constants we observe

sp(M) = sp(M+), (28)

i.e., it is sufficient to exercise sparsity control on the non-negative part of x. Thus,
the sparsity-controlled NMF algorithms presented above can be used on W+ and
H+. Finally, for those entries in W and H that are close to 0 we subsequently
optimize signs using convex programming.

Step one. E.g., in the H-step we first optimize for H+, by solving

min
H+,t

t

s.t.
(

vec(V ) − ((I ⊗ W ) � HS)vec(H+)
t

)
∈ Lrn+1

H+ ∈ (Rr×n
+ ∩ Ch(smax

h )) \ Ch(smin
h )

(29)

using any of the techniques presented above. Note that (29) is identical to the
NMF case, i.e., it minimizes the original problem for H = H± � H+ but the
signs of H are not allowed to change. The matrix HS is given by

HS = (Ir×r ⊗ En×n) � (vec(H±)e�)�. (30)



Reverse-Convex Programming for Sparse Image Codes 611

Step two. In a second step, we solve for H± using the convex program

min
t,H±∈Hε

t

s.t.
(

vec(V ) − ((I ⊗ W ) � HA)vec(H±)
t

)
∈ Lrn+1

− 1 ≤ H± ≤ 1,

(31)

where HA is constructed from H+ analogously to (30):

HA = (Ir×r ⊗ En×n) � (vec(H+)e�)�. (32)

Hε denotes those entries in H+ that are within ε from 0. Entries in H± corre-
sponding to larger entries in H+ are not optimized in order to prevent an entry
in H± with small norm cancel out an entry with large norm in H+, thus possibly
modifying sparseness of the product H = H± � H+.

6 Experiments

6.1 Comparison with Established Algorithms

To see how our algorithms compare against an established method we computed
sparsity-controlled decompositions into r = 4 basis functions for a subset of the
USPS handwritten digits data set using our methods and projected gradient de-
scent (pgd) as proposed in [2]. For different choices of sparseness we report mean
and standard deviation of the runtime and mean residual error3 averaged over
10 runs in Tab. 3. Note that the stopping criterion used was different for our al-
gorithms and for pgd: We stopped when after a full iteration the objective value
did not improve at least by a constant, the pgd implementation used4 stopped as
soon as the norm of the gradient was smaller than some ε. As the error measure-
ments shown in Tab. 3 demonstrate, both stopping criteria yield comparable
results. Regarding running time we see that the tangent-plane approach was
usually fastest, followed by sparse-maximization. Also, our algorithms usually
showed relatively small variation between individual runs while the runtime of
pgd varied strongly, dependent on the randomly chosen starting points.

6.2 Global Approaches

A potential source of difficulties with the sparsity-maximization algorithm is
that the lower bound on sparsity is optimized only locally in (24). Through the
proximity constraint in (25) the amount of sparsity obtained in effect limits the

3 Standard deviation of the residual error was equally negligible for all algorithms.
4 We used the pgd code kindly provided by the author of [2], and removed all logging

and monitoring parts to speed up calculation. Our SOCP solver was Mosek 3.2 from
MOSEK ApS, Denmark, running under Linux.
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Table 3. Performance comparison. Comparison of the tangent-plane (tgp) ap-
proach and the sparsity-maximization algorithm (spm) with projected gradient descent
(pgd). Sparse decompositions of the digit data set were computed. Statistics collected
over 10 repeated runs are reported for runtime (sec.) and residual error ‖V − WH‖2

F .
tgp and spm are usually faster than pgd while keeping errors small.

sparsity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mean time tgp 34.35 35.46 41.30 64.97 66.80 60.86 56.33 51.82 42.50
mean time spm 94.81 106.20 133.52 159.30 173.14 167.06 114.36 78.42 74.96
mean time pgd 517.02 1038.99 218.17 70.24 177.35 189.48 167.94 430.36 322.88
stdv time tgp 3.17 2.64 3.84 5.50 8.51 7.05 4.25 0.76 0.38
stdv time spm 3.48 12.67 23.67 16.45 11.51 11.64 7.69 1.22 1.29
stdv time pgd 278.24 21.21 128.00 8.90 78.12 52.54 95.53 439.34 174.81
mean error tgp 0.82 0.76 0.73 0.72 0.78 0.89 0.99 1.08 1.12
mean error spm 0.81 0.77 0.74 0.73 0.78 0.89 1.00 1.08 1.13
mean error pgd 0.85 0.79 0.74 0.72 0.77 0.88 0.99 1.07 1.12

step size of the algorithm. Insufficient sparsity optimization may, in the worst
case, lead to convergence to a bad local optimum.

To see if this worst-case scenario is relevant in practice, we discretized the
problem by sampling the sparsity cones using rotated and scaled version of the
current estimate Hk and then evaluated g in (23) using samples from each in-
dividual sparsity cone. Then we picked one sample from each cone and com-
puted (24) replacing the starting point Hk by the sampled coordinates. For an
exhaustive search on r cones each sampled with s points we have sr starting
points to consider.

For demonstration we used the artificial Paatero data set [23] consisting
of products of Gaussian and exponential functions (Fig. 1). This data set is
suitable since it is not overly large and sparsity control is crucial for its successful
factorization (cf. [23] and Fig. 1).

In the sparsity-maximization algorithm we first sampled the four sparsity
cones corresponding to each basis function of the data for sw ≥ 0.6 sparsely,
using only 10 rotations on each cone. We then combined the samples on each
cone in each possible way and evaluated g for all corresponding starting points. In
a second experiment we placed 1000 points on each sparsity cone, and randomly
selected 104 combinations as starting points. The best results obtained over
four runs and 80 iterations with our local linearization method and the sparse
enumeration (first) and the sampling (second) strategy, are reported below:

Algorithm min-sparsity objective value
local linearization 0.60 0.24

sparse enumeration 0.60 0.26
sampling 0.60 0.26

We see that the local sparsity maximization yields results comparable to the
sampling strategies. In fact, it is better: Over four repeated runs with each of
the sampling strategies we observed outliers with very bad objective values (not
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Fig. 2. Sparse PCA experiment. Basis and coefficients for an artificial data set are
shown. Only sparsity-controlled PCA successfully recovers the structure of the data.

shown). This is most likely caused by severe under-sampling of the sparsity cones.
This problem is not straightforward to circumvent: With above sampling schemes
a run over 80 iterations takes about 24h of computing5, so more sampling is not
an option. In comparison, the proposed algorithm finishes in few seconds.

6.3 Sparse PCA

As proof-of-concept we factorized the artificial data set examined in [20] using
PCA and sparsity-controlled PCA. The data set consists of three factors sampled
from V1 ∼ N (0, 290), V2 ∼ N (0, 300), V3 ∼ −0.3V1 + 0.925V2 + η and additional
Gaussian noise. The sparse PCA algorithm iteratively solved (29) and (31) using
the relaxed optimization framework (26) with λw = 0.6 and a constraint limiting
the admissible reconstruction error.

In Fig. 2 we depict the factors and factor-loadings for PCA and sparsity-
controlled PCA (best result out of three repeated runs). It is apparent that
sparsity-controlled PCA correctly factorizes the data, while classical PCA fails.

6.4 Modeling a Low-Entropy Image Class

A sample application using real-world data is face modeling: Human faces,
aligned, cropped and evenly lit, lead to highly structured images. With such
images, sparse NMF appears robust against quantization: We learned a sparse
image code (r = 6, smin

h = 0.3) for face images [24] and a PCA code for compar-
ison. Then we enumerated possible reconstructions by setting each entry of the
coefficient vector to 0 or to 1. The resulting 26 = 64 images are shown in Fig. 3:
While most NMF “reconstructions” look remarkably natural the corresponding
PCA images mostly suffer severe degradation.

To measure qualitatively how quantization affects reconstruction perfor-
mance we used PCA and NMF to find a large image base (r = 100) on a
subset of the face data. Then, we quantized the reconstruction coefficients H
using k-means on each individual row of coefficients Hj∗. The results are shown

5 On machines with 3GHz P4, 2GB RAM, running Matlab under Linux.
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(a) NMF: W · δ(h > ε) (b) PCA: W · δ(|h| > ε)

Fig. 3. Robustness against quantization. The 64 faces corresponding to previously
learned 6bit NMF/PCA image codes after quantization of the coefficients. The top left
image corresponds to the binary coefficient vector #b000000, the bottom right image to
#b111111. The NMF faces suffer less from quantization than their PCA counterparts.
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Fig. 4. Robustness against quantization. An basis for face images was trained us-
ing NMF (solid blue line) and PCA (dashed black line). The reconstruction coefficients
H where quantized using k-means for k = 2, . . . , 25 (x-axis) and the reconstruction
error f(W, H) was determined (y-axis) for the training data set. NMF is more robust
against strong quantization.

in Fig. 4: As expected, PCA offers slightly better reconstruction performance for
large values of k. With stronger quantization, however, it looses its advantage
and NMF performs better.

This is surprising as quantization robustness was not an original design goal
of NMF codes. From a Bayesian perspective we can explain this result by the
fact that as quantization (or noise) increases the influence of prior information
becomes more important. NMF models the prior information that images are
non-negative. PCA has no such constraint and thus suffers more from strong
quantization.
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6.5 Supervised Training

To show that the supervised label constraints (5b) can be useful we trained NMF
codes (r = 4) on only 100 samples from the USPS handwritten digit data set. We
used different values for the parameter λ and a very simple conditional maximum
entropy model p(y|h) with mean coefficient values E[hi] as only features for
classification. The number of errors on a 300 sample test dataset is given below:

λ 1e4 1e2 1 1e-2 1e-4 1e-6
#errors 108 82 75 60 58 56

When λ is large, i.e., the supervised label constraint is inactive, the error is
about 36% (108 out of 300 samples). This is slightly worse than a corresponding
PCA basis (95 errors) would achieve. As the label constraint is strengthened the
classification performance improves and finally is almost twice as good as in the
unsupervised case.

7 Conclusion

We presented two algorithms for sparse coding based on ideas from reverse-
convex programming and non-negative matrix factorization. The algorithms are
conceptually clean, easy to use (no free parameters), and show attractive perfor-
mance characteristics. Most importantly, they are flexible enough to be extended
along various dimensions. For instance, prior information can be accounted for
by adding a single conic constraint, and sparsity-controlled PCA is possible by
separate optimization of absolute value and signs of the factors.
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