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4. RESTRICTED ISOMETRY PROPERTY

We have seen that the NSP implies the guaranteed recovery of sparse solutions of underdetermined linear
systems by basis pursuit. However it is somehow difficult to construct matrices satisfying this property. We
shall therefore present a sufficient condition called Restricted Isometry Property, which was first introduced
in [CT05], and which ensures that the NSP is satisfied. We will also see in this section that it implies stable
recovery of nearly sparse signals and also robustness to measurement noise.

Definition 4.1. Let A 2 Rm⇥n and let s 2 [n]. Then the restricted isometry constant �
s

= �
s

(A) of order s
is the smallest � � 0, such that

(1� �)kxk2
2

 kAxk2
2

 (1 + �)kxk2
2

, 8x 2 ⌃

s

. (4.1)

Furthermore, we say that A satisfies the restricted isometry property (RIP) of order s with the constant �
s

if
�
s

2 [0, 1).

Remark 4.1. The condition (4.1) states that A acts nearly like an isometry when it is restricted to vectors from
⌃

s

. The smaller the constant �
s

(A) is, the closer the matrix A is to an isometry on ⌃

s

. We will be interested in
an later section in constructing matrices with small RIP constants.

Note that if a matrix A satisfies the RIP of order 2s, the we can interpret (4.1) as saying that A approximately
preserves the distance between any pair of s-sparse vectors. To see this, choose x = y � z, where y, z 2 ⌃

s

and x is at most 2s-sparse. This will have fundamental implications concerning robustness to noise.
We additional note that the inequality �

1

(A)  �
2

(A)  · · ·  �
s

(A) holds trivially.

Remark 4.2. The restricted isometriy constant �
s

is given as

�
s

= max

S⇢[n],|S|s

kA>
S

A
S

� Ik
2

. (4.2)

By (4.2) each submatrix A
S

, S ⇢ [n] with |S|  s has its singular values in the interval [1 � �
s

, 1 + �
s

]. The
submatrix A

S

will be injective when �
s

< 1. Thus, the relevant situation occurs when �
s

< 1.

It is important to note that while in our definition of the RIP we assume bounds that are symmetric about 1,
this is merely a notational convenience. We could also consider arbitrary bounds with

↵kxk2
2

 kAxk2
2

 �kxk2
2

, 8x 2 ⌃

s

(4.3)

with 0 < ↵  � < 1. Given such bounds, one can always scale A so that it satisfies the symmetric bound
around 1 as in (4.1). Indeed, multiplying A by

p

2/(� + ↵) will result in an ˜A for which (4.1) hold with
�
s

= (� � ↵)/(� + ↵).
In general, computing RIP constants is of combinatorial nature. For small size matrices these constants can

be computed.

Example 4.1. Consider s = 1. Let x 2 ⌃

1

and denote by x
i

the only nonzero entry of x. The RIP property of
order 1 becomes

(1� �
1

)x2

i

 kAik2
2

x2

i

 (1 + �
1

)x2

i

, i 2 [n], (4.4)

where Ai denotes the i-th column of A. For x
i

6= 0 we get

(1� �
1

)  kAik2
2

 (1 + �
1

), i 2 [n]. (4.5)

Therefore, a matrix A satisfies the RIP of order 1 if the norm of each of its columns is approximately equal to 1.

Example 4.2. Let s = 2 and consider

A =

 

1p
2

0 �1

� 1p
2

1 0

!

. (4.6)

We show that A satisfies the RIP of order 2 for �
2

= 1/
p
2. By the previous example A satisfies the RIP of

order 1 for �
1

= 0 since the columns are normalized to 1. Next, let x = (x
1

, x
2

, x
3

)

> be an arbitrary exact
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FIGURE 4.1. Plot of function ↵ 7!
p
2|↵|

↵

2
+1

from 4.8 that attains its maximum in ↵ = ±1.

2-sparse vector. Consider first the case where x
3

= 0 and define ↵ := x
2

/x
1

(x
1

6= 0 since otherwise x 2 ⌃

1

).
The RIP property can be written as

(1� �
2

)(1 + ↵2

)x2

1

 (↵2 �
p
2↵+ 1)x2

1

 (1 + �
2

)(1 + ↵2

)x2

1

. (4.7)

Condition (4.7) is satisfied for every ↵ 2 R if

�
2

� max

↵2R

p
2|↵|

↵2

+ 1

=

1p
2

, (4.8)

see Fig. 4.1. We obtain the same equation when we assume that x
2

= 0. Finally, suppose that x
1

= 0. In this
case, Ax = (�x

3

, x
2

)

> and kAxk2
2

= kxk2
2

so that (4.1) holds for �
2

= 0. We conclude that (4.1) is satisfied
for all x 2 ⌃

2

with �
2

= 1/
p
2.

If A satisfies the RIP of order s with constant �
s

, then for any s0 < s we automatically have that A satisfies
the RIP of order s0 with constant �

s

0  �
s

.
It is also straightforward to see that if A satisfies RIP of order 2s for any � 2 (0, 1), then spark(A) > 2s.

This follows from the lower bound in (4.1). Indeed, let x 6= 0 be an arbitrary vector in ⌃

2s

. From the RIP
property we have that kAxk > 0 so that x 62 N (A). This in turn implies that every 2s columns of A are linearly
independent and spark(A) > 2s.

A useful property that is implied by RIP is given in the following proposition.

Proposition 4.1. If A satisfies the RIP of order 2s, then for any pair of vectors x, z 2 ⌃

s

with disjoint support,
we have

|hAx,Azi|  �
2s

kxk
2

kzk
2

. (4.9)

Proof. If x, z 2 ⌃

s

are two vectors with disjoint supports and kxk
2

= kzk
2

= 1, then x ± z 2 ⌃

2s

and
kx± zk2

2

= 2. If we now combine the RIP of A

2 (1� �
2s

)  kA(x± z)k2
2

 2(1 + �
2s

)

with the polarization identity1 we get

|hAx,Azi| = 1

4

�

�kAx+Azk2
2

� kAx�Azk2
2

�

�  �
2s

. (4.10)

For arbitrary x, z, define x0
= x/kxk and z0 = z/kzk. Since x0 and z0 have equal one norm, we can apply

(4.10) to conclude that
|hAx,Azi| = kxk

2

kzk
2

|hAx0, Az0i|  �
2s

kxk
2

kzk
2

. (4.11)
⇤

The following theorem shows that RIP of sufficiently high order with a constant small enough is indeed a
sufficient condition for NSP.

1If V is a real vector space, then the inner product is defined by the polarization identity

hx, yi =
1

4

�
kx+ yk2 � kx� yk2

�
, 8 x, y 2 V.
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Theorem 4.2. Suppose A 2 Rm⇥n satisfies the RIP of order 2s with s  n/2. If �
2s

(A) < 1/3, then A has the
NSP of order s.

Proof. Let v 2 N (A) and let S ⇢ [n] with |S|  s. We will show, that

kv
S

k
2

 �
2s

1� �
s

· kvk1p
s
. (4.12)

If �
s

 �
2s

< 1/3, then with Cauchy-Schwarz inequality we obtain kv
S

k
1

 p
skv

S

k
2

< kvk
1

/2 and the NSP
of A of order s follows.

To show (4.12), let us assume that v 2 N (A) is fixed. It is enough to consider S = S
0

the set of the s
largest entries of v taken in the absolute value. Furthermore, we denote by S

1

the set of s largest entries of v
S

c

0

in the absolute value, by S
2

the set of s largest entries of v
(S0[S1)

c in the absolute value, etc. Using now that
0 = Av = A(v

S0 + v
S1 + v

S2 + . . . ) and (4.9), we arrive at

kv
S0k22  1

1� �
s

kAv
S0k22 =

1

1� �
s

hAv
S0 , A(�v

S1) +A(�v
S2) + . . . i

 1

1� �
s

X

j�1

|hAv
S0 , Av

S

j

i|  �
2s

1� �
s

X

j�1

kv
S0k2 · kvSj

k
2

.

We divide this inequality by kv
S0k2 6= 0 and obtain

kv
S0k2  �

2s

1� �
s

X

j�1

kv
S

j

k
2

.

Taking in account the definition of the sets S
j

, j 2 [n]
0

we obtain

X

j�1

kv
S

j

k
2

=

X

j�1

0

@

X

k2S

j

|v
k

|2
1

A

1/2


X

j�1

✓

smax

k2S

j

|v
k

|2
◆

1/2

(4.13)

=

X

j�1

p
smax

k2S

j

|v
k

| 
X

j�1

p
s min

k2S

j�1

|v
k

| 
X

j�1

p
s ·

P

k2S

j�1
|v

k

|
s

(4.14)

=

X

j�1

kv
S

j�1k1p
s

=

kvk
1p
s

(4.15)

and the proof is complete. ⇤

Combining Theorems 3.2 and 4.2, we obtain immediately the following corollary.

Corollary 4.3. Suppose A 2 Rm⇥n has the RIP of order 2s and let s 2 [n] with s  n/2. If �
2s

(A) < 1/3,
then every s-sparse vector x is the unique solution of problem (P

1

) from (3.1) with b = Ax.

Remark 4.3. It will turn out that the simplest way of constructing matrices that fulfill the RIP condition with
reasonably small constants with high probability (and hence also the NSP) is by taking its entries to be indepen-
dent standard normal variables, e.g.

A =

1p
m

0

B

@

a
1,1

· · · a
1n

...
. . .

...
a
m1

· · · a
mn

1

C

A

,

where a
ij

, i 2 [m], j 2 [n], are i.i.d. standard normal variables.
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4.1. Stability and Robustness. We have seen that we can recover sparse solutions of underdetermined linear
systems by convex optimization via `

1

-minimization. This is surely a very promising result. However, two
additional features are necessary to extend this results to real-life applications, namely

Stability: We want to be able to recover (or at least approximate) also vectors x 2 Rn, which are not
exactly sparse but compressible. Recall that we have characterized compressible vectors by assuming
that their best s-term approximation decays rapidly with s. Intuitively, the faster the decay of the best
s-term approximation of x 2 Rn is, the better we should be able to approximate x.

Robustness: Equally important, we want to recover sparse or compressible vectors from noisy measure-
ments. The basic model here is the assumptions that the measurement vector b is given by b = Ax+ r,
where r is small (in some sense). Again, the smaller the error r is, the better we should be able to
recover an approximation of x.

We have seen in the previous section that the NSP can be extended also to the noisy scenario and we have
introduced the stable and robust NSP. As previously mentioned it is difficult to design matrices that satisfy the
NSP. The RIP is strictly stronger than the NSP in the sense that if a matrix satisfies the RIP, then it will also
satisfy the (stable) NSP as seen in Thm. 4.2 but also the robust NSP.

Moreover, we will see next that the lower bound in RIP is a necessary condition to be able to recover all
sparse signal from noisy measurements. We will need the following notion.

Definition 4.2. Let A 2 Rm⇥n denote a sensing matrix and � : Rm ! Rn a decoder, i.e. recovery algorithm.
We say that the pair (A,�) is C-robust if for any x 2 ⌃

s

and any r 2 Rm we have that

k�(Ax+ r)� xk
2

 Ckrk
2

. (4.16)

This definition implies that if we add a small amount of noise to the measurements, then the impact on the
recovered signal is not arbitrary large. The next result shows that the existence of a robust decoding algorithm
requires that A satisfies the lower bound of RIP.

Theorem 4.4. If the pair (A,�) is C-robust, then
1

C
kxk

2

 kAxk
2

(4.17)

for all x 2 ⌃

2s

.

Proof. For any x 2 ⌃

2s

write x = v � z with v, z 2 ⌃

s

. Define

r
v

:=

A(z � v)

2

and r
z

:=

A(v � z)

2

, (4.18)

and note that
Av + r

v

= Az + r
z

=

A(v + z)

2

. (4.19)

Let x̂ = �(Av + r
v

) = �(Az + r
z

). From the triangle inequatlity and the definition of C-robustness we have
that

kv � zk
2

= kv � x̂+ x̂� zk
2

 kv � x̂k
2

+ kx̂� zk
2

 Ckr
v

k
2

+ Ckr
z

k
2

= CkAv �Azk
2

.

The last equality follows from Av�Az = r
z

� r
v

and the fact that r
z

= �r
v

. Noting that x = v� z completes
the proof. ⇤

We will further concentrate on the recovery properties of the following relaxation of (P
1

) and consider the
basis pursuit denoising problem (P

1,⌘

) from (3.15)

min

x2Rn

kxk
1

s.t. kAx� bk
2

 ⌘, (4.20)

with ⌘ � 0. If ⌘ = 0, (P
1,⌘

) reduces back to (P
1

) .
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Theorem 4.5. Suppose A 2 Rm⇥n satisfies the RIP of order 2s. Let �
2s

<
p
2�1, b = Ax⇤

+r and krk
2

 ⌘.
Then the solution x̂ of (P

1,⌘

) satisfies

kx̂� x⇤k
2

 C�
s

(x⇤
)

1p
s

+D⌘, (4.21)

where C,D > 0 are two positive constants.

Proof. First, let us recall that by Prop. 4.1, if A has RIP of order 2s and u, v 2 ⌃

s

are two vectors with disjoint
supports, then we have by (4.9)

|hAu,Avi|  �
2s

kuk
2

kvk
2

. (4.22)

Set h = x̂ � x⇤ and define the index set S
0

⇢ [n] as the locations of the s largest entries of x⇤ taken in
absolute value. Furthermore, we define S

1

⇢ Sc

0

to be the indices of the s largest absolute entries of h
S

c

0
, S

2

the indices of the s largest absolute entries of h
(S0[S1)

c , etc. Since x̂ is a feasible point of (P
1,⌘

), we obtain by
using the triangle inequality

kAhk
2

= kA(x̂� x⇤
)k

2

 kAx̂� bk
2

+ kb�Ax⇤k
2

 2⌘. (4.23)

Since x̂ is the minimizer of (P
1,⌘

), we get kx̂k
1

= kx⇤
+ hk

1

 kx⇤k
1

. This we use to show that h must be
small outside of S

0

. Indeed, we obtain

kh
S

c

0
k
1

= k(x⇤
+ h)

S

c

0
� x⇤

S

c

0
k
1

+ k(x⇤
+ h)

S0 � h
S0k1 � kx⇤

S0
k
1

 k(x⇤
+ h)

S

c

0
k
1

+ kx⇤
S

c

0
k
1

+ k(x⇤
+ h)

S0k1 + kh
S0k1 � kx⇤

S0
k
1

= kx⇤
+ hk

1

+ kx⇤
S

c

0
k
1

+ kh
S0k1 � kx⇤

S0
k
1

 kx⇤k
1

+ kx⇤
S

c

0
k
1

+ kh
S0k1 � kx⇤

S0
k
1

= kh
S0k1 + 2kx⇤

S

c

0
k  s1/2kh

S0k2 + 2�
s

(x⇤
)

1

.

Using this together with the approach applied already in the proof of Thm. 4.2, see (4.13)–(4.15), we derive
X

j�2

kh
S

j

k
2

 s�1/2kh
S

c

0
k
1

 kh
S0k2 + 2s�1/2�

s

(x⇤
)

1

. (4.24)

We use the RIP property of A, (4.22), (4.23), (4.24) and the inequality kh
S0k2 + kh

S1k2  p
2kh

S0[S1k2 and
get

(1� �
2s

)kh
S0[S1k22  kAh

S0[S1k22 = hAh
S0[S1 , Ahi � hAh

S0[S1 ,
X

j�2

Ah
S

j

i

 kAh
S0[S1k2kAhk

2

+

X

j�2

�

�hAh
S0 , AhS

j

i��+
X

j�2

�

�hAh
S1 , AhS

j

i��

 2⌘
p

1 + �
2s

kh
S0[S1k2 + �

2s

(kh
S0k2 + kh

S1k2)
X

j�2

kh
S

j

k
2

 kh
S0[S1k2(2⌘

p

1 + �
2s

+

p
2�

2s

kh
S0k2 + 2

p
2�

2s

s�1/2�
s

(x⇤
)

1

) .

We divide the inequality above by (1� �
2s

)kh
S0[S1k2, replace kh

S0k2 with the larger quantity kh
S0[S1k2 and

subtract
p
2�

2s

/(1� �
2s

)kh
S0[S1k2 from both sides to arrive at

kh
S0[S1k2  (1� ⇢)�1

(↵⌘ + 2⇢s�1/2�
s

(x⇤
)

1

), (4.25)

where

↵ =

2

p
1 + �

2s

1� �
2s

and ⇢ =

p
2�

2s

1� �
2s

.
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By using (4.24) and (4.25) we obtain

khk
2

 kh
(S0[S1)

ck
2

+ kh
S0[S1k2 

X

j�2

kh
S

j

k
2

+ kh
S0[S1k2

 2kh
S0[S1k2 + 2s�1/2�

s

(x)
1

 C
�
s

(x)
1p

s
+D⌘,

with C = 2(1� ⇢)�1↵ and D = 2(1 + ⇢)(1� ⇢)�1. This shows (4.22). ⇤

Remark 4.4. Some comments are in order. First, note that the reconstruction error is bounded by two terms.
The first term is determined by the bound on the measurement noise r. This tells us that if we add a small
amount of noise to the measurements, its impact on the recovered signal remains well-controlled. Moreover,
as the noise bound approaches zero, we see that the impact of the noise on the reconstruction error will also
approach zero. The second term measures the error that occurs by approximating the signal x⇤ as a s-sparse
signal (where the error is measured using the `

1

-norm). In the case that x⇤ is compressible, then the error again
remains well-controlled. Note that this term vanishes if x⇤ is perfectly s-sparse. Moreover, whenever x⇤ 2 ⌃

s

and there is no noise, then we obtain exact recovery.
There have been many efforts to improve on the constants in Thm. 4.5 and to weaken the assumption on the

constant �
2s

, but most of this work results in theorems that are substantially the same.

4.2. RIP and Measurement Bounds. It is important to obtain insight into how many measurements are nec-
essary to achieve the RIP. If we ignore the impact of �

s

and only focus on the dimensions of the problem (m, n
and s) then we can provide a lower bound. Before proving this lower bound, we need a preliminary lemma.

Lemma 4.6. Let s and n satisfying s < n/2. There exists a set X ⇢ ⌃

s

such that for any x 2 X we have
kxk

2

 p
s and for any x, z 2 X with x 6= z

kx� zk
2

�
p

s/2 (4.26)

and
log |X| � s

2

log

⇣n

s

⌘

(4.27)

holds.

Proof. We consider the set
U := {x 2 {0,±1}n : kxk

0

= s}. (4.28)
By construction, kxk2

2

= s if x 2 U . Thus we can construct the set X by choosing elements from U . We will
then automatically have kxk

2

=

p
s for all elements in U .

Next, we note that |U | = �

n

s

�

2

s. We observe also that for z, x 2 U we have kx� zk
0

 kx� zk2
2

. Thus, if
kx� zk2

2

 s/2 we also have kx� zk
0

 s/2. This implies that for any fixed x 2 U
�

�

�

�

z 2 U : kx� zk2
2

 s/2
 

�

�

�


�

�

�

{z 2 U : kx� zk
0

 s/2}
�

�

�


✓

n

s/2

◆

3

s/2. (4.29)

We will construct the set X by iteratively choosing points that satisfy (4.26). After j points are added to the set
X , there are at least

✓

n

s

◆

2

s � j

✓

n

s/2

◆

3

s/2 (4.30)

points left to choose from. The process stops if this quantity is not positive any more. Hence, we can construct
a set of size |X| if

|X|
✓

n

s/2

◆

3

s/2 
✓

n

s

◆

2

s. (4.31)

Further we observe that
�

n

s

�

�

n

s/2

�

=

(s/2)!(n� s/2)!

s!(n� s)!
=

s/2

Y

i=1

n� s+ i

s/2 + i
�
✓

n

s
� 1

2

◆

s/2

, (4.32)
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where the last inequality follows since i 7! n�s+i

s/2+i

is decreasing. If now we set |X| = (n/s)s/2 then we have

|X|
✓

3

4

◆

s/2

=

✓

3n

4s

◆

s/2


✓

n

s
� 1

2

◆

s/2


�

n

s

�

�

n

s/2

� . (4.33)

Now (4.33) shows that (4.31) holds for |X| = (n/s)s/2. Hence we have constructed a set X with the desired
properties. ⇤
Theorem 4.7. Let A be an m⇥ n matrix that satisfies the RIP of order 2s with constant �

2s

2 (0, 1/2]. Then

m � Cs log
⇣n

s

⌘

(4.34)

where C = 1/(2 log
�

p
24 + 1

�

) ⇡ 0.28.

Proof. Consider the set X from Lem. 4.6. Let A satisfy RIP of order 2s. Then for any points x, z 2 X we have
by (4.26)

kAx�Azk
2

�
p

1� �
2s

kx� zk
2

�
p

s/4, (4.35)
since x� z 2 ⌃

2s

and �
2s

 1/2. For all x 2 X we also have

kAxk
2


p

1 + �
2s

kxk
2


p

3s/2, (4.36)

in view of kxk
2

 p
s. From the lower bound in (4.35) it follows that
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since
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s/16. Here we denote by Bm
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 r} the ball in Rm centred at y
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2

-norm.
On the other hand the entire set of balls is contained within a larger ball of radius
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at 0 in view of the upper bound (4.36), i.e.
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Now (4.38) implies that
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We can complete the proof by applying the bound in (4.27) for the cardinality of X from Lem. 4.6. ⇤


