
Modeling Large-scale Joint Distributions and
Inference by Randomized Assignment

Bastian Boll1[0000−0002−3490−3350], Jonathan Schwarz1[0000−0003−1825−3826],
Daniel Gonzalez-Alvarado1[0000−0002−4636−3697], Dmitrij

Sitenko1[0000−0002−0022−3891], Stefania Petra2[0000−0002−7189−2275], and
Christoph Schnörr1[0000−0002−8999−2338]

1 Image and Pattern Analysis Group, Heidelberg University, Germany
2 Mathematical Imaging Group, Heidelberg University, Germany

bastian.boll@iwr.uni-heidelberg.de

Abstract. We propose a novel way of approximating energy-based mod-
els by randomizing the parameters of assignment flows, a class of smooth
dynamical data labeling systems. Our approach builds on averaging flow
limit points within the combinatorially large simplex of joint distribu-
tions. In an initial learning stage, the distribution of flow parameters is
selected to match a given energy-based model. This entails the difficult
problem of estimating model entropy which we address by differentiable
approximation of a bias-corrected estimator. The model subsequently al-
lows to perform probabilistic inference by computationally efficient draws
of structured integer samples which are approximately governed by the
energy-based target Gibbs measure in the low-temperature regime. We
conduct a rigorous quantitative assessment by approximating a small
two-dimensional Ising model and find close approximation of the combi-
natorial solution in terms of relative entropy which outperforms a mean-
field approximation baseline.

Keywords: Probabilistic Inference · Assignment Flows · Energy-based
Models · Structured Prediction

1 Introduction

Probabilistic models for context-sensitive decision making and structured predic-
tion have been a focal point of research during the last decades, devoted to data
modeling and analysis, imaging science and machine learning. Major paradigms
for representing mathematically complex probability distributions include Gibbs
distributions, probabilistic graphical models [32,17] and measure transport using
push-forward maps parameterized by neural networks [26,16]. A range of varia-
tional approximations [3] have been developed for the – typically intractable –
problems of inference and parameter learning.

The most basic one, the so-called (‘naive’) mean-field approximation [32, Sec-
tion 5], minimizes the Kullback-Leibler distance of a fully factorized distribution
and the intractable target distribution. More advanced structured mean-field
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approaches include the well-known Bethe- and Kikuchi approximations and re-
lated algorithms for approximating marginals of the target distribution by belief
propagation [20], [32, Section 4], convexified Bethe approximations [31,11] and
related methods in statistical physics, like the cavity method [25].

This paper presents a preliminary step for approaching the problem from
quite a different angle. Specifically, we consider a randomized dynamical sys-
tem, the assignment flow approach, proposed by [1] for data and image labeling.
Using learned deterministic parameters, this approach provides a continuous-
time model for deep networks whose layers emerge by geometric integration.
Key differences to established image labeling methods based on minimizing en-
ergies over discrete variables, like Maximum A-Posterior (MAP) inference using
Markov Random Fields [13], include (i) inherent smoothness, (ii) efficient in-
ference by geometric integration and (iii) amenability to learning parameters
directly from data. Our goal is to achieve probabilistic inference, beyond deter-
ministic MAP point estimates, by efficient evaluations of randomized assignment
flows.

Fig. 1. Image segmentation of an ambiguous subject4(cat or lion with equal probabil-
ity). Our model of the joint distribution (samples in first row) captures the structure
of the data by coupling subject pixels. In contrast, the marginal distribution (sam-
ples in second row) makes a pixelwise independence assumption and therefore fails to
represent spatial context.

The rationale behind our approach appears natural when considering the
embedding of assignment flows into a meta-simplex, as recently proposed by [4].
Any probability distribution over discrete variables can be represented as a point
in a combinatorially large probability simplex, each vertex of which represents
a single labeling corresponding to a single joint configuration of all involved
discrete assignment variables. The embedding of assignment flows then ranges

4 This image was created by DALL-E 2 [24].
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over a submanifold in this simplex corresponding to factorized distributions, akin
to the basic mean-field approach mentioned above.

In this situation, we utilize (i) that assignment flows converge to labelings
under mild conditions, i.e. they approach a vertex in the meta-simplex and,
consequently, (ii) that randomized assignment flows define implicitly via (i) a
probability distribution on the set of all vertices of the meta-simplex. This dis-
tribution, in turn, defines a barycenter in the meta-simplex which generally lies
outside the submanifold corresponding to embedded assignment flows. In other
words, using randomized assignment flows, we achieve approximate probabilistic
representations and inference that are more expressive than any (naive) mean-
field model. Figure 1 provides an example which illustrates this difference.

We point out that our approach to probabilistic modeling and inference,
by convex combination of extreme points of compact convex sets of probability
distributions, is not at all new in mathematics, but in fact extends far beyond the
scenarios with discrete random variables considered here [8]. Our approach to
constructing these representations, using randomized assignment flows, is novel
however. Randomized assignment flows were also used in [5], yet within the
different context of PAC-Bayes risk certification.

Organization. Section 2 briefly presents a specific parameterization of as-
signment flows introduced in [27] and the embedding approach of [4]. Ran-
domized assignment flows are introduced in Section 3. The approximation of
energy-based probability target distributions by our approach using the Gibbs
variational principle is detailed in Section 4. Experiments which validate quan-
titatively our claims are presented in Section 5, using problems which are small
enough such that the results of exact probabilistic inference can be computed as
unequivocal baseline.

Basic notation. We set [n] = {1, 2, . . . , n} for n ∈ N and 1n = (1, 1, . . . , 1)> ∈
Rn. 〈·, ·〉 denotes the Euclidean vector inner product or the Frobenius matrix
inner product. The canonical basis of Rn is denoted by (e1, . . . , en) = In. Rn++

denotes the set of vectors in Rn with strictly positive entries. ⊗ denotes the
Kronecker product.

2 (S-)Assignment Flows

2.1 Definition

Let G = (V, E , ω) denote an undirected weighted graph with n = |V| vertices
and a nonnegative weight function ω : E → [0,∞) on graph edges E ⊆ V × V.
Let S : V → Sc denote a function that takes values Si ∈ Sc, i ∈ V in the relative
interior Sc = {s ∈ Rc++ : 〈1c, s〉 = 1} of the probability simplex. (Sc, g) is a
Riemannian manifold with the trivial tangent bundle TpSc ∼= Sc × T0Sc, with
tangent space T0Sc = {v ∈ Rc : 〈1c, v〉 = 0} and with the Fisher-Rao metric

g : TpSc × TpSc → R, (v1, v2) 7→ 〈v1, v2〉g =
〈v1
p
, v2

〉
. (1)
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This metric can be seen as an infinitessimal version of relative entropy on Sc.
The assignment manifold (W, g) is the product manifold W = Sc × · · · × Sc
with n = |V| factors and the natural corresponding extension of the Fisher-Rao
metric g. It defines the set of feasible assignment matrices S ∈ W ⊂ Rn×c++ .

We consider a version of the assignment flow approach [1,28] introduced in
[27],

Ṡ = RS(ΩS), S(0) = S0, Ωij = ωij , ij ∈ E , (2a)(
RS(ΩS)

)
i
= RSi

(ΩS)i, RSi
= Diag(Si)− SiS>i , i ∈ V. (2b)

Determining S(t) by geometric numerical integration [34] converges for t → ∞
under mild conditions towards unit vectors S∗i = ej(i), i ∈ V that assign the label
j to the data point at vertex i represented by the initial point S0;i [35]. Using
the row-stacking operator s(t) = vecr(S(t)) and extending Ω from vecr(ΩS) =
(Ω ⊗ Ic) vecr(S) to Ωv vecr(S), as done in [5] in order to take both spatial and
label interaction into account, vectorization of (2) yields

ṡ(t) = Rv
s(t)Ω

vs(t), s(0) = s0 (3)

with Rv
sΩ

vs = Diag(RS1
, . . . , RSn

)Ωv vecr(S). We further define the lifting map
expS(V ) = softmax(V + logS) where softmax is applied along the second di-
mension (c) and log applies componentwise. To simplify notation, we will in the
following re-use the symbol Ω to mean the extended operator Ωv ∈ Rnc×nc.

2.2 Embedding

In [4], a formal reduction of assignment flows to replicator dynamics has been
proposed. To this end, the authors regard the joint state of n nodes each carrying
a distribution over c classes as point on a single meta-simplex SN with N = cn

vertices (extreme points). As in this work, we will use multi-index notation
α ∈ [c]n instead of single indices i ∈ [N ] to refer to entries of SN and its tangent
space. We will use the embedding result [4, Theorem 1] as well as the following
associated definitions.

Definition 1 (Embedding Maps). The maps

T : W → SN , T (S)α :=
∏
i∈[n]

Si,αi
, N := cn, (4a)

Q : T0W → T0SN , Q(V )α :=
∑
l∈[n]

Vl,αl
. (4b)

are diffeomorphisms between their domain and a subset of their range. In the case
of (4a), the range img T is the set of joint distributions in SN which factorize
into marginals Si.

With abuse of notation, we will use the same symbol Q to denote the linear map
Rn×c → RN defined analogously by (4b). From this perspective, the adjoint linear
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map Q> was shown in [4, Lemma 2] to perform marginalization of distributions
in SN which is the inverse map of T on its range. In addition, we will analogously
apply the maps T and Q to vectorized arguments s = vec(S) and v = vec(V ).
With these definitions, the central result of [4] is that for s(t) with dynamics (3),
the quantity p(t) = T (s(t)) ∈ SN has the dynamics

ṗ(t) = Rp(t)[QΩQ
>p(t)], p(0) = T (s0) . (5)

3 Randomized Assignment Flow

We regard the interaction Ω as a random variable with distribution µ. This in
turn makes p(t) = p(t, Ω, S0) defined by the dynamics (5) a random variable
whose distribution ν(t) in SN varies over time. We will use the first moment

P (t) = Ep∼ν(t)[p] = EΩ∼µ[p(t, Ω, S0)] (6)

to represent a joint distribution of random variables on the graph G. In this
section, we examine properties of P (t) and its limit P∞ over time.

First note that P (t) lies in SN because every p(t, Ω, S0) lies in SN and SN is
a convex set. Thus, the limit P∞ lies in the closure SN which contains all joint
distributions of random variables on G with possibly non-full support. Suppose
that (5) converges to a unit vector eγ(Ω) ∈ SN for (almost) every Ω drawn from
µ. Then

P∞α = lim
t→∞

P (t)α → EΩ∼µ[eγ(Ω)]α = EΩ∼µ[[α = γ(Ω)]] = PΩ∼µ(α = γ(Ω)).

(7)
Thus, we can draw samples of P∞ efficiently by numerical integration of (3)
and these samples will be integer distributions, i.e. hard node-label assignments.
A distribution µ governing Ω, which meets these requirements is specified next.

Theorem 1 ([35, Thm. 2]). Let Ω = max(Z+Z>, 0)+εIn, Z ∈ Rn×n, ε > 0,
where the entries of Z follow a multivariate normal distribution and maximiza-
tion is componentwise. Then the embedded S-flow (5) converges to a unit vector
for every draw of Ω and almost every S0 ∈ W.

Proof. For the given shape of Ω, the assumptions of [35, Thm. 2] are met, which
guarantees that the solution S(t) of (2) converges to an integral solution for
almost every initialization S0 ∈ W. Because T bijectively maps the corners of
W to the corners of SN , the assertion is immediate from the embedding theorem
[4, Theorem 1].

Crucially, even though every p(t, Ω, S0) lies in the image of T and thus fac-
torizes into node marginals, the expected value P (t) typically does not factorize.
This is due to the fact that img T , the set of rank-1 tensors, is a relatively low-
dimensional, curved, non-convex subset of SN . To see this, consider the following
Lemma.
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Lemma 1 (Lifting Map Lemma [4]). For any S ∈ W and V ∈ Rn×c it holds

T (expS(V )) = expT (S)(QV ) (8)

By using Lemma 1, we can show the following properties of img T .

Lemma 2 (Properties of img T ). img T is a curved, non-convex submanifold
of SN with dimension at most n(c− 1).

Proof. By choosing S ∈ W as the uniform distribution on every node, the state-
ment of Lemma 1 becomes

T (softmax(V )) = softmax(QV ) (9)

Since softmax: T0W → W is surjective onto W, (9) characterizes img T as the
image of the linear subspace imgQ ⊆ T0SN under softmax: T0SN → SN . Thus,
img T is flat in e-coordinates on SN , making it curved in m-coordinates. The
subspace imgQ has dimension at most n(c − 1) because Q is linear and T0W
has dimension n(c− 1). To see that img T is not convex, note that the extreme
points of W are bijectively mapped to the extreme points of SN by T . Suppose
img T was convex. Then img T contains the convex hull of every subset of img T .
But the convex hull of the extreme points of SN is just all of SN , contradicting
the fact that img T has lower dimension than SN . ut

4 Approximation of Energy-based Models

Here we consider the approximation of energy-based models, i.e. models in which
the probability of configuration α is given by

P ∗α =
1

Z∗
exp(−Eα), Z∗ =

∑
α∈[c]n

exp(−Eα) (10)

where energy Eα of each individual configuration is tractable but the partition
function Z∗ is intractable, because it contains a combinatorially large number of
summands. We enumerate the energies of all configurations and collect them in
the single vector E ∈ RN . As an instance of (10), consider the class of pairwise
graphical models with energy

Eα =
∑
i∈[n]

〈θi, eαi〉+
∑
ij∈E
〈eαj , θ

ijeαi〉 θi ∈ Rc, θij ∈ Rc×c (11)

Tying back to the notation of earlier sections, we transform the pairwise term
in (11) to∑

ij∈E
〈eαj

, θijeαi
〉 =

∑
ij∈E
〈(Q>eα)j , θij(Q>eα)i〉 = 〈Q>eα, θ(p)Q>eα〉 (12)
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with matrix θ(p) ∈ Rnc×nc built from blocks θij ∈ Rc×c, i, j ∈ [n]. Similarly, com-
bining unary parameters θi into a single vector θ(u) ∈ Rnc yields the vectorized
form of (11)

E = Qθ(u) + diag(Qθ(p)Q>) . (13)

Suppose one approximates P ∗ by a tractable P ∈ SN . This entails minimization
of

KL[P : P ∗] =
〈
P, log

P

P ∗

〉
= 〈P, logP 〉 − 〈P, logP ∗〉 (14a)

= −H(P )− 〈P,E〉+ logZ∗︸ ︷︷ ︸
const

〈P,1N 〉︸ ︷︷ ︸
=1

(14b)

which mirrors the well-known conjugacy relation [7, Lemma 1.1.3]

log
〈 1

N
1N , exp(−E)

〉
= sup

P
−〈E,P 〉 −KL[P :

1

N
1N ] . (15)

Thus, in order to learn P efficiently, we need to be able to compute its entropy
and expected energy as well as their respective gradients. Since the energy of
each individual configuration is tractable, the expected energy of a tractable
model is typically easy to estimate. However, estimating entropy from samples
is generally a difficult problem, which makes tractable entropy a key design
criterium for surrogate models P . Along this line of reasoning, the basic mean-
field approach is to approximate P ∗ by a factorizing distribution T (M). The
model entropy in (14) then simplifies to

−H(T (M)) = 〈T (M), log T (M)〉 = 〈T (M), Q logM〉 = 〈M, logM〉 (16)

by [4, Lemma 2]. Because both the uniform distribution in SN and every extreme
point of SN is a factorizing distribution, the mean-field approximation generally
works best if either (a) all configurations have close to the same probability (high
temperature regime) or (b) P ∗ is close to an integer distribution (the system
is essentially deterministic). It is the challenging medium or low temperature
regime in which a more sophisticated model is typically required – entailing the
problem of entropy estimation.

Here we propose to approximate P ∗ by P as defined in (6). This goes beyond
mean field approaches because, as discussed in Section 3, P typically lies outside
img T i.e. does not factorize. Expected model energy reads

〈P,E〉 = 〈EΩT (S(Ω)), E〉 = EΩ〈T (S(Ω)), E〉 (17)

which amounts to an expected value of mean field energies. Thus, if mean field
energy is tractable, the empirical energy over samples of Ω is an unbiased esti-
mator of model energy.

We turn to the more challenging problem of entropy estimation. Typically,
estimating model entropy H(P ) from samples is difficult because the support
| suppP | = s of P is large compared to the number m of available samples.
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The support of P ∗ can be arbitrarily large in principle. In fact, as a prerequisite
for the Hammersley-Clifford theorem [6, Thm. 9.1.10], full support has formal
merit in Markov random fields. On the other hand, many situations of practical
interest do not benefit from a model with very large support. For instance, in
image segmentation, most configurations of classes on the pixels of an image
will have very little semantic content. In statistical mechanics, full support is
beneficial to model high temperature systems. However, the behavior of these
systems is dominated by randomness and they are well-described by a mean
field approximation. More sophisticated models are beneficial in the challenging
medium or low temperature regime and in this case small support can suffice.

Suppose the support size s is small compared to the number m of available
samples {α(i)}i∈[m] ⊆ [c]n drawn from P∞. Denote by

p̂ =
1

m

∑
i∈[m]

eα(s) ∈ SN (18)

the empirical distribution of samples. A classical analysis by [18] shows that the
plugin estimator

H(P ) ≈ H(p̂) = −
∑

α∈supp(p̂)

p̂α log p̂α (19)

has bias
E[H(p̂)]−H(P ) = −s− 1

2m
+O

( 1

m2

)
(20)

which leads to the Miller-Maddows bias correction for known support s. It was
shown that this only achieves a consistent estimator if m � s [21] which is far
from the optimal rate of m � s/ log s [12] and thus motivates the use of more
advanced approaches such as [29,12,33,30].

The support of P as defined in (6) is typically not known. However, in our
experiments (Section 5) we observe that the empirical distribution is only sup-
ported on relatively few configurations. For this reason, we judge (19) with bias
correction (20) to be sufficient for the case at hand. Note that an unbiased esti-
mator of entropy from samples exists [19] but is not practical for our use case,
because it entails drawing a potentially large number of samples which is not
known a priori.

As a key issue it remains to find a differentiable approximation of −H(p̂).
Under the assumption of integer samples, we find

−H(p̂) =
〈 1

m

∑
k∈[m]

T (Sk), log
1

m

∑
k∈[m]

T (Sk)
〉

(21a)

=
〈 1

m

∑
k∈[m]

eα(k), log
1

m

∑
k∈[m]

eα(k)

〉
=

1

m

∑
k∈[m]

log
( 1

m

∑
l∈[m]

eα(l)

)
α(k)

(21b)

= − logm+
1

m

∑
k∈[m]

log
( ∑
l∈[m]

eα(l)

)
α(k)

. (21c)
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This motivates the approximation

−H(p̂) ≈ − logm+
1

m

∑
k∈[m]

log
( ∑
l∈[m]

T (Sl)
)
α(k)

(22)

for non-integer samples Sl. The fact that assignment flows converge to integer
labelings is crucial to this construction, because quantities in SN can not be
explicitly represented in numerical computations and integrality of S allows to
reduce the sparse sum in (21b) to a tractable quantity. Note that T (Sl)α(k) above
is a product of n numbers in (0, 1). We thus rewrite the summands in (22) as

log
( ∑
l∈[m]

T (Sl)
)
α(k)

(4a)
= log

( ∑
l∈[m]

∏
i∈[n]

Sli,α(k)i

)
α(k)

(23a)

= log
∑
l∈[m]

exp
( ∑
i∈[n]

logSli,α(k)i

)
(23b)

to avoid numerical underflow problems by leveraging a stabilized implementation
of logexpε=1. Note that the right-hand side is differentiable.

Once a suitable approximation of P ∗ is found by minimizing (14) with respect
to parameters governing µ (Section 5), the model P can be used for probabilistic
inference. Marginal distributions are easily estimated via

Q>P = EΩ∼µ[Q
>T (S(Ω))] = EΩ∼µ[S(Ω)] (24)

and more generally, any quantity Qφ with φ ∈ Rnc can be inferred by

EP [Qφ] = 〈EΩ∼µ[T (S(Ω))], Qφ〉 = EΩ∼µ[〈S(Ω), φ〉] . (25)

5 Experiments

The introductory example in Fig. 1 was produced by approximating a large
Potts model on the grid graph of image pixels5. This was achieved by randomiz-
ing the generalized S-flow (3), giving Ω ∈ Rnc×nc the structure of multi-channel
convolution with weights following a multivariate normal distribution. Suitable
moments for this normal distribution together with a suitable flow initialization
s0 are the result of a training procedure which minimizes (14). To this end, a
reparameterization trick [15] is applied in conjunction with the approximation
(22) and bias correction (20) where the unknown support s is replaced by the
empirical support ŝ = | supp p̂| smoothed by the mean entropy of nodewise as-
signment. Numerical integration of (3) via the simple geometric Euler scheme
[34] (step size 0.1, end time 1.0) is unwound and automatically differentiated by
PyTorch [22] which allows to find a local optimum of parameters by employing
the Adam optimizer [14] with step length 0.01.

5 All experiments were run on a single NVIDIA RTX 2080ti graphics card
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In this section, we further demonstrate the approximation of energy-based
models on a small two-dimensional Ising model, i.e. a system of binary random
variables with nearest-neighbor interaction on a grid graph, governed by a Gibbs
distribution of the form (10) with a corresponding energy function Eα.

These systems are classical ones in statistical mechanics [23]. They proto-
typically represent a combinatorially large configuration space and long range
correlation at low temperatures. As a consequence, in the presence of an ‘external
field’ [2], i.e. data defining unary potentials in Eα, minimizing Eα and proba-
bilistic inference become NP-hard even for moderate problem sizes. Such models
initiated research on image segmentation and Bayesian inference [9,10] and have
been stimulating research on variational approximations for many years [32,17].
As a consequence, they define an ideal testbed for evaluating our approach and
validating also experimentally our claims.

G is chosen as a 3×8 grid graph such that the combinatorial partition function
and true marginals can still be computed by brute force. This allows to give
numerical values for the distance to the combinatorial model in terms of relative
entropy via (14). The number of classes is c = 2. Unary energy is chosen as
−3.0 for the 0-configuration of nodes on the left boundary and as 3.0 on the
right boundary. All other unary energies are zero. Pairwise energy is set to
θij = 7

10 · (1c1
>
c − Ic) for each edge.

We approximate this model by the same training procedure as above with
reduced learning rate 5·10−3 over 5k iterations. This takes around 21 minutes on
a single desktop graphics card. To guarantee S-flow convergence via Theorem 1,
we omit label interaction as afforded by the generalization (3) and instead use
(2) with symmetric matrix Ω ∈ Rn×n parameterized as Ω = max(Z + Z>, 0) +
10−3In with entries of Z ∈ Rn×n following a multivariate normal distribution.
We initialize the distribution of Z centered at 1

201n1>n and with componentwise
variance 10−1. In the early stages of optimization, samples are not integral due
to the finite time horizon, but we observe that the sample entropy gradually
decreases over the course of optimization, making the approximation (22) already
close to exact for finite time. Once a model is learnt through convergence to
a local minimum, integrality of samples is guaranteed by Theorem 1 for t →
∞. In fact, it was shown in [35] that the same integer limit is also found by
rounding after sufficiently large but finite time t which is relevant for numerical
implementation.

As a baseline, we compute a mean field approximationM ∈ W by parameter-
izing M = softmax(V ) and using the Adam optimizer to learn V by minimizing
the tractable form of (14). This procedure is repeated for 1k initializations drawn
randomly from a standard normal distribution of V ∈ Rn×c and a model with
minimal KL distance is selected from resulting local optima. The true distribu-
tion has multiple modes, of which mean field approximation can only represent
just one. In contrast, our model is able to capture the multimodality as is ap-
parent from samples (Fig. 2), close approximation of marginals (Fig. 3) and low
relative entropy (Tab. 1).
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Fig. 2. Samples of Ising model from the mean-field baseline (first row) and from our
model (second row). This demonstrates that, unlike the mean-field approximation, our
approach can explore multiple modes in the low-temperature regime.

Fig. 3. Marginals of the true distribution (left), our approximation via randomized
assignment (middle) and the baseline mean-field approximation (right).

6 Discussion and Conclusion

In the low temperature regime (E large), the mass of P ∗ concentrates around
its modes. For this reason, the proposed model – for which small support is
computationally beneficial – actually becomes more effective at lower temper-
ature. This unusual performance characteristic makes our approach promising
in challenging structured prediction scenarios where mean-field approximation
fails to capture the structure of interest. A natural direction of future work is to
construct differentiable approximations such as (22) for more advanced entropy
estimators.
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Table 1. Summary of Ising model approximation. Relative entropy to the true distri-
bution is computed by brute-force evaluation of the combinatorial partition function.
Entropy of our model is closely approximated by (19) with bias correction (20) using
m = 1M integer samples.

Model KL Energy Entropy Marginal Difference

AF (ours) 0.599 -1.98 2.56 0.090
Mean Field 1.974 -1.57 1.60 0.198
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