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Abstract

We present a novel variational approach to image restoration (e.g.,
denoising, inpainting, labeling) that enables to complement established
variational approaches with a histogram-based prior enforcing closeness
of the solution to some given empirical measure. By minimizing a single
objective function, the approach utilizes simultaneously two quite differ-
ent sources of information for restoration: spatial context in terms of some
smoothness prior and non-spatial statistics in terms of the novel prior uti-
lizing the Wasserstein distance between probability measures. We study
the combination of the functional lifting technique with two different re-
laxations of the histogram prior and derive a jointly convex variational
approach. Mathematical equivalence of both relaxations is established
and cases where optimality holds are discussed. Additionally, we present
an efficient algorithmic scheme for the numerical treatment of the pre-
sented model. Experiments using the basic total-variation based denoising
approach as a case study demonstrate our novel regularization approach.

1 Introduction

A broad range of powerful variational approaches to low-level image analysis
tasks exist, like image denoising, image inpainting or image labeling [12, 13].
It is not straightforward however to incorporate directly into the restoration
process statistical prior knowledge about the image class at hand. Particularly,
handling global statistics as part of a single convex variational approach has not
been considered so far.

In the present paper, we introduce a class of variational approaches of the
form

inf
u
F (u) + λR(u) + νW (µu, µ0), (1.1)

where F (u) + λR(u) is any energy functional consisting of a data fidelity term
F (u) and a regularization term R(u), W (µu, µ0) denotes the histogram prior in
terms of the Wasserstein distance between the histogram corresponding to the
minimizing function u to be determined and some given histogram µ0 and λ > 0
and ν > 0 are parameters weighing the influence of each term. We require R(u)
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Figure 1: Denoising experiment of a noisy image (upper row, left side) taking
into account statistical prior information through convex optimization (lower
row, left side) infers the correct image structure and outperforms hand-tuned
established variational restoration (lower row, right side). Enforcing global im-
age statistics to be similar to those of the clean image (upper row, right side)
gives our approach an advantage over methods not taking such information into
account.

to be convex. As a case study, we adopt for R(u) = TV(u), the Total Variation,
see [2], and F (u) =

´

Ω f(u(x), x)dx, where f can also be a nonconvex function.
The basic ROF denoising approach of [22] is included in this approach with

f(u(x), x) = (u(x)− u0(x))
2
, where u0 is the image to be denoised.

Note that minimizing the second term R(u) in (1.1) entails spatial regular-
ization whereas the third Wasserstein term utilizes statistical information that
is not spatially indexed in any way. As an illustration, consider the academ-
ical example in figure 1. Knowing the grayvalue distribution of the original
image helps us in regularizing the noisy input image. We tackle the correspond-
ing main difficulty in two different, mathematically plausible ways: by convex
relaxations of (1.1) in order to obtain a computationally tractable approach.
Comparing these two relaxations – one may be tighter than the other one –
reveals however mathematical equivalence. Preliminary numerical experiments
demonstrate that the relaxation seems to be tight enough so as to bias effectively
variational restoration towards given statistical prior information.
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2 Prior Work, Contribution

2.1 Related Work

Image regularization by variational methods is a powerful and commonly used
tool for denoising, inpainting, labeling and many other applications. As a case
study in connection with (1.1), we consider one of the most widely used ap-
proaches for denoising, namely the Rudin, Osher and Fatemi (ROF) model
from [22]:

min
u∈BV(Ω,[0,1]

‖u− u0‖
2 + λTV(u), (2.1)

where u0 is the input image, TV denotes the Total Variation and BV(Ω, [0, 1])
is the space of functions of bounded variation with domain Ω ⊂ R

d and values
in [0, 1]. The minimization problem (2.1) is convex and can be solved to a
global optimum efficiently by various first-order proximal splitting algorithms
even for large problem sizes, e.g. by Primal-Dual methods [5] or other proximal
minimization algorithms for nonsmooth convex optimization [3, 7, 19].

We can also use more general data terms instead of the quadratic term
in (2.1). For example in [15] it is shown how the data term can be replaced by
a continuous but possibly non-convex function

´

Ω
f(u(x), x)dx. Still this data

function is local and does not take into account global statistics.
In the case that some prior knowledge is encoded as a histogram, the Wasser-

stein distance and the associated Optimal Transport are a suitable choice for
penalizing deviance from prior knowledge. More generally the Wasserstein dis-
tance can be used as a distance on histograms over arbitrary metricized spaces.

Regarding the Wasserstein distance and the theory of Optimal Transport we
refer to the in-depth treatise [23]. Optimal Transport is well-known as Earth
Mover’s distance in image processing and computer vision [21] and has been used
for content-based image retrieval. Further recent applications include [6, 14] in
connection with segmentation and [8] for texture synthesis.

The authors of [17] propose an approach to contrast and color modification.
Given a prior model of how the color or grayvalues are distributed in an image,
the authors propose a variational formulation for modifying the given image so
that these statistical constraints are met in a spatially regular way. While their
algorithm is fast, high runtime performance is achieved by minimizing a non-
convex approximation of their original energy. In contrast, we directly minimize
a convex relaxation of the original energy, hence we may hope to obtain lower
energies and not to get stuck in local minima.

Our variational approach employing the Wasserstein distance as a histogram-
based prior through convex relaxation appears to be novel.

2.2 Contribution

We present

• a variational model with a histogram-based prior for image restoration
(Section 3),
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• two convex relaxations of the original problem together with discussions
of cases where optimality holds (Sections 4 and 5),

• a proof of equivalence for the two presented relaxations (Section 6),

• an efficient numerical implementation of the proposed variational model
(Section 7),

• experimental validation of the proposed approach (Section 8).

3 Problem and Mathematical Background

We introduce the original non-convex model, consider different ways to write the
Wasserstein distance and introduce the functional lifting technique for rewrit-
ing the resulting optimization problem to show well-posedness and to make it
amenable for global optimization.

3.1 Problem Statement

For an image domain Ω ⊂ R
2, e.g. Ω = [0, 1]2 and u : Ω → [0, 1], consider the

normalized pushforward L|Ω of the Lebesgue measure L restricted to Ω by u:

µu(A) =
1

L(Ω)
(u∗L) (A) =

1

L(Ω)
L(u−1(A)) ∀A ⊂ [0, 1] measurable . (3.1)

We will use the notation |B| := L(B) for simplicity. In other words, µu is the
grayvalue histogram of the image u. We would like to minimize the energy
function

min
u∈BV(Ω,[0,1])

E(u) =

ˆ

Ω

f(u(x), x)dx + λTV(u) + νW (µu, µ0). (3.2)

TV(u) is the Total Variation

TV(u) = sup

{
ˆ

Ω

u(x) div φ(x)dx : φ ∈ C1
c (Ω,R

2), ‖φ‖∞ ≤ 1

}

, (3.3)

where C1
c (Ω,R

2) is the space of continuously differentiable functions with com-
pact support in Ω and values in R

2, see [2] for more details. f : [0, 1]× Ω → R

is a continuous fidelity function, and W is the Wasserstein distance

W (µ, µ̃) = inf
π∈Π(µ,µ̃)

ˆ

[0,1]×[0,1]

c(γ1, γ2) dπ(γ1, γ2). (3.4)

c : [0, 1]×[0, 1]→ R is the cost function for the Wasserstein distance, for example
c(γ1, γ2) = |γ1 − γ2|

p with p ≥ 1. The space of transport plans is

Π(µ, µ̃) = {π ∈ P([0, 1]× [0, 1]) :
π(A × [0, 1]) = µ(A)
π([0, 1]×B) = µ̃(B)

∀A,B measurable},

(3.5)
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where P([0, 1] × [0, 1]) is the space of all probability measures defined on the
Borel-σ-Algebra over [0, 1]× [0, 1]. If c is lower semicontinuous and there exist
upper semicontinuous functions a, b ∈ L1([0, 1]) such that c(γ1, γ2) ≥ a(γ1) +
b(γ2), then by Theorem 4.1 in [23] there exists a measure which minimizes (3.4)
and which is called the optimal transport plan. The optimization problem (3.4)
is linear in both constraints and objective and therefore convex. Note however
that energy (3.2) is not convex.

By minimizing (3.2) we obtain a solution u which remains faithful to the
data by the fidelity term f , is spatially coherent by the Total Variation term
and has global grayvalue statistics similar to µ0 by the Wasserstein term.

Remark 1. In the case of two labels, which means restricting the function u

in (3.2) to have values u(x) ∈ {0, 1}, our model reduces to foreground/background
segmentation and the Wasserstein term can be interpreted as a prior favoring a
prespecified size of the foreground area.

3.2 The Wasserstein Distance and its Dual

We reformulate energy (3.2) by introducing another way to obtain the Wasser-
stein distance. Assume the cost c : [0, 1] × [0, 1] → R is lower semicontinuous
such that

c(γ1, γ2) ≥ a(γ1) + b(γ2) ∀x, y ∈ [0, 1] (3.6)

for a, b ∈ L1([0, 1]) upper semicontinuous.
Recall Theorem 5.10 in [23], which states that the following dual Kantorovich

formulation equals the Wasserstein distance:

W (µu, µ0) = sup
(ψ,ψ′)∈L1([0,1])

2

ψ(γ1)−ψ
′(γ2)≤c(γ1,γ2)

ˆ 1

0

ψdµu −

ˆ 1

0

ψ′dµ0. (3.7)

Define therefore

E(u, ψ, ψ′) =

ˆ

Ω

f(u(x), x)dx + λTV(u) + ν

(
ˆ 1

0

ψdµu −

ˆ 1

0

ψ′dµ0

)

(3.8)

and let
C = BV(Ω, [0, 1]) (3.9)

be the space of functions of bounded variation with domain Ω and range [0, 1]
and

D =

{

ψ, ψ′ : [0, 1] → R s.t.
ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2 ∈ [0, 1]
ψ, ψ′ ∈ L1([0, 1])

}

.

(3.10)
It follows from (3.7) with the above definitions that

inf
u∈C

E(u) = inf
u∈C

sup
(ψ,ψ′)∈D

E(u, ψ, ψ′) (3.11)
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3.3 Functional Lifting

While the Wasserstein distance (3.4) is convex in both of its arguments, see
Theorem 4.8 in [23], the energy in (3.2) is not convex due to the nonconvex
transformation u 7→ µu in the first argument of the Wasserstein term and the
possible nonconvexity of f . To overcome the nonconvexity of both the data
term and the transformation in the first argument of the Wasserstein distance
we lift the function u. Instead of u we consider a function φ defined below whose
domain is one dimension larger. This extra dimension represents the range of u
and allows us both to linearize the fidelity term and to convexify the Wasserstein
distance. This technique, known as functional lifting or the calibration method,
was introduced in [1] and is commonly used in many optimization problems.

Let

C′ =

{

φ ∈ BV(Ω× R, {0, 1}) :
φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0,

Dγφ(·, γ) ≤ 0

}

.

(3.12)
Every function u ∈ C corresponds uniquely to a function φ ∈ C′ via the relation

−Dγφ = H2
xgraph(u) , (3.13)

where H2
xgraph(u) is the restriction of the 2-dimensional Hausdorff measure to

the graph of u. Also for such a pair (u, φ) and for all measurable sets A ⊂ [0, 1]
we have the relation

µu(A) = µφ(A) =
1

|Ω|

ˆ

Ω

|Dγφ(x,A)|dx =
1

|Ω|

ˆ

Ω

−Dγφ(x,A)dx . (3.14)

Note that in contrast to u 7→ µu, the transformation φ 7→ µφ is linear.
Consider the energy

E′(φ, ψ, ψ′) =
−
´

Ω

´ 1

0 f(γ, x)Dγφ(x, γ) dx + λ
´ 1

0 TV(φ(·, γ))dγ

+ν
(

´ 1

0 ψdµ
φ −
´ 1

0 ψ
′dµ0

)

.
(3.15)

For a pair (u, φ) as in (3.13) the identity

E(u, ψ, ψ′) = E′(φ, ψ, ψ′) (3.16)

holds true by the coarea formula, see [2]. Consequently, we have

inf
u∈C

sup
(ψ,ψ′)∈D

E(u, ψ, ψ′) = inf
φ∈C′

sup
(ψ,ψ′)∈D

E′(φ, ψ, ψ′) . (3.17)

Note that E′ is convex in φ and concave in (ψ, ψ′), hence is easier to handle
from an optimization point of view.

Theorem 1. Let Ω ⊂ R
2 be bounded, let f(x, γ) be continuous and let the cost

c of the Wasserstein distance fulfill the conditions from Section 3.2. Then there
exists a minimizer φ of infφ∈C′ sup(ψ,ψ′)∈D E

′(φ, ψ, ψ′).
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Proof. We first show that the set C′ is compact in the weak∗ topology in BV.
By theorem 3.23 in [2], C′ is precompact. It then remains to prove that C′

is closed in the weak∗-topology. Thus let (φn) in C′ converge weakly∗ to φ,
which means that (φn) converges strongly in L1

loc and Dγφn converges weakly∗.
Dγφn(·, γ) ≤ 0 means

ˆ

Ω×R

wDγφn ≥ 0 ∀w ∈ Cc(Ω× R) . (3.18)

This property is preserved under weak∗-convergence by definition. φ(x, γ) ∈
{0, 1} a.e. as convergence in L1 implies pointwise convergence of some subse-
quence. Obviously φn(·, (∞, 0]) ≡ 1 and φn(·, [1,∞)) ≡ 0 are naturally pre-
served in the limit.

The first term in the energy (3.15) is lower semicontinuous by assumption.
The TV-term is lower-semicontinuous by Theorem 5.2 in [2].

The Wasserstein term in (3.15) has the form sup{(ψ,ψ′)∈D}

´ 1

0
ψ dµφ−

´ 1

0
ψ′ dµ0

and can thus be written as

sup
{(ψ,ψ′)∈D,ψ,ψ′∈Cc([0,1])}

−
1

|Ω|

ˆ 1

0

ˆ

Ω

ψ(γ)dxDγφ(x, γ) −

ˆ 1

0

ψ′(γ) dµ0(γ),

(3.19)
where Cc([0, 1]) is the space of all continuous functions in [0, 1]. Hence it is a
supremum of linear functionals and lsc as well.

As a supremum of positive sums of lsc terms, sup(ψ,ψ′)∈D∩Cc([0,1])2 E
′(·, ψ, ψ′)

is lsc as well. A minimizing sequence therefore has a weakly∗-convergent sub-
sequence due to compactness of C′. The limit is a minimizer by the lower
semicontinuity of the energy.

As we have shown above, the proposed lifted model is well-posed, which
means that the minimizer is attained under mild technical conditions. Then
by (3.17) also the original energy is well-posed.

Remark 2. We have considered a spatially continuous formulation, as discretiza-
tions thereof suffer less from grid bias [10,11] than purely discrete formulations.
Thus, proving existence of a solution of the spatially continuous model substan-
tiates our approach from a modelling point of view.

Remark 3. As discussed in Section 1, we merely consider total variation based
regularization as a case study, but this restriction is not necessary. More general
regularizers can be used as well as long as they are convex and all the statements
still hold, e.g. quadrativ or Huber functions, see [16]. In the present paper
however, we rather focus on the novel prior based on the Wasserstein distance.

4 Relaxation as a Convex/Concave Saddle Point

Problem

Optimizing energy (3.2) is not tractable, as it is a nonconvex problem. Also
solving (3.17) is not tractable, as the set C′ is nonconvex. The latter can be
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overcome by considering the convex hull of C′, which leads to a relaxation as a
convex/concave saddle point problem of the minimization problem (3.2), which
is solvable computationally.

Proposition 1. Let

C′′ = {φ ∈ BV (Ω× R, [0, 1]) : φ(·, (−∞, 0]) ≡ 1, φ(·, [1,∞)) ≡ 0, Dγφ ≤ 0}
(4.1)

Then E′ is convex/concave and

min
u∈C

E(u) ≥ min
φ∈C′′

sup
(ψ,ψ′)∈D

E′(φ, ψ, ψ′). (4.2)

If
min
u∈C

max
(ψ,ψ′)∈D

E(u, ψ, ψ′) = max
(ψ,ψ′)∈D

min
u∈C

E(u, ψ, ψ′) (4.3)

holds, then the above relaxation is exact.

Proof. Note that C′′ is a convex set, in particular it is the convex hull of C′. E′

is also convex in φ, therefore the right side of (4.2) is a convex/concave saddle
point problem. For fixed (ψ, ψ′) we have the following equality:

min
u∈C

E(u, ψ, ψ′) = min
φ∈C′′

E′(φ, ψ, ψ′), (4.4)

which is proved in [15]. Thus

minu∈C E(u) = minu∈C sup(ψ,ψ′)∈D E(u, ψ, ψ′)
(∗)

≥ sup(ψ,ψ′)∈Dminu∈C E(u, ψ, ψ′)
(∗∗)
= sup(ψ,ψ′)∈Dminφ∈C′′ E′(φ, ψ, ψ′),

(4.5)

where (∗) is always fulfilled for minimax problems and (∗∗) is a consequence
of (4.4). This proves (4.2). If (4.3) holds, then (∗) above is actually an equality
and the relaxation is exact.

5 Relaxation with Hoeffding-Fréchet Bounds

A second relaxation can be constructed by using the primal formulation (3.4) of
the Wasserstein distance and enforcing the marginals of the distribution function
of the transport plan to be µφ and µ0 by the Hoeffding-Fréchet bounds:

Theorem 2 ( [18, Thm. 3.1.1]). Let F1, F2 be two real distribution functions
(d.f.s) and F a d.f. on R

2. Then F has marginals F1, F2, if and only if

(F1(γ1) + F2(γ2)− 1)+ ≤ F (γ1, γ2) ≤ min{F1(γ1), F2(γ2)} (5.1)
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By (3.4) the Wasserstein Distance with marginal d.f.s F1, F2 can be com-
puted by solving the optimal transport problem and we arrive at the formulation

W (dF1, dF2) = min
F

ˆ

R2

c(dF1, dF2) dF, s.t. F respects the conditions (5.1)

(5.2)
where dFi shall denote the measure associated to the d.f. Fi, i = 1, 2.

Using again the functional lifting technique of [15], the Hoeffding-Fréchet
bounds and the representation of the Wasserstein distance (5.2), we arrive at
the following relaxation, where we replace the distribution functions F1 by the
distribution function of µφ, which is

´

Ω
−Dγφ(x, [0, γ])dx.

minφ,F
´

Ω

´ 1

0
−f(γ, x)Dγφ(x, γ)dx + λ

´ 1

0
TV(φ(·, γ)dγ + ν

´

R2 c dF,

s.t. Fφ(γ) =
1
|Ω|

´

Ω
−Dγφ(x, [0, γ])dx,

Fµ0(γ) = µ0([0, γ]),
Fφ(x1) + Fµ0(x2)− 1 ≤ F (x1, x2) ≤ min{Fφ(x1), Fµ0 (x2)}
φ ∈ C′′

(5.3)

The minimization problem (5.3) is a relaxation of (3.2). Just set

φ(x, γ) =

{

1, u(x) < γ

0, u(x) ≥ γ

and let F be the d.f. of the optimal transport measure with marginals µu and
µ0.

Remark 4. It is interesting to know, when relaxation (5.3) is exact. By the
coarea formula [24] we know that

´

Ω

´ 1

0
−f(γ, x)Dγφ(x, γ)dx + λ

´ 1

0
TV(φ(·, γ))dγ

=
´ 1

0

´

Ω f(uα(x), x)dxdα + λ
´ 1

0 TV(uα)dα ,
(5.4)

where uα corresponds to the thresholded function φα = 1{φ>α} ∈ C′ via re-
lation (3.13). However such a formula does not generally hold for the optimal
transport: Let φα = 1{φ>α} and let Fα be the d.f. of the optimal coupling with
marginal d.f.s Fφα

and Fµ0 . Then

F =

ˆ 1

0

Fα dα (5.5)

has marginal d.f.s
´ 1

0
Fφα

dα and Fµ0 , but it may not be optimal.
A simple example for inexactness can be constructed as follows: Let the

data term be f ≡ 0 and let µ0 = 1
2 (δ0 + δ1) and let the cost for the Wasserstein

distance be c(γ1, γ2) = λ|γ1 − γ2|. Every constant function with u(x) = const ∈
[0, 1] will be a minimizer if λ is small and ν is big enough. The objective value
will be λ

2 . But relaxation (5.3) is inexact in this situation: Choose φ(x, γ) =
1
2 ∀γ ∈ (0, 1) and the relaxed objective value will be 0.
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Remark 5. The above remark was concerned with an example, where a convex
combination of optimal solutions to the non-relaxed problem is a unique solution
of the relaxed problem with lower objective value.

By contrast, in Section 8 two different academical examples are shown,
which illustrate the behaviour of our relaxation (5.3) in situations when the
non-relaxed solution is unique, see Figures 2 and 3. Then exactness may hold
or not, depending on the geometry of level sets of solutions. No easy character-
ization seems to be available for the exactness of model (5.3).

6 Relationship between the two Relaxations

Both relaxations from Sections 4 and 5 seem to be plausible but seemingly dif-
ferent relaxations. Their different nature reveals itself also in the conditions for
which exactness was established. While the condition in Proposition 1 depends
on the gap introduced by interchanging the minimum and maximum operation,
relaxation (5.3) is exact if a coarea formula holds for the optimal solution. It
turns out, however, that both equations are equivalent, hence both optimality
conditions derived in Sections 4 and 5 can be used to ensure exactness of a
solution to either one of the relaxed minimization problems.

Theorem 3. The optimal values of the two relaxations (4.2) and (5.3) are
equal.

Proof. It is a well known fact that

min
x∈X

max
y∈Y

〈Kx, y〉+G(x) −H∗(y) (6.1)

and
min
x∈X

H(Kx) +G(x) (6.2)

are equivalent, where G : X → [0,∞] and H∗ : Y → [0,∞] are proper, convex,
lsc functions, H∗ is the convex conjugate of H and X and Y are two real vector
spaces, see [20] for details.

To apply the above result choose

G(φ) =

ˆ 1

0

ˆ

Ω

−Dγφ(x, γ) · f(γ, x)dx+ λ

ˆ 1

0

TV(φ(·, γ))dγ + χC′′(φ), (6.3)

H∗(ψ, ψ′) = ν

ˆ 1

0

ψ′dµ0 + χD(ψ, ψ
′) (6.4)

and
K : BV (Ω× R, [0, 1]) → M([0, 1])2,

K(φ) = (νµφ, 0)
(6.5)

where C′′ is defined by (4.1), D by (3.10), χC′′(·) and χD(·) denote the indicator
functions of the sets C′′ and D respectively and M([0, 1]) denotes the space of
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measures on [0, 1]. (6.1) corresponds with the above choices to the saddle point
relaxation (4.2).

Recall that H = (H∗)∗ if H is convex and lsc, i.e. H is the Legendre-Fenchel
bidual of itself, see [20]. Hence, for positive measures µ, µ̃, the following holds
true:

H(µ, µ̃) = supψ,ψ′{
´ 1

0 ψdµ−
´ 1

0 ψ
′dµ̃−H∗(ψ, ψ′)}

= sup(ψ,ψ′)∈D{
´ 1

0
ψdµ−

´ 1

0
ψ′dµ̃− ν

´ 1

0
ψ′dµ0}

= σD(µ, µ̃+ νµ0)
(∗)
= W (µ, µ̃+ νµ0)

(6.6)

where σA(x) = supa∈A〈a, x〉 is the support function of the set A and ν is the
weight for the Wasserstein term in (3.8). To prove (∗), we invoke Theorem 5.10
in [23], which states that

σD(µ, µ̃) = sup
(ψ,ψ′)∈D

ˆ 1

0

ψdµ−

ˆ 1

0

ψ′µ̃ = min
π∈Π(µ,µ̃)

ˆ

[0,1]2
c(γ1, γ2)dπ(γ1, γ2) =W (µ, µ̃),

(6.7)
and we have infinity for measures which do not have the same mass.

Thus, the energy in (6.2) can be written as

G(φ) +H(νµφ, 0) = G(φ) +W (νµφ, νµ0) = G(φ) + νW (µφ, µ0) . (6.8)

This energy is the same as in relaxation (5.3), which concludes the proof.

7 Optimization

We present five experiments and the numerical method used to compute them.

7.1 Implementation

First, we discretize the image domain Ω to be {1, . . . , n1}× {1, . . . , n2} and use
forward differences as the gradient operator. Second, we discretize the infinite
dimensional set C′′ and denote it by

C′′
d =

{

φ : Ω×

{

0,
1

k
, . . . ,

k − 1

k
, 1

}

→ [0, 1] :
φ(·, 1) = 0, φ(·, 0) = 1,
φ
(

·, l
k

)

≤ φ
(

·, l−1
k

)

}

.

(7.1)
Hence we consider only finitely many grayvalues an image can take. The dual
Kantorovich set for the discretised problem is then

Dd =

{

ψ, ψ′ :

{

0,
1

k
, . . . ,

k − 1

k
, 1

}

→ R : ψ(γ1)− ψ′(γ2) ≤ c(γ1, γ2) ∀γ1, γ2

}

.

(7.2)
After computing a minimizer φ∗ of the discretized energy, we threshold it

at the value 0.5 to obtain φ∗ = 1{φ∗>0.5} and then calculate u⋆ by the discrete
analogue of relation (3.13).
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For computing a minimizer of the discretized optimization problem

min
φ∈C′′

d

max
(ψ,ψ′)∈Dd

E′
d(φ, ψ, ψ

′) (7.3)

it is expedient to use first order algorithms like [3,5,7,19] as the dimensionality of
the problem is high. To use such algorithms it is necessary to split the function
max(ψ,ψ′)∈Dd

E′
d(φ, ψ, ψ

′) into a sum of terms, whose proximity operators can
be computed efficiently. Hence consider the following equivalent minimization
problem:

min
φ∈C′′

d
,g∈(Rn1×n2×k×2)

〈f̃, φ〉+ ‖g‖1 + χ{(u,v) : ∇u=v}(φ, g) + χC′′(φ) +W (µφ, µ0) ,

(7.4)
where f̃ comes from the local cost factor in (3.15) and χA is the indicator
function of a set A. The proximity operator of a function G is defined as

proxG(x) = argminx′

1

2
‖x− x′‖2 +G(x′) . (7.5)

The proximity operator of the term ‖g‖1 is the soft-thresholding operator.
proxχ{(u,v) : ∇u=v}

(φ, g) can be efficiently computed with Fourier transforms,

see for example [19].
proxχC′′

is the projection onto the set of non-increasing sequences C′′. To
compute this projection, we employ the algorithm proposed in [4], Appendix D.
It is trivially parallelisable and converges in a finite number of iterations.

Finally, the proximity operator for the Wasserstein distance can be computed
efficiently in some special cases, as discussed in the next Section 7.2.

We can either use [19] to minimize (7.5) directly, which is equivalent to
using the Douglas-Rachford method [7] on a suitably defined product space and
absorbing the linear term in the functions in (7.5).

7.2 Wasserstein Proximation for c(γ1, γ2) = |γ1−γ2| by soft-
thresholding

In general, computing the proximity operator for the Wasserstein distance can
be expensive and requires solving a quadratic program. However, for the real
line and convex costs, we can compute the proximity operator more efficiently.
One algorithm for the cost function c(γ1, γ2) = |γ1 − γ2| is presented below.

The proximation for the weighted Wasserstein distance is

argminφ
1

2
‖φ0 − φ‖22 + λW (µφ, µ0). (7.6)

For the special case we consider here, there is a simple expression for the Wasser-
stein distance:

Proposition 2 ( [18]). For two measures µ1, µ2 on the real line and c(γ1, γ2) =
|γ1 − γ2|, the Wasserstein distance is

W (µ1, µ2) =

ˆ

R

|Fµ1(γ)− Fµ2(γ)| dγ (7.7)
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Due to Dγφ(x, γ) ≤ 0 and φ(x, 0) = 1, we can also write Fµφ(γ) as

Fµφ(γ) =
1

|Ω|

ˆ

Ω

−Dγφ(x, [0, γ]) dx =
1

|Ω|

ˆ

Ω

1− φ(x, γ)dx . (7.8)

Next we show how to solve in closed form the proximity operator for the
Wasserstein distance in the present case.

Proposition 3. Given φ0, λ > 0, the optimal φ̃ for the proximity operator

φ̃ = argminφ
1

2
‖φ− φ0‖22 + λW (Fµφ , µ0) (7.9)

is determined by
φ̃(x, γ) = φ(x, γ) + cγ , (7.10)

where

cγ = shrink

(

−
1

|Ω|

ˆ

Ω

φ0(x, γ)dx − Fµ0(γ) + 1,
λ

|Ω|

)

+
1

|Ω|

ˆ

Ω

φ0(x, γ)dx+Fµ0 (γ)−1

(7.11)
and shrink denotes the soft-thresholding operator defined componentwise by

shrink(a, λ)i = (|ai| − λ)+ · sign(ai) (7.12)

for a ∈ R
n, λ > 0.

Proof. By proposition 2 and the characterisation of Fµφ in (7.8), proxima-
tion (7.6) reads

argminφ
1

2
‖φ0 − φ‖22 + λ

ˆ

R

|1−

(

1

|Ω|

ˆ

Ω

φ(x, γ)dx

)

− Fµ0 (γ)|dγ. (7.13)

Note that (7.13) is an independent optimization problem for each γ. Thus, for
each γ we have to solve the problem

argminφ(·,γ)
1

2
‖φ0(·, γ)−φ(·, γ)‖22+λ|1−

(

1

|Ω|

ˆ

Ω

φ(x, γ)dx

)

−Fµ0(γ)|. (7.14)

It can be easily verified that the solution to problem (7.14) is φ0(·, γ)+cγ, where
cγ ∈ R and

cγ ∈ argminc∈R

1

2
|Ω|c2 + λ|

1

|Ω|

ˆ

Ω

φ0(x, γ)dx + c+ Fµ0(γ)− 1| (7.15)

and hence

cγ = shrink

(

−
1

|Ω|

ˆ

Ω

φ0(x, γ)− Fµ0(γ) + 1,
λ

|Ω|

)

+
1

|Ω|

ˆ

Ω

φ0(x, γ)dx+Fµ0 (γ)−1.

(7.16)
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For the discretized problem one just needs to replace integration with sum-
mation to obtain the proximation operator. Concluding, the cost for the Wasser-
stein proximal step is linear in the size of the input data.

Remark 6. We have seen in Proposition 2 thatW1(µ
φ, µ0) = ‖Hφ− (1−Fµ0‖1,

where H is an operator corresponding to a tight frame, i.e. HH∗ = |Ω|−1, hence
it is also possible to derive Proposition 3 by known rules for proximity operators
involving composition with tight frames and translation.

8 Numerical Experiments

We want to show experimentally

1. that computational results conform to the mathematical model,

2. that the convex relaxation is reasonable.

Note that we do not claim to achieve the best denoising or inpainting results
and we do not wish to compete with other state-of-the-art methods here. We
point out again that the Wasserstein distance can be used together with other
variational approaches to enhance their performance, e.g. with nonlocal total
variation based denoising, see [9].

Remark 7. As detailed in Section 3.3, we lift our functional, so that it has one
additional dimension, thereby increasing memory requirements and runtime of
our algorithm. Non-convex approaches like [17] do not have such computational
requirements. Still, the viability of the lifting approach we use was demon-
strated in [16] for our variational model without the Wasserstein term. Also
all additional operations our algorithm requires can be done very fast on recent
graphic cards, hence the computational burden is tractable.

We have generally chosen the parameters λ, ν by hand to obtain reasonable
results, if not stated differently.

In the first experiment we compare total variation denoising and total
variation denoising with the Wasserstein term for incorporating prior knowledge.
The data term is f(s, x) = (u0(x)− s)2, where u0 is the noisy image in figure 1.
The cost for the Wasserstein distance is c(γ1, γ2) = ν|γ1−γ2|, ν > 0. To ensure
a fair comparison, the parameter λ for total variation regularization without the
Wasserstein term was hand-tuned in all experiments to obtain best results. The
histogram was chosen to match the noiseless image. See Figure 1 for the results.

Note the trade-off one always has to make for pure total variation denois-
ing: If one sets the regularization parameter λ high, the resulting grayvalue
histogram of the recovered image will be similar to the noisy input image and
generally far away from the histogram of ground truth. By choosing lower data
fidelity and higher regularization strength we may obtain a valid geometry of
the image, however then the grayvalue histogram tends to be peaked at one
mode, as total variation penalizes scattered histograms and tries to draw the
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(a) The gray area is
to be inpainted
with partly black
and white, with
slightly more
white.

(b) The circle in
the middle has
been inpainted
with slightly
more white as
demanded by the
Wasserstein term.

(c) The gray area is
the area to be
inpainted with a
given Wasserstein
prior favoring the
gray area to be
half black and half
white.

(d) Inpainting result:
we obtain a non-
integral solution
visualized by gray
color.

Figure 2: Example illustrating tight-
ness of our relaxation (5.3).

Figure 3: Example illustrating failure
of tightness of our relaxation (5.3).

modes closer to each other, again letting the recovered grayvalue histogram be-
ing different from the desired one. By contrast, the Wasserstein prior in (3.8)
guarantees a correct grayvalue histogram also with strong spatial regularization.

The second set of experiments illustrates where exactness of our relaxation
may hold or fail, depending on the geometry of the level sets of solutions, see
Figures 2 and 3. The gray area is to be inpainted with a Wasserstein prior
favoring the gray area to be partly black and partly white. Note that both
settings illustrate cases, when the global Wasserstein term is indispensable, as
otherwise there would be completely no control over how much of the area to
be inpainted ends up being white or black. While our relaxation is not exact for
the experiment in Figure 3, thresholding at 0.5 still gives a reasonable result.

The third experiment is a more serious denoising experiment. Notice that
again pure total variation denoising does not preserve the white and black areas
well, but makes them gray, while the approach with the Wasserstein distance
preserves the contrast better, see Figure 4.

In the fourth experiment we compare image inpainting with a total varia-
tion regularization term without prior knowledge and with prior knowledge, see
Figure 5 for the results. The region where the data term is zero is enclosed in the
blue rectangle. Outside the blue rectangle we employ a quadratic data term as
in the first experiment. Total variation inpainting without the Wasserstein term
does not produce the results we expected, as the total variation term is small-
est, when the gray color fills most of the area enclosed by the blue rectangle.
Heuristically, this is so because the total variation term weighs the boundary
length multiplied by the difference between the gray value intensities, and a
medium intensity minimizes this cost. Thus the TV-term tends to avoid inter-
faces, where high and low intensities meet, preferring smaller intensity changes,
which can be achieved by interfaces with gray color on one side. Note that also
the regularized image with the Wasserstein term lacks symmetry. This is also
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(a) Tiger denoising experiment with the original image on the left, the image denoised with the
Wasserstein term in the middle and the standard ROF-model on the right.

(b) Detailed view of the tiger denoising experiment revealing that contrast is better preserved
when the Wasserstein term is used.

Figure 4: Tiger denoising experiment
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Figure 5: Inpainting experiment with the original image and the inpainting
area enclosed in a blue rectangle on the left, the inpainting result with the
Wasserstein term in the middle and the result where only the TV-regularizer is
used on the right. By enforcing the three regions to have the same size with the
Wasserstein term, we obtain a better result than with the Total Variation term
alone.

Figure 6: Here we want to inpaint the area occupied by the watch of the soldier,
see the second left image. Our approach, on the second right image gives better
results again than the approach with TV alone.

due to the behaviour of the TV-term described above.
In the fifth experiment we consider inpainting again. Yevgeni Khaldei, the

photographer of the iconic picture shown on the left of Figure 6 had to remove
the second watch. Trying to inpaint the wrist with a TV-regularizer and a
Wasserstein term results in the middle picture, while only using a TV-regularizer
results in the right picture. Clearly using the Wasserstein term helps.

In the sixth experiment we have a different setup. The original image is on
the left of Figure 7. The histogram µ0 was computed from a patch of clouds,
which did not include the plane. The data term is f(x, y) = λmin(|u0(x) −
y|2, α), where α > 0 is a threshold, so the data term does not penalize great
deviances from the input image too strongly. The Wasserstein term penalizes
the image of the plane whose appearance differs from the prior statistics. The
TV-regularizer is weighted weaker than in the previous examples, because we
do not want to smooth the clouds.
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Figure 7: Unsupervised inpainting using empirical measures as priors. Objects
not conforming to the prior statistics are removed without labeling image re-
gions.

Note that unlike in ordinary inpainting applications, we did not specify the
location of the plane beforehand, but the algorithm figured it out on its own. The
total variation term finally favors a smooth inpainting of the area occupied by
the plane. In essence we have combined two different tasks: Finding out where
the plane is and inpainting that area occupied by it. See Figure 7 for results.

9 Conclusion and Outlook

We have presented in this paper a novel method for variational image regular-
ization, which takes into account global statistical information in one model.
By solving the relaxed nonconvex problem we obtain regularizd images which
conform to some global image statistics, which sets our method apart from
standard variational methods. Moreover, the additional computational cost for
the Wasserstein term we introduced is negligible, however our relaxation is not
tight anymore as in models without the latter term. In our experiments the
relaxation was seen to be tight enough for good results.

Our future work will consider extensions of the present approach to mul-
tidimensional input data and related histograms, e.g. based on color, patches
or gradient fields. The theory developed in this paper regarding the possible
exactness of solutions does not carry over without modifications to such more
complex settings. Moreover, it is equally important to find ways related to our
present work to minimize such models efficiently.
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