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Abstract

We study the MAP-labeling problem for graphical mod-
els by optimizing a dual problem obtained by Lagrangian
decomposition. In this paper, we focus specifically on Nes-
terov’s optimal first-order optimization scheme for non-
smooth convex programs, that has been studied for a range
of other problems in computer vision and machine learning
in recent years. We show that in order to obtain an effi-
ciently convergent iteration, this approach should be aug-
mented with a dynamic estimation of a corresponding Lip-
schitz constant, leading to a runtime complexity of O( 1

ε ) in
terms of the desired precision ε. Additionally, we devise a
stopping criterion based on a duality gap as a sound ba-
sis for competitive comparison and show how to compute it
efficiently. We evaluate our results using the publicly avail-
able Middlebury database and a set of computer generated
graphical models that highlight specific aspects, along with
other state-of-the-art methods for MAP-inference.

1. Introduction

Problem We consider the problem of computing the most
likely configuration x for a given graphical model, i.e. a dis-
tribution pG(x; θ) ∝ exp(−EG(θ, x)). We use the follow-
ing standard notation [17]:

Let G = (V, E) be an undirected graph, where V is a
finite set of its nodes and E ⊂ V × V is a set of edges.
Let also Xv, v ∈ V be a finite set of labels. The set X =
⊗v∈VXv , where ⊗ denotes the Cartesian product, will be
called labeling set and its elements x ∈ X labelings. Thus
each labeling is a collection (xv : v ∈ V) of labels. To
shorten notation we will use xuv for a pair of labels (xu, xv)
and Xuv for Xu × Xv . Functions of the form θv : Xv →
R, v ∈ V , and θuv : Xuv → R, uv ∈ E , are called unary
and pairwise potentials, respectively. The collection of all
potentials will be denoted by θ.

The problem to compute the most likely labeling x (MAP
labeling problem) amounts to minimizing the energy func-
tion

min
x∈X

EG(θ, x) = min
x∈X

{∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xuv)

}
.

(1)

Background and Motivation Problem (1) is known
to be NP-complete in general for graphs with cycles.
We will concentrate mainly on the linear programming
(LP) relaxation of the problem originally proposed by
Schlesinger [14] – see [18] for a recent review.

Schlesinger [14] analysed also the dual LP as an upper
bound of an integer solution and proposed two minimiza-
tion algorithms: the DAG algorithm and a diffusion algo-
rithm (cf. [18]). These algorithms decrease the value of the
dual LP monotonically but do not attain its optima in gen-
eral, since they can be interpreted as (block-)coordinate de-
scent and thus can get stuck due to the non-smoothness of
the dual objective.

Another algorithm, known as TRW-S, was proposed by
Kolmogorov [5]. This algorithm computes the same fixed
points as the diffusion algorithm and generalizes it by con-
sidering arbitrary sub-trees of the initial graph as elemen-
tary subproblems in contrast to separate nodes and neigh-
boring edges in the diffusion. An alternative sub-gradient
based scheme for dual function minimization was proposed
by Komodakis [7]. Such sub-gradient iterations are guaran-
teed to compute the optimum of the dual function but have
two drawbacks: i) no efficient convergence rate is backed by
theory – to the best of our knowledge no improvement has
been established with respect to the general convergence es-
timate O( 1

ε2 ) [9] – and ii) absence of a stopping criterion
that is sound from the optimization viewpoint.

Disadvantages of both approaches (TRW-S and sub-
gradient iteration) are mainly caused by the non-
smoothness of the dual objective. To overcome this prob-
lem, smoothing of the objective was proposed in a series of
papers [2, 3, 12, 19]. However, questions concerning the
worst-case complexity bound and theoretically sound stop-
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ping conditions have remained open.
In a most recent work [4], smoothing of the dual objec-

tive was addressed with Nesterov’s optimal first-order op-
timization scheme. We will show in this paper, however,
that without carefully modifying the generic scheme [9], the
resulting complexity bound O(

√
|V|/ε) is too loose for al-

most any real problem instance.

Contribution Our contribution is two-fold:
(i) We propose an algorithm for solving the dual LP prob-
lem with a guaranteed complexity of O( 1

ε ) oracle calls
(evaluations of the function or its gradient).
(ii) We formulate and analyse a general method for con-
structing an upper bound for algorithms maximizing the
dual LP objective. The method is used in turn to devise a
sound stopping criterion based on the duality gap.

Algorithm (i) is based on smoothing the dual objective and
applying the optimal first-order optimization scheme by
Nesterov [10]. Our approach is similar to the method de-
scribed in [4] but differs from it in essential technical de-
tails:

(a) Instead of using a fixed Lipschitz constant for a gra-
dient step of the algorithm, we adaptively estimate this
constant during the iteration. This leads to a significantly
smaller number of outer iterations of the algorithm neces-
sary for convergence, at the cost of a few more oracle calls
(no more than 4 on average) in the inner loop of the itera-
tion. Overall, our algorithm is much faster.
(b) Instead of static selection of a smoothing value, we
select it dynamically, which usually gives a significant
speed-up.

Method (ii) can be applied to any iterative scheme as soon
as an approximate, but not necessarily feasible, primal so-
lution can be computed. Hence, this contribution should be
of wider interest. We use this method to define and evalu-
ate a stopping condition for our algorithm. In contrast, no
stopping criterion was specified in [4].

For the sake of clarity of our presentation, we consider
here the special case of grid-graphs G, mainly because the
benchmark [15] conforms to this setting. Although none of
our results is restricted to this special case, the quantitative
evaluation is, of course. A generalization is mostly straight-
forward, and we add specific comments where issues might
arise. All proofs of theoretical results are available as sup-
plementary material, due to the space restriction.

2. Description of the Algorithm

Decomposition and Relaxation Our approach is based
on the dual decomposition framework which was proposed
for energy minimization by [16] and later on analysed
by [7]. Let Gi = (Vi, E i), i = 1, 2, be two acyclic
subgraphs of the master graph G. Let V1 = V2 = V ,

E1
⋃
E2 = E and E1

⋂
E2 = ∅ (e.g., E1 contains all hor-

izontal edges of G and E2 all vertical ones if G is a grid
graph). Then the overall energy becomes the sum of the
energies corresponding to these sub-graphs,

EG(θ, x) =

2∑
i=1

∑
v∈Vi

θiv(xv) +
∑
uv∈Ei

θiuv(xuv)

= EG1(θ1, x) + EG2(θ2, x), (2)

provided θiuv = θuv, uv ∈ E i, i = 1, 2 and θ1v(xv) +
θ2v(xv) = θv(xv), ∀v ∈ V, xv ∈ Xv . The latter condi-
tion can be represented in a parametric way as θ1v(xv) =
θv(xv)

2 + λv(xv) and θ2v(xv) = θv(xv)
2 − λv(xv), v ∈

V, xv ∈ Xv , where λv(xv) ∈ R. Thus we consider θi

as a function of λ and obviously have

min
x∈X

EG(θ, x) ≥ max
λ

2∑
i=1

min
x∈X

EGi(θ
i(λ), x). (3)

It is well-known [6] that all collections (of arbitrary car-
dinality) of acyclic sub-graphs covering the master graph
are equivalent, in the sense that they lead to the same lower
bound as the one presented on the right-hand side of equa-
tion (3). It is also well-known that this lower bound is equal
to the solution of the following linear programming prob-
lem:

min
µ

∑
v∈V

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈E

∑
xuv∈Xuv

θuv(xuv)µuv(xuv)

s.t.

∑
xv∈V µv(xv) = 1, v ∈ V∑
xv∈V µuv(xuv) = µu(xu), xu ∈ Xu, uv ∈ E∑
xu∈V µuv(xuv) = µv(xv), xv ∈ Xv, uv ∈ E

µuv(xuv) ≥ 0, xuv ∈ Xuv, uv ∈ E .

(4)

This formulation is based on the overcomplete representa-
tion commonly used for discrete graphical models [17], in
terms of relaxed indicator vectors µ constrained to the lo-
cal polytope L(G), that is defined by the constraints of (4).
It is well-known that L(G) constitutes an outer bound (re-
laxation) of the convex hull of all indicator vectors of label-
ings (marginal polytope; cf. [17]). Consequently, (4) simply
reads minµ∈L(G) 〈θ, µ〉.

Problem Smoothing Consider a single summand on the
right-hand side of (3). It can be expressed as inner product
of the local potential vector θi and a correspondingly chosen
binary indicator vector φ(x):

U i(λ) := min
x∈X

EGi(θ
i(λ), x) = min

x∈X

〈
θi(λ), φ(x)

〉
. (5)

Since this is a non-smooth function, the objective – right-
hand side of (3) – is also non-smooth. Applying the
well-known approximation of the min (or −max) function

2
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by the log-exponential function (cf. [10, 13]) leads to the
smooth version

Û iρ(λ) = −ρ log
∑
x∈X

exp
〈
−θi(λ)/ρ, φ(x)

〉
(6)

with smoothing parameter ρ, that uniformly approximates
U i, that is

Û iρ(λ) ≤ U i(λ) ≤ Û iρ(λ) + ρ log |X |. (7)

Thus, for Ûρ =
∑2
i=1 Û

i
ρ and U =

∑2
i=1 U

i,

Ûρ(λ) ≤ U ≤ Ûρ(λ) + 2ρ log |X |. (8)

We will call a gradient ∇f of a differentiable function
f : Rn → R Lipschitz continuous with Lipschitz constant L
if

‖∇f(z)−∇f(w)‖ ≤ L‖z − w‖, ∀z, w ∈ Rn , (9)

where ‖ · ‖ is the `2-norm in Rn.
Defining vectors DÛ iρ(λ) ∈ R

∑
v∈V |Xv| by

DÛ iρ(λ)
v,xv

:=

∑
x∈X (v,xv)

exp
〈
−θi(λ)/ρ, φ(x)

〉
exp(−Û iρ(λ)/ρ)

, (10)

where X (v, xv) = {x′ ∈ X : x′v = xv}, we have:

Lemma 1 (follows from Theorem 1 in [10]) The function
Ûρ(λ) =

∑2
i=1 Û

i
ρ(λ) is well-defined and continuously dif-

ferentiable at any λ ∈ R
∑
v∈V |Xv|. Moreover, this function

is concave, and its gradient

∇Ûρ(λ) = DÛ1
ρ (λ)−DÛ2

ρ (λ) (11)

is Lipschitz-continuous with constant Lρ = 2 |V|ρ .

This lemma is analogous to the ”Computing Lipschitz”
lemma in [4] with the significant difference that we con-
sider the `2-norm instead of the `1-norm. Jojic at al. [4]
inconsistently apply an algorithm based on the `2-norm,
however. Therefore, the role of the `1–Lipschitz estimate
(which reads Lρ = 2

ρ , see [4]) for the algorithm design re-
mains unclear in [4].

Optimal First-Order Iterative Optimization It is
known [9] that concave continuously differentiable (with
Lipschitz constant L) functions can be maximized by itera-

tive first-order optimization methods in O(
√

L
ε ) iterations,

where ε determines the absolute precision of achieved ob-
jective value. Thus, by virtue of Lemma 1, the number of
iterations can grow as

√
|V| with the size of a model, in the

worst case.
Next, we present such an algorithm, omitting technical

details which can be found in Nesterov’s book ([9] p. 76)
and in the original paper [8].

Algorithm 1 (Variant of Algorithm 2.2.6 in [9]) In addi-
tion to the Lipschitz-constant Lρ, we introduce variables
γt, αt, ω ∈ R and vectors λt, vt, yt ∈ R

∑
v∈V |Xv|. Super-

script t indexes the iteration.

1. Choose λ0 = v0 ∈ R
∑
v∈V |Xv| and set γ0 = Lρ.

2. t-th iteration (t ≥ 0):

(a) Compute Ûρ(λt) and ∇Ûρ(λt) .

(b) Find ωt ≤ Lρ as small as possible, such that

Ûρ(y
t) ≥ Ûρ(λt) +

1

2ωt
‖∇Ûρ(λt)‖2 , (12)

where yt = λt + 1
ωt∇Ûρ(λ

t) .

(c) Compute αt ∈ (0, 1) from ωt(αt)2 = (1−αt)γt
and set γt+1 = (1− αt)γt .

(d) Set vt+1 =
(1−αt)γtvt+αt∇Ûρ(λt)

γt+1 .

(e) Choose λt+1 = αtγtvt+1+γt+1yt

γt .

Lemma 2 [9] Condition (12) is fulfilled for any ωt ≥ Lρ.

Theorem 1 (modified Theorem 2.2.2 in [9]) Algorithm 1
has the following bound on worst-case sub-optimality:

Û∗ρ − Ûρ(λt) ≤
L(

1 + t
2

√
L
ω∗t

)2 ‖λ0 − λ∗‖2 , (13)

where Û∗ρ and λ∗ are optimal function and variable values
and ω∗t = maxk≤t ω

k.

The estimate (13) shows that ωt should be as small as
possible. One possible way to achieve this is to perform
exact linear search in the direction of ∇Ûρ(λt) at each iter-
ation of Algorithm 1, which is not particular efficient how-
ever. A simple alternative is to set ωt = Lρ in view of
Lemma 2, as done in [4]. Our experiments however show
that the worst-case estimate of Lρ according to Lemma 1 is
quite loose and leads to a poor convergence rate.

Instead, we applied backtracking linear search ([1]
p. 464, [11]), which consistently leads to speed-up factors
up to 100 for our datasets. The analysis of backtracking lin-
ear search (see [11], eqn. (4.12), for a detailed proof) shows
that for t iterations one needs no more than

Nk ≤ 2

[
1 +

ln d

lnu

]
(t+ 1) +

1

lnu
ln

2uL

dL0
(14)

oracle calls, where d, u, L0 ∈ R are parameters of the
search procedure. Using d = u = L0 = 2, for example,
each iteration of Algorithm 1 requires about 4 oracle calls
on average (empirically, for our datasets, 3 or 4 oracle calls
per iteration in most cases).

3
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Selecting the Smoothing Parameter Inequality (8) and
Lemma 1 show that selection of the smoothing value ρ is a
trade-off between accuracy of the approximation and speed
of the algorithm. The following lemma describes how to
optimally select ρ for any algorithm A that satisfies some
conditions.

Lemma 3 LetA be any algorithm depending on a smooth-
ing parameter ρ > 0 with convergence rate Û∗ρ − Ûρ(λt) ≤

1
ρτ(t) , where τ(t) is a monotonously non-decreasing func-
tion of the number of iterations t. Suppose that U(λ) −
Ûρ(λ) ≤ ρ∆, for some ∆ > 0 and ∀ρ, λ, where Ûρ is the
smoothed objective function U . Let ε be the prescribed pre-
cision. Then, selection of the smoothing parameter ρ as

ρ =
ε

2∆
(15)

minimizes the worst-case bound on the number of iterations
to achieve precision ε.

Our empirical results show ω∗t ∝ 1
ρ for ω∗t defined in

Theorem 1. Thus, according to (13) and (8), this lemma can
be directly applied to Algorithm 1, as done in [10] and [4].
In these papers, an upper bound ∆ = 2 log |X | was used,
leading to

ρ =
ε

4 log |X |
. (16)

This bound, however, can be rather loose in practice, that
slows down convergence.

In contrast to this worst-case approach, we adapt ρ so
as to allow for stronger smoothing in the initial and in-
termediate phase of the iteration, while still achieving the
precision ε at convergence. We select ρ such that ∆ ≈
U(λ0)− Ûρ(λ0) / ε/2, increasing ρ by the factor 2 if nec-
essary. Usually, 3 to 6 computations of Ûρ(λ0) suffice until
U(λ0)−Ûρ(λ0) > ε/2. Such adaptive estimation of ρ leads
to a speed up of the overall algorithm of order 22 . . . 25. We
check the inequalityU(λt)−Ûρ(λt) < ε/2 during the itera-
tion. If it does not hold (e.g. when convergence slows down
close to the optima of Ûρ), we decrease ρ by the factor 2.

3. Stopping Criterion
The stopping criterion we propose is based on a duality

gap between the value of the primal LP, given by (4), and its
dual U(λ), given by right-hand side of (3). Since we opti-
mize the dual problem and thus know its value, we focus in
this section on estimating the value of the primal function,
whose objective we will denote by P . We further denote
by R+(G) = R|⊗v∈VXv|+|⊗uv∈EXuv|+ a nonnegative linear
half-space containing the local polytope L(G). Finally, we
denote the optimal primal value over the local polytope by
P ∗ = minµ∈L(G) P (µ) = minµ∈L(G) 〈θ, µ〉.

A typical issue for many algorithms which optimize a
dual problem (3) is that, during the iteration, one can only
get infeasible primal points µ̃, that is µ̃ does not satisfy the
constraints of (4). In this connection, we propose to con-
struct a mapping χ : R+(G)→ L(G) yielding primal feasi-
ble points, which enjoys the following properties:

Lemma 4 Let µ̃t ∈ R+(G) be any sequence such that
P (µ̃t) → P ∗. Let also minµ∈L(G) ‖µ̃t − µ‖ → 0. Then
P (χ(µ̃t))→ P ∗.

We define the shorthand µ′ := χ(µ̃) and the set
L(G, µ′(V)) = {µ ∈ L(G) : µv = µ′v, v ∈ V}. A map-
ping χ as characterized by Lemma 4 can be constructed in
the following two-steps way:

µ′′v =
µ̃v∑

xv∈Xv µ̃v(xv)
, v ∈ V, (17)

µ′ = arg min
µ∈L(G,µ′′(V ))

〈θ, µ〉 . (18)

It is easy to see that problem (18) decomposes into |E| in-
dependent optimization problems (for each uv ∈ E) of the
form

µ′uv = arg min
µuv

∑
xuv∈Xuv

θuv(xv)µuv(xuv),

s.t.

∑
xv∈V µuv(xuv) = µ′′u(xu), xu ∈ Xu∑
xu∈V µuv(xuv) = µ′′v(xv), xv ∈ Xv

µuv(xuv) ≥ 0, xuv ∈ Xuv.
(19)

Such linear programs are well-studied and known as
transportation problems. Since the size of each individual
problem is small, they can be easily solved by any appro-
priate method of linear programming.

We point out that the existence of a sequence µ̃t satisfy-
ing the conditions of Lemma 4 is important for the theoret-
ical properties of χ(µ̃t) to hold. But to compute χ(µ̃t), one
only needs a subset of coordinates of the sequence, namely
µ̃tv, v ∈ V . We show existence of a sequence µ̃tv by con-
struction.

Theorem 2 When ρ→ 0, t→∞, for the sequence

µρ,tv =
DÛ1

ρ (λt)v +DÛ2
ρ (λt)v

2
, v ∈ V (20)

a sequence µ̃ρ,t ∈ R+(G) exists such that µ̃ρ,tv = µρ,tv , v ∈
V , and µ̃ρ,t satisfies the conditions of Lemma 4, namely
∀δ > 0 ∃ρ > 0: ∃t∗ : ∀t > t∗ ‖P (µ̃ρ,t) − P ∗‖ < δ
and minµ∈L(G) ‖µ̃ρ,t−µ‖ < δ. Here λt is computed by Al-
gorithm 1 for a given ρ, andDÛ iρ(λ)v, i = 1, 2, are vectors
with coordinates DÛ iρ(λ)v,xv given by (10).

This theorem basically says that for ρ small enough, val-
ues µρ,tv plugged into formula (17) in place of µ̃v would
yield primal objective values which will converge with t→
∞ to a value close enough to P ∗.

4
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4. Experiments
In our experiments we study different grid structured

models with potentials of first and second order. Exemplar-
ily we will discuss two of them. The first one is a synthetic
model with 20×20 nodes, five labels and potential functions
sampled uniformly from the interval [0; 0.5] (corresponding
plot in Figure 4 and top plots in Figures 1-3), the second
is the Tsukuba stereo problem from the Middlebury MRF-
Benchmark [15] (bottom plots in Figures 1-3).

We compare different variants of the Nesterov’s method
(NEST) among each other and with standard meth-
ods, namely TRW-S [5], Norm-Product Belief-Propagation
(NPBP) [2] and sub-gradient methods [7]. Thanks to the au-
thors we can use their original code for TRW-S and NPBP.
Since we compare different implementations of these meth-
ods, on the time axis we plot the number of oracle calls
(function or gradient evaluations) instead of direct time
measurements.

For the lower and upper bounds shown in our plots, we
used values of the non-smooth dual objective U (see its def-
inition after eq. (7)) and primal objective P , evaluated by
means of (19), respectively.

Lipschitz Constant Estimation First we compare the
performance of Nesterov’s method for different estimates
of the Lipschitz constant. Adaptive selection of the Lip-
schitz constant leads to a significantly faster convergence
than the fixed one. We also applied the calculation of the
Lipschitz constant Lρ as suggested in [4]. The top plot
in Figure 1 shows that for the synthetic model the algo-
rithm does not converge to the optimum, as their estima-
tion of the Lipschitz constant does not yield valid bounds,
as empirically observed by checking criterion (12). For the
Tsukuba model, this effect is not so pronounced, which ex-
plains good applied results reported in [4]. As can be seen
in Figure 1 (bottom), the remaining gap is not significantly
larger in this case, however we observed violations of (12)
for Jojic’s method here as well. On the Tsukuba model ex-
ample one can also see, that a gradient step size, inferred
from a fixed Lρ given by Lemma 1, is so small, that there
is almost no improvement of the objective function during
iteration. Due to the smoothing, a gap between upper and
lower bounds remains for any ρ > 0 and decreases with the
smoothing (see Theorem 2).

Smoothing selection Next we compare Nesterov’s
method with fixed smoothing to a method with adaptive
smoothing for the same precision. In the first case, pre-
cision is selected according to (16). Both methods use
adaptive estimation of the Lipschitz constant. Results
are shown in Figure 2. Adaptive smoothing often works
faster, as can be seen in the top plot of Figure 2, since it

Figure 1. Nesterov’s method for synthetic (top) and Tsukuba (bot-
tom) models with 3 different ways of Lipschitz constant Lρ se-
lection: (a) fixed, (b) adaptive, (c) Lρ selected according to [4].
Smoothing value ρ is fixed. While adaptive estimation outper-
forms the fixed setting, the method suggested in [4] produces in-
valid values of the Lipschitz constant and does not converge to the
optimum.

leads to a smoother function and thus to smaller values
of the Lipschitz constant. However, since the adaptive
smoothing depends on an actual gap between smoothed
and non-smoothed functions, in cases where this gap is
close to the upper bound given by (8), adaptive and fixed
smoothing lead to similar results, as shown in the bottom
plot of Figure 2.

Comparison TRW-S and Sub-Gradient Compared to
TRW-S and sub-gradient methods, the proposed method
gives better lower bound then TRW-S and converges sig-
nificantly faster than the sub-gradient ascent. As an update
rule for the sub-gradient ascent we use λt+1 = λt+ ∂U(λt)

2
√
t+1

,
where ∂U(λt) denotes a sub-gradient of the dual func-
tion U . TRW-S is enormously fast, but can get stuck in lo-
cal fixed points, as shown in the top plot of Figure 3. Unlike
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Figure 2. Nesterov’s method for synthetic (top) and Tsukuba (bot-
tom) models with (a) fixed smoothing ρ and (b) adaptive smooth-
ing calculated from a fixed precision ε. Parameters ρ and ε are con-
nected by (16). Adaptive smoothing usually works faster, since it
leads to a smoother function and thus to smaller values of the Lip-
schitz constant. However, since the adaptive smoothing depends
on an actual gap between smoothed and non-smoothed functions,
in cases where this gap is close to the upper bound given by (8),
adaptive and fixed smoothing lead to similar results, as observed
in the bottom plot.

TRW-S, the sub-gradient method is guaranteed to converge
to the optimum, but its convergence is extremely slow.

Comparison to Smoothed NPBP Finally, we compare
our method of solving a smoothed objective to NPBP, for
which we use the entropy approximation as suggested in [2]
and set cab = 1, ca = 0 and cab,a = 0. We have se-
lected different values of smoothing parameters ρ for these
methods to guarantee, that upper bounds to a difference be-
tween smoothed and non-smoothed objectives coincide. For
NPBP we apply additionally our method to construct a pri-
mal bound. This ends up in a mathematically sound stop-
ping criterion for NPBP, which is lacking in [2]. However,
since we optimize different smoothed functions, their opti-

Figure 3. Comparison of (a) Nesterov’s, (b) TRW-S and (c) sub-
gradient methods for a synthetic (top) and Tsukuba model (bot-
tom). The plot shows LP lower bounds. TRW-S is the fastest one,
but it gets stuck in a fixed point in the top plot, whereas Nesterov’s
method calculates a tighter lower bound on the objective. The sub-
gradient method is the slowest one.

mal values differ and a fair comparison is not obvious. With
less smoothing we obtain tighter bounds for both methods
as shown in Figure 4, while the speed of convergence de-
creases when the smoothing decreases.

5. Conclusion
We presented an in-depth study of Nesterov’s optimal

first-order optimization scheme applied to the MAP la-
beling problem based on Lagrangian decomposition. Our
study shows that a direct application of the scheme leads
to poor convergence rates based on parameter settings gov-
erned by the worst-case optimality bounds. As a remedy,
we proposed to modify the approach by i) adaptively es-
timating and selecting both the Lipschitz constant and the
smoothing parameter, respectively, and ii) a sound termina-
tion condition based on the primal-dual gap.

Modification i) still enables to theoretically infer favor-
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Figure 4. Comparison of (a) Nesterov’s method and (b) NPBP for
the synthetic model for two different smoothing values. Corre-
sponding values of ρ for Nesterov’s method and NPBP differ in
two times due to different entropy approximations used in these
methods. For smaller ρ both methods produce tighter bounds, but
show slower convergence.

able complexity bounds and runtime guarantees. Contri-
bution ii) removes ad-hoc thresholds for stopping the it-
eration and thus ensures comparability and reproducibility
of results. It entails a method for constructing a primal
feasible solution that should also be applicable to alterna-
tive approaches focusing on dual objective optimization. In
our experiments we applied it to generate a primal solution
for a Norm-Product Belief Propagation [2]. Our experi-
ments also show that our method i) converges significantly
faster than the sub-gradient ascent and ii) has a comparable
convergence to the state-of-the-art smoothed Norm-Product
Belief Propagation.

Our further work will focus on graphical models that are
more general than the grid graphs considered in this pa-
per. While such grid graphs naturally appear in standard
low-level vision problems as current benchmarks show, less
structured graphs are also of vital interest for various appli-
cations. Early experiments indicate that the relative perfor-
mance of our method increase considerably in these cases,
and that our contribution provides a solid basis for tackling
such problems.
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