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Abstract. We present a mathematical and computational feasibility
study of the variational convex decomposition of 2D vector fields into
coherent structures and additively superposed flow textures. Such de-
compositions are of interest for the analysis of image sequences in exper-
imental fluid dynamics and for highly non-rigid image flows in computer
vision.
Our work extends current research on image decomposition into struc-
tural and textural parts in a twofold way. Firstly, based on Gauss’ inte-
gral theorem, we decompose flows into three components related to the
flow’s divergence, curl, and the boundary flow. To this end, we use proper
operator discretizations that yield exact analogs of the basic continu-
ous relations of vector analysis. Secondly, we decompose simultaneously
both the divergence and the curl component into respective structural
and textural parts. We show that the variational problem to achieve this
decomposition together with necessary compatibility constraints can be
reliably solved using a single convex second-order conic program.

1 Introduction

The representation, estimation, and analysis of non-rigid motions is relevant
to many scenarios in computer vision, medical imaging, remote sensing, and
experimental fluid dynamics. In the latter case, for example, sophisticated mea-
surement techniques including pulsed laser light sheets, modern CCD cameras
and dedicated hardware, enable the recording of high-resolution image sequences
that reveal the evolution of spatial structures of unsteady flows [1].

In this context, two issues are particularly important. Firstly, the design
and investigation of variational approaches to motion estimation that are well-
posed through regularization but do not penalize relevant flow structures are
of interest. A corresponding line of research concerns the use of higher-order
regularizers as investigated, for example, in [2–4]. Secondly, representation of
motions by components that capture different physical aspects are important
for most areas of application mentioned above. Referring again to experimental
fluid dynamics, for example, the extraction of coherent flow structures which are
immersed into additional motion components at different spatial scales [5], poses
a challenge for image sequence analysis.
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The decomposition of images has become an interesting and active area of
research quite recently. Based on the seminal paper [6] introducing total varia-
tion based image denoising, and on the use of norms that are suited for repre-
senting oscillating patterns [7], a range of novel variational and computational
approaches have been suggested for decomposing images of general scenes into
basic components related to geometry, texture, and noise; e.g., [8–11].

In the present paper, we focus on function decomposition from the viewpoint
of non-rigid variational motion analysis, and based on our recent work [12].
Specifically, we consider Meyer’s [7] variational model

minTV(fs) , s.t. fs + f t = f ,
∥∥f t

∥∥
G
≤ δ (1)

as a representative approach to the decomposition of a function f into its basic
structural and textural parts fs, f t, and study the feasibility of an extension
to the decomposition of motion vector fields. Our objective is the simultaneous
decomposition of a vector field into physically relevant components related to
its divergence and curl, and the decomposition of these components into parts
with intrinsic variations at different scales.

In section 2, we introduce the discrete representation of vector fields by its
basic components related to divergence, curl, and boundary values. Based on
an accurate discretization employing various finite-dimensional spaces and cor-
responding operators, a variational model for the simultaneous decomposition
of these components is proposed in section 3. From the computational point of
view, we prefer to reformulate our variational problem as a convex conic program
in subsection 4 because all compatibility constraints defining our decomposition
can be included at once. While conic programming has found widespread ap-
plications in all branches of computational science, it has only recently been
suggested for the decomposition of scalar-valued image functions [13]. Numeri-
cal experiments demonstrate the feasibility of our approach in section 5.

2 Vector Field Representation

2.1 Flow Discretization

For discretizing the relevant differential operators we apply the mimetic finite
difference method introduced by Hyman and Shashkov in [14]. This method
preserves the integral identities satisfied by the continuous differential operators
by appropriately defining their discrete analogues simultaneously with respect
to two grids which we call primal and dual grid. Then we define
HP : space of scalar fields on vertices,
HV : space of scalar field on cells,
HS : space of vector fields defined normal to sides,
HE : space of vector fields defined tangential to sides,

and Ho
P ,H

o
S ,H

o
E as their restricted versions of inner scalar/vector fields, see

Fig. 1. Likewise, we consider the restriced spaces Ho
P , H

o
S ,H

o
E also as naturally
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embedded in HP ,HS , HE with zero boundaries. While HP and HV are equipped
with the usual Euclidian norm, the norms on HS and HE include boundary
weights, see appendix. The discrete versions of the first order operators ∇, div
and curl with respect to the primal and dual grid are given by

G : HP → HE , Div : HS → HV , Curl : HE → HV ,

G : HV → HS , Div : Ho
E → Ho

P , Curl : Ho
S → Ho

P .

Reshaping the scalar/vector fields columnwise into vectors of appropriate lengths,
our first-order operators act on the corresponding vector spaces as the matrices
specified in the appendix.

Finally, for discretizing n · u|∂Ω , we introduce the boundary operator Bn :
HS → ∂HS := HS\Ho

S , which restricts the vector field to the vectors at the
grid’s boundary multiplied by the outer normal vectors. For the matrix form of
the operator, we refer to the appendix.
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Fig. 1. Spaces HP , HV , HS and HE .

2.2 Flow Representation

For the flow vectors u ∈ HS , we see by definition of Div and Bn that

1T
dimHV

Div u = 1T
dim∂HS

Bnu, (2)

where 1n denotes the vector consisting of n ones. This is just the discrete version
of the Gaussian Integral Theorem

∫
Ω

div u dx =
∫

∂Ω
n · udl. Conversely, we say

that ρ ∈ HV and ν ∈ ∂HS fulfill the compatibility condition if

1T
dimHV

ρ = 1T
dim∂HS

ν (3)

Besides the flow representation u ∈ HS , we will apply a second flow represen-
tation. To this end, consider the operator A : HS → HV ⊕Ho

P ⊕ ∂HS given in
matrix form by

A :=



Div
Curl
Bn


 ∈ RdimHS+1,dimHS , (4)
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where the Curl operator is naturally extended to the whole space HS here. The
operator A has full rank dimHS . Moreover, we see by (2) that (ρ, ω, ν)T is in the
image of A iff ρ and ν fulfill the compatibility condition (3). In this case u can
be obtained from given (ρ, ω, ν)T by u = A†(ρ, ω, ν)T, where A† = (ATA)−1AT

denotes the pseudoinverse of A.

Proposition 1 There exists a one–to–one correspondence between the spaces
HS and

VS := {(ρ, ω, ν)T : 1T

dimHV
ρ = 1T

dim∂HS
ν} ,

where ρ = Div u, ω = Curl u, ν = Bnu, and conversely u = A†(ρ, ω, ν)T.

3 Variational Approaches

3.1 Flow Decomposition

In this section, we want to decompose flow vectors u ∈ HS , resp., (ρ, ω, ν)T ∈ VS

in a meaningful way. To this end, let cρ denote the mean of the divergence of u
and cω the mean of the curl of u, i.e.,

cρ := 1T
dimHV

ρ / dim HV = 1T
dimHV

Div u / dim HV , (5)
cω := 1T

dimHo
P
ω / dim Ho

P = 1T
dimHo

P
Curl u / dim Ho

P . (6)

These are the discrete versions of |Ω|−1
∫

Ω
div(u)dx and |Ω|−1

∫
Ω

curl(u)dx.
Then we can decompose the flow (ρ, ω, ν)T ∈ VS as

(ρ, ω, ν) = (cρ, cω, ν) + (ρo, ωo, 0), (7)

where 1T
dimHV

ρo = 1T
dimHo

P
ωo = 0. Obviously, we have that (cρ, cω, ν)T, (ρo, ωo, 0)T ∈

VS again, so that u = uc + uo is the corresponding decomposition of u ∈
HS , where uc := A†(cρ, cω, ν)T and uo := A†(ρo, ωo, 0)T. The vector uc, resp.
(cρ, cω, ν), represents the basic pattern of the non-rigid flow and its boundary be-
haviour while uo, resp. (ρo, ωo, 0), is related to the variant flow pattern. Now we
want to further decompose the intrinsic flow variation uo into a structural part
us and a texture part ut, i.e., uo = us + ut. By proposition 1, this corresponds
to the decomposition

(ρo, ωo, 0) = (ρs, ωs, 0) + (ρt, ωt, 0).

In summary, our task consists in the decomposition of a given flow field
u ∈ HS as

u = uc + us + ut. (8)

We can apply A to u which provides us, by using in addition (5) and (6), with
(cρ, cω, ν)T and (ρo, ωo, 0)T. Then, inspired by Meyer’s approach (1), we may
compute (ρs, ωs, 0) and (ρt, ωt, 0) as solutions of the minimization problem

J(ρs, ωs, ρt, ωt) = λdTV(ρs) + λcTV(ωs), (9)

s.t. ρs + ρt = ρo, ωs + ωt = ωo,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc,
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where the discrete TV functionals and the discrete versions of the G norm
are defined in the appendix. This variational approach extends Meyer’s model
for the decomposition of scalar-valued functions to the simultaneous decom-
position of vector fields into basic flow patterns. Finally, we may formally ob-
tain us and ut by solving the linear systems (ATA)us = AT(ρs, ωs, 0)T and
(ATA)ut = AT(ρt, ωt, 0)T. However, these systems are very ill-conditioned so
that we prefer to compute the components of u directly by minimizing the cor-
responding functional

J(uc, us, ut) = λdTV(Div us) + λcTV(Curl us) (10)

s.t. uc + us + ut = u,

GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
Curl us = 0,

Div ut = ρt, Curl ut = ωt,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc.

This approach also fits into our flow estimation model in the next section.
We note that the third constraint is related to the decomposition (7). While
1T

dimHV
Div uo = 0 is automatically fulfilled by the compatibility condition, we

have to take care about 1T
dimHo

P
Curl uo = 0. However, by the G norm constraint

we have Curl ut = Div p for some p which again, by the compatibility condition,
and since Curl maps to Ho

P , implies that 1T
dimHo

P
Curl ut = 0. As a result, we

have only to take us into account.
Finally, we point out that as in the scalar-valued case, some variations of

the approach (10) are easily conceivable. Referring to [8, 10], for instance, the
constraint uc +us +ut = u in (10) could be replaced by a L2 penalty term. This
would imply L2 penalty terms for each component in the decomposition.

3.2 Optical Flow Estimation through Flow Decomposition

In this section, we combine the usual optical flow estimation method with the
structure-texture flow decomposition (8). For a given image sequence {g} ∈ HV ,
we want to compute the components uc with constant divergence and curl, the
large-scale patterns us of divergence and curl with bounded BV-norms, and the
small-scale patterns ut of divergence and curl with bounded G-norms, by solving

J(uc,s,t) =
∥∥Gg · (uc + us + ut) + gt

∥∥2

2
+ λdTV(Div us) + λcTV(Curl us) (11)

s.t. GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
Curl us = 0,

Div ut = ρt, Curl ut = ωt,
∥∥ρt

∥∥
G
≤ δd ,

∥∥ωt
∥∥

G
≤ δc.

Here gt denotes the discretization of the time derivative by a forward difference
and the inner product is taken with respect to HS . We refer to (11) as TV–G
model. However, for the image areas where ∇g = 0, the data term disappears
such that the local constraints through the two G-norm terms lead to unbounded
solutions. Hence, the flow estimation by solving problem (11) is not well-posed.
Therefore, we propose to replace the TV–G model by a TV–L2 model where the
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texture flow patterns ut have divergence and curl with bounded L2-norms:

J(uc,s,t) =
∥∥Gg · (uc + us + ut) + gt

∥∥2

2
+ λdTV(Div us) + λcTV(Curl us) (12)

+ γd

∥∥Div ut
∥∥2

2
+ γc

∥∥Curl ut
∥∥2

2

s.t. GDiv uc = 0, GCurl uc = 0, 1T
dimHo

P
(Curl us + Curl ut) = 0.

Our experiments show that this approach works well although the superiosity
of the G–norm over the L2–norm in capturing (scalar) oscillating patterns was
experimentally shown in [11].

3.3 Incompressible Optical Flow Estimation

Incompressible flows which are divergence-free are common in computational
fluid dynamics and 2D turbulence. According to the Helmholtz decomposition,
a 2D vector field can be decomposed into an irrotational part and a soleniodal
part which is divergence–free. The discete counterpart of the Helmholtz decom-
position with respect to our mimetic finite difference discretization has been in-
troduced in [12]. Specifically, we obtain that a divergence-free vector u ∈ HS can
be written as u = G⊥ψ for some ψ ∈ HP , where the operator G⊥ : HP → HS is
defined in the appendix. By definition of G⊥, it is easy to check that Div G⊥ = 0,
and that the restricted operator G⊥|Ho

P
maps to Ho

S . Now we want to estimate
the components uc, us and ut of a divergence–free flow u = G⊥ψ, i.e.,

u = uc + us + ut = G⊥ψc +G⊥ψs +G⊥ψt, (13)

where, by regarding the boundary conditions, ψc ∈ HP and ψs, ψt ∈ Ho
P . Let

4c := Curl G⊥|Ho
P

: Ho
P → Ho

P and 4 := Curl RHS

Ho
S
G⊥ : HP → Ho

P , where

RHS

Ho
S

denotes the restriction of HS to Ho
S by boundary cutting. Then we can

rewrite our TV–G approach (11) with respect to (13) as

J(ψc,s,t) =
∥∥Gg ·G⊥(ψc + ψs + ψt) + gt

∥∥2

2
+ λcTV(4cψ

s) (14)

s.t. G4ψc = 0, 1T
dimHP

ψc = 0, 1T
dimHo

P
4cψ

s = 0, 4c ψ
t = ωt,

∥∥ωt
∥∥

G
≤ δc,

and our TV–L2 approach (12) as

J(ψc,s,t) =
∥∥Gg ·G⊥(ψc + ψs + ψt) + gt

∥∥2

2
+ λcTV(4cψ

s) + γc

∥∥4cψ
t
∥∥2

2
(15)

s.t. G4ψc = 0, 1T
dimHP

ψc = 0, 1T
dimHo

P
(4cψ

s +4cψ
t) = 0.

We will see that in areas where ‖∇g‖ ¿ 1, the solution to (14) becomes sensitive
to small pertubations while (15) gives reasonable results.

4 Optimization

Our computational approach to solving (10) is based on second-order cone pro-
gramming (SOCP) [15]. This amounts to minimizing a linear objective function
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subject to the constraints that several affine functions of the variables have to
lie in a second order cone Ln+1 ⊂ Rn+1 defined as the convex set

Ln+1 =
{(
x; t

)
= (x1, . . . , xn, t)>

∣∣∣ ‖x‖2 ≤ t
}
. (16)

With this notation, the general form of a SOCP is given by

inf
x∈Rn

f>x , s.t.
(
Aix+ bi; cTi x+ di

) ∈ Ln+1 , i = 1, . . . ,m. (17)

Problem (17) is a convex program for which efficient, large scale solvers are
available [16]. In this paper, we used the SeDuMi-package [17]. In connection
with TV–based image decomposition the application of SOCPs, was recently
suggested in [13].

Using the notation given in the appendix, we reformulate the variational
approach (10) as a SOCP:

J(uc, us, ut) = λd1T
dimHV

v + λc1T
dimHo

P
w (18)

s.t. uc + us + ut = u , GDiv uc = 0 , GCurl uc = 0 , 1T
dimHo

P
Curl us = 0 ,

Div ut = Div pd , Curl ut = Div pc ,
(
(GDiv us)Vi,j

; vVi,j

)
∈ L5 ,

(
(GCurl us)

P o
i,j

; w
P o

i,j

)
∈ L5 ,

(
(pd)Vi,j

; δd
)
∈ L5 ,

(
(pc)P o

i,j
; δc

)
∈ L5

In order to incorporate the quadratic terms of the variational approaches to
optical flow estimation (11), (12), (14), and (15), we use the following rotated
version of the standard cone:

Rn+2 :=
{(

x, xn+1, xn+2

)> ∈ Rn+2 , xn+1xn+2 ≥ 1
2
‖x‖2 , xn+1 + xn+2 ≥ 0

}

Fixing xn+2 = 1/2, we have xn+1 ≥ ‖x‖2. Below, we confine ourselves to rewrit-
ing (14), and (15) as SOCPs. The SOCPs corresponding to (11), (12) look very
similar.

The incompressible flow estimation approach (14), rewritten as a SOCP,
reads

J(ψc,s,t) = v + λc1T
dimHo

P
w (19)

s.t. G4ψc = 0 , 1T
dimHP

ψc = 0 , 1T
dimHo

P
4cψ

s = 0 , 4cψ
t = Div pc(

(G4cψ
s)Vi,j

; wVi,j

)
∈ L5 ,

(
(pc)P o

i,j
; δc

)
∈ L5 ,

(
Gg ·G⊥(ψc + ψs + ψt) + gt; v, 1/2

) ∈ RdimHV +2

Approach (15), on the other hand, becomes

J(ψc,s,t) = v + γdt+ λc1T
dimHo

P
w (20)

s.t. G4ψc = 0 , 1T
dimHP

ψc = 0 , 1T
dimHo

P
4cψ

s = 0 , 1T
dimHo

P
4cψ

t = 0
(
(G4cψ

s)Vi,j
; wVi,j

)
∈ L5 ,

(
Gg ·G⊥(ψc + ψs + ψt) + gt; v, 1/2

) ∈ RdimHV +2 ,
(4cψ

t; t, 1/2
) ∈ RdimHo

P +2
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5 Numerical Experiments

In this section, we show some experiments with flow decomposition and flow
restoration.

Flow Decomposition. Figure 2 shows a turbulent flow field u as ground
truth, along with its divergence ρ and curl ω. Figures (3) and (2) show the varia-
tional decomposition computed with the approach (10). Note that the structural
and textural components recovered the interesting motion patterns at different
scales, which are not easily visible in the flow u itself. The decomposed velocities

Fig. 2. Ground truth data to be decomposed: flow field u (left), its divergence field ρ
(center), and its curl field ω (right).

Fig. 3. Decomposition of u from Fig. 2 with the approach (10). From left to right. Top:
ρc, ρs, ρt. Bottom: ωc, ωs, ωt. The structure and texture components reveal turbulent
flow patterns at different scales which are not easily visible in the flow u itself.

are shown below in Fig. (4).
Flow Estimation. We report result validating the flow estimation models

(14) and (15). We first created a divergence-free ground truth flow field u by
superimposing a dominant laminar flow (both divergence- and curl-free) with
some turbulent vortices structures, see Fig. 5. Using this flow, an artificial image
sequence was created for which |∇g(x)| 6= 0, ∀x ∈ Ω.

Figures 6, 7 and 8 show the decomposition-based optical flow estimates. The
uc component nicely recovered the laminar flow, whereas the structural and
textural components reveal the turbulent curl field. Furthermore, the TV − L2
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Fig. 4. The components of the flow u from Fig. 2: uc (left), us (middle), and ut (right).
The vectors of us, ut are scaled-up for better visibility. Note that despite |u| ≈ |uc|,
structural and texture part us and ut are recovered well.

regularizer turned out to be more robust than the TV − G model in connec-
tion with the degenerate data term commonly used for variational optical flow
estimation.

Fig. 5. Ground truth data u and its curl to be estimated from a corresponding artifi-
cially created image sequence. u is a superposition of a laminar flow (div- and curl-free)
and turbulent vortices.

6 Conclusion and Further Work

Along the lines of current research on variational convex decomposition of image
functions, we presented a range of variational models extended to the decomposi-
tion and estimation of vector fields which represent image motions. Using proper
discretizations, these models achieve a twofold decomposition: three components
of the flow field representing flow variations at different scales, along with a fur-
ther decomposition of the divergence and the curl into a structural and a textural
part, respectively. We also presented a variational model for the decomposition-
based estimation of divergence-free flows which is of interest for experimental
fluid dynamics. Numerical results conducted by convex second-order cone pro-
gramming showed the feasibility of our approach as well as promising results
with respect to the processing and analysis of complex flow patterns in real-
world applications.

Our further work concerns the study of various TV − ∗ combinations of
regularizers for flow field decomposition which in comparison to image decom-
position may behave differently due to the data term and corresponding image
pre-processing. Furthermore, we will investigate more robust models for using
G-norm regularization in connection with the (mathematically) degenerate data
term for optical flow estimation.
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Fig. 6. Estimated and decomposed flow corresponding to Fig. 5, using the approach
(14). From left to right. Top: uc, us and ut. Bottom: ωc, ωs and ωt. Note, that the
laminar component is almost completely represented by uc, ωc, whereas the turbu-
lent patterns are captured by the remaining components at two different scales. The
texture components ut, ωt reflect the lack of robustness of G-norm regularization in
combination with the degenerate data term for optical flow estimation.

Fig. 7. Results analogous to Fig. 6, computed with TV −L2 regularization (15), how-
ever. The sensitivity of the texture part (left column) has been removed.

Fig. 8. Close-up view of a section of Fig. 7. From top to bottom: ωs, ωt, ωs + ωt with
the corresponding flows as overlays.
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7 Appendix

Let our primal grid consist of m×n vertices. Reshaping the scalar/vector fields colum-
nwise into vectors, we can identify

HP = Rmn, Ho
P = R(m−2)(n−2), HV = R(n−1)(n−1),

HS = Rm(n−1)+n(m−1), Ho
S = R(m−1)(n−2)+(n−1)(m−2),

and finally HE , Ho
E as HS , Ho

S . While HP and HV are equipped with the usual Eu-
clidian norm, the norm on HS and Ho

E are given cell adapted as follows: for u ∈ HS

and i = 1, . . . , m− 1; j = 1, . . . , n− 1, let

uVi,j
:=

1√
2

(ui,j+ 1
2
, ui+1,j+ 1

2
, ui+ 1

2 ,j , ui+ 1
2 ,j+1)

T.

and

‖u‖2HS
:=

m−1X
i=1

n−1X
j=1

‖uVi,j
‖22 =

m−1X
i=1

n−1X
j=1

1

2
(u2

i,j+ 1
2

+ u2
i+1,j+ 1

2
+ u2

i+ 1
2 ,j + u2

i+ 1
2 ,j+1).

Similarly, we introduce the norm on Ho
E with respect to u

P o
i,j

. Further we define the

TV functional for ρ ∈ HV as TV(ρ) := |G ρ|HS , where

|u|HS =

m−1X
i=1

n−1X
j=1

‖uVi,j
‖2 =

m−1X
i=1

n−1X
j=1

r
1

2
(u2

i,j+ 1
2

+ u2
i+1,j+ 1

2
+ u2

i+ 1
2 ,j

+ u2
i+ 1

2 ,j+1
)

and for ω ∈ Ho
P as TV(ω) := |G|Ho

P
ρ|Ho

E
. Finally, the discrete G norms are given by

‖ρ‖G := inf
ρ=Div p

‖
ş
‖pVi,j

‖2
ť

i,j
‖∞, ‖ω‖G := inf

ω=Div p
‖

ş
‖p

P o
i,j
‖2

ť
i,j
‖∞.

Let

Dm :=

0
BBBBBBB@

−1 1 0 . . . 0 0 0
0 1 −1 . . . 0 0 0

. . .
. . .

. . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

1
CCCCCCCA
∈ Rm−1,m

, D̃m :=

0
BBBBBBBBBB@

2 0 0 . . . 0 0 0
−1 1 0 . . . 0 0 0

0 1 −1 . . . 0 0 0

. . .
. . .

. . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 −2

1
CCCCCCCCCCA

∈ Rm+1,m
,

Then the discrete first order operators can be identified with the following matrices:

G =

ţ
In ⊗Dm

Dn ⊗ Im

ű
, G =

ţ
In−1 ⊗ D̃m−1

D̃n−1 ⊗ Im−1

ű
,

Div =
ą
In−1 ⊗Dm, Dn ⊗ Im−1

ć
, Div =

ą
In−2 ⊗Dm−1, Dn−1 ⊗ Im−2

ć
,

Curl =
ą
Dn ⊗ Im−1,−In−1 ⊗Dm

ć
, Curl =

ą
Dn−1 ⊗ Im−2,−In−2 ⊗Dm−1

ć
,

where ⊗ denotes the Kronecker product of matrices. The operator G⊥ : HP → HS is
defined by

G⊥ =

ţ−Dn ⊗ Im

In ⊗Dm

ű
,

It is easy to check that the restricted operator G⊥|Ho
P

maps to Ho
S . Finally, the bound-

ary operators are given by

Bn =

ţ
In−1 ⊗Bm 0

0 Bn ⊗ Im−1

ű
, Bm :=

ţ−1 0 . . . 0 0
0 0 . . . 0 1

ű
∈ R2,m.

where 0 are zero matrices of appropriate sizes.
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3. T. Corpetti, E. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE
Trans. Patt. Anal. Mach. Intell., 24(3):365–380, 2002.
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