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Abstract. We present a new vectorial total variation (VTV) method
that addresses the problem of color consistent image filtering. Our ap-
proach combines insights based on the double-opponent cell representa-
tion in the visual cortex with state-of-the-art variational modelling using
VTV regularization. Existing methods of vectorial total variation regu-
larizers have insufficient (even no) coupling between the color channels
and thus may introduce color artifacts. We address this problem by in-
troducing a novel color channel coupling inspired from a pullback-metric
from an opponent space to the observation space. We show existence and
uniqueness of a solution in the space of vectorial functions of bounded
variation. In experiments, we demonstrate that our novel approach com-
pares favorably to state-of-the-art methods w.r.t. to structure coherence
and color consistency.

1 Introduction

Noisy Original Recovered

Fig. 1. Example of denoising with the pro-
posed double-opponent vectorial total vari-
ation (right) of the noisy image (left).

Color image processing poses several
challenges, since the notion of a “color
edge” or a “color boundary” has no
unique natural characterization. In
this work we address the problem of
adaptive color image filtering explor-
ing biological findings in the visual
cortex. We use these findings for im-
age enhancement and design our new
approach named double-opponent vec-
torial total variation.

The connection between observed visual stimuli and color space models is
naturally described using tools from differential geometry. The model used in
this work is inspired from recent findings in color experience models and the
psychophysics of human color perception. Accordingly, we adopt a geometric
viewpoint to explore the relation between color edges and a regularizer based on
the color space geometry. Our presentation and treatment of the “geometry of
color” leads us to a perceptually plausible model for color image enhancement via
discontinuity preserving filtering. Figure 1 illustrates that our approach provides
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excellent recovery of color image data, retaining sharp edges, without introducing
color artifacts.

Contributions. We propose a VTV-based regularizer, derived from a double-
opponent space. We prove that the variational problem is convex and that its
solution is unique and exists in the space of vectorial functions of bounded vari-
ation. Our experiments take into account multiple noise-levels and competing
state-of-the-art denoising methods. We demonstrate improved structural coher-
ence and improved color consistency.

2 Related works

Color space representation. The choice of a color space representation is
application dependent, yet without reaching any general consensus, so far. At
the same time, modeling psychophysical effects of color in scientific applications
is a highly non-trivial problem and many spaces have been proposed, e.g., RGB,
sRGB, HSV, YPbPr and the YCbCr, CIELAB to mention few. It is by now
widely accepted that image processing application in the RGB (Red, Green,
Blue) space is suboptimal due to the high color channel correlation. The YCbCr
and the YPbPr color spaces were introduced for analog and digital television
transmission, respectively [1]. The HSV (Hue, Saturation, Value) color space
was developed in the 1970’s for applications related to color display systems,
and largely influenced by that time’s computer display systems [2]. The sRGB
system was proposed for consistent image rendering over a wide range of imaging
devices [3]. The CIELAB color space was proposed to yield a color space which
is perceptually uniform. However, as shown by [4] (and references therein) this is
not the case. This motivates the use of non-Euclidean metrics, even in supposedly
perceptually uniform spaces. In this work we consider the double-opponent space.

Double-opponent color representation. The double-opponent color space
is thought to describe the representation of color in the human visual cortex,
see [5–8]. Therefore, and due to its geometric structure, it is of great interest to
investigate this color space for image enhancement applications. Previous works
using this color space include, e.g., [9, 10]. Let u = (r, g, b)> denote the red, green
and blue color components of the RGB (observation) space, then the mapping
from the observation space to the double-opponent space is given by the linear
mapping Ou : R3 → R3 where

O =

1/
√

3 0 0

0 1/
√

6 0

0 0 1/
√

2

1 1 1
1 1 −2
1 −1 0

 . (1)

The matrix Ou = (o1, o2, o3)> produces a rotation and scaling of the RGB
coordinate system. The opponent component o1 is nothing else than the gray-
scale value, o2 is the subtraction of blue from yellow (mixing red and green equals
yellow), and the last component o3 is the subtraction of red from green. The
components o2 and o3 consists of the image chroma and further decomposition
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(a) (b)

Fig. 2. Typical problems in color image denoising. (a) Introduction of artificial colors
at edges due to insufficient color channel coupling. (b) Color shimmering due to insuf-
ficient smoothing. Our approach (right images) exhibits neither of these drawbacks.

of o2, o3 yields the corresponding hue (the color, red, green, yellow, etc. expressed
as an angle) and saturation (colorfulness).

Physiological studies have shown the existence of double-opponent cell struc-
tures which are orientation-selective w.r.t. color discrimination and color bound-
aries [11]. Therefore, by preserving color discontinuities in this color space, we
hypothesize that color borders trigger the activation of these double-opponent
cells and thus yields the perception of crisp color edges in the image. This mo-
tivates the use of discontinuity preserving filtering introduced next.

Discontinuity preserving filtering. Let u : Ω → RM and u = (u1, ..., uM )>

where M is the image dimension and Ω ⊂ R2 is the image domain. The total
variation (TV) for scalar-valued functions (M = 1) [12] is defined as

TV(u) := |∇u|(Ω) =

∫
Ω

|∇u|, (2)

where ∇u denotes the generalized gradient which is a R2-valued Borel measure,
|∇u| the total variation of this measure, and TV(u) the total mass. We refer
to [13, Ch. 10] for a detailed account. The function u belongs to the space
of bounded variation BV(Ω) if u ∈ L1(Ω) and TV(u) < +∞. In this case, the
following representation is valid, with C1c (Ω,R2) denoting the space of compactly
supported, continuously differentiable vector fields:

TV(u) = sup
‖ϕ‖∞≤1

{∫
Ω

udiv (ϕ) dx : ϕ ∈ C1c (Ω,R2)

}
. (3)

Equation (3) shows that TV(u) is a support function in the sense of convex
analysis. In particular, it is convex and lower semicontinuous.

Extending the scalar TV to color images is a non-trivial problem. If a color
edge is insufficiently preserved in the smoothing process, artificial colors may
emerge at the smooth transition between these colors as demonstrated by Fig-
ure 2. The same figure also illustrates the problem of color shimmering, i.e.,
insufficient filtering of homogeneous regions.

Vectorial TV. One of the first generalizations of TV to the vector-valued
case was done by Blomgren and Chan [14]. They proposed the VTV measure

TVBC(u) =

(
M∑
i=1

TV(ui)
2

)1/2

, (4)
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which sums up the squared scalar TV (2) over the image channels. However, due
to no handling of the RGB-space intra-channel correlation, this model produces
significant color smearing artifacts and therefore does not give color consistent
filtering results [15].

Riemannian geometry. Sapiro and Ringach [16] observed that the first
fundamental form in the given (Riemannian) metric signals the presence of color
edges. They proposed a regularizer TVSR with an integrand

√
λ+ + λ− and

λ+ > λ− ≥ 0 are the eigenvalues of the metric tensor. Building on this frame-
work, Goldluecke and Cremers [17] introduced a vectorial total variation regu-
larizer TVJ based “on the largest singular value of the derivative matrix” and
show the existence of a solution. In an altogether geometric setting Sochen et
al. [18] introduced the Beltrami framework. In this approach, they consider im-
ages as embedding maps between Riemannian manifolds characterized by the
Polyakov action [18–20]. Although there is a coupling between the color chan-
nels, these approaches produce undesired artifacts such as color shimmering in
homogeneous regions.

Dual VTV. Bresson and Chan [21] proposed a color total variation formu-
lation that naturally extends the dual TV formulation (3) to the vectorial case.
Based on the work of Chambolle [22] and Fornasier and March [23], Bresson and
Chan presented a coherent framework for vectorial total variation together with a
study of well-posedness. The dual VTV is defined as follows: Let u ∈ L1(Ω; RM )
and ξ = (ξ1, . . . , ξM ) with ξi ∈ C1c (Ω,R2), ∀i. Then

VTV(u) = sup
‖ξ‖F≤1

{∫
Ω

〈u,Div (ξ)〉 dx
}
, (5)

where ‖ · ‖F denotes the Frobenius norm and with the extension Div (ξ) :=
(div (ξ1) , . . . ,div (ξM ))> ∈ RM of the divergence operator. The VTV approach,
however, still exhibits some color smearing as it does not properly take into
account the color channel coupling.

Weighted VTV. One of the most recent approaches to incorporate color
into a TV formulation was presented by Ono and Yamada [9]. They define a
mixed `1,2-norm where the intensity and chroma, obtained via the transfor-
mation (1), are weighted independently. However, it should be noted that the
subspace defined by the chroma is not decorrelated but actually consists of the
components hue and saturation. As a consequence, their framework does not
treat the non-uniformity of the opponent space. The implication is that direct
regularizing on the chroma via an Euclidean distance metric violates the non-
Euclidean structure of this opponent space. Furthermore, it is easy to construct
scenarios where the image saturation changes independently, and thus further
motivates that chroma should be decomposed into hue and saturation [24].

3 Geometry of the double-opponent space

In this section we consider the double-opponent space geometry and show how
to extract the color information.
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Connecting observation and double-opponent space. Recall that we
denote by the linear mapping O : R3 → R3, u = (r, g, b)> 7→ Ou = o =
(o1, o2, o3)>, with O defined by (1), the transformation from the observation
(RGB) color space to the double-opponent space. This linear mapping has full
rank. The non-linear mapping to the hue (h), saturation (s) and lightness (L)
representation of the opponent space is given by

ψ : R3 → R3, o 7→ c = (L, h, s)>, (6)

where L = o1, h = arctan(o2/o3), s = ‖(o2, o3)‖. We further set ϕ : u→ ϕ(u) :=
ψ(Ou) = (L, h, s)>. Then, the Euclidean inner product 〈·, ·〉 on the Lhs-space
induces via ϕ the pullback metric on the RGB-space by

〈u1,u2〉u := 〈Dϕ(u)u1, Dϕ(u)u2〉 = 〈u1,G(u)u2〉,

G(u) :=
(
Dϕ(u)

)>
Dϕ(u), (7)

where G(u) is the double-opponent metric tensor and Dϕ(u) is the Jacobian.
Strictly speaking, we regard the RGB space as a linear Riemannian manifoldM
equipped with the above metric, which is an inner product on the tangent space
TuM that smoothly varies with u ∈M. Since every tangent space TuM can be
identified with M, however, it makes sense to regard the Riemannian metric as
inner product defined on the space itself. We refer, e.g., to [25] for background
and further details.

Extracting color information. Next we compute the metric tensor G(u)
and its eigendecomposition later used to define our novel color channel coupling.
Setting

α = α(u) = (b− g, r − b, g − r)>, (8)

β = β(u) = (b+ g − 2r, b+ r − 2g, r + g − 2b)>, (9)

one easily verifies the relations α ⊥ β, u ⊥ α, 〈u,β〉 = ‖α‖2, ‖β‖2 = 3‖α‖2.
In the subsequent analysis we will return to the following decomposition

‖α‖2 = u>Pu, P =

 2 −1 −1
−1 2 −1
−1 −1 2

 , (10)

where P is a symmetric and positive semi-definite matrix.
The Jacobian of the mapping ϕ reads

Dϕ(u) =
1√
3

(
1, 3

α

‖α‖2
,
β

‖α‖

)>
, (11)

and the corresponding metric tensor (7) is

G(u) =
1

3

(
I +

9

‖α‖4
αα> +

1

‖α‖2
ββ>

)
, (12)
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Fig. 3. Detected color structure in real images extracted by ‖α‖2. In these examples,
primary colors such as red, green and blue and the opponent color yellow are well
characterized.

where G(u) has non-normalized eigenvectors 1,α,β and eigenvaluematrix

Λ =
1

3
I + diag

(
0,

3

‖α‖2
, 1

)
. (13)

Saprio and Ringach [16] also derived the first fundamental form (i.e., Dϕ(u)),
yet in the Euclidean space, and they concluded that the tensor’s eigenvalues
capture the color edge information. By contrast, we adopt the inverse principal
directional change obtained from the eigendecomposition of the double-opponent
metric tensor. Just as in the case of Saprio and Ringach, the interpretation of
the decomposition is that a large eigenvalue of the tensor indicates the presence
of image color change. Next we confirm this statement while investigating the
information encoded in ‖α‖2 which will constitute the basis for our filtering
scheme presented in Section 4.

Encoded information. The function ‖α‖2, given in (10), represents the
principal change of color. To illustrate this, Figure 3 shows the corresponding
response for few natural images. To further understand ‖α‖2 we exploit the
decomposition

γ(u) := ‖α‖2 = (b− r)2 + (r − g)2 + (g − b)2

= ‖Qu‖2, Q =

 1 −1 0
0 1 −1
−1 0 1

 . (14)

Note that P = QQ> (cmp. (10)). The coefficients of Qu have previously ap-
peared in an early work by Chambolle [26]. Chambolle defined a PDE with a
directional diffusivity orthogonal to (g− b)∇r+ (b− r)∇g+ (r− g)∇b. However,
as noted by Sapiro and Ringach [16], if two channels are equiluminant and if
the third channel has an edge, this edge will remain unaffected by the filter. We
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(a)

(b)

(c)

Fig. 4. (a) color discs with corresponding response of γ, (14), in (b). The largest
magnitude (red color) is obtained at the primary colors (red, green and blue) and the
opponent colors (yellow, cyan and magenta). As expected, the response on the intensity
axis (center of discs) is 0 (black). (c) Interpretation of the vector r−g as an orthogonal
component to yellow.

remedy this drawback by considering a two component regularizer introduced in
the next section.

Proposition 1. The function, γ in (14), has the properties (P1) γ(u + c1) =
γ(u) and (P2) γ(cu) = c2γ(u), where c is a constant.

Proof. The result follows immediately from (14).

The above result yields the following interpretation of the γ-function: a) (P1)
shows that γ is invariant to intensity shifts. b) (P2) shows that γ has a quadratic
dependency on intensity changes. c) it follows from a) that γ depends on color
changes and d) it follows from b) that γ depends on color shifts. Under constant
intensity, γ captures change of color as illustrated in Figure 4 (a). In this figure
we show equiluminant discs at constant intensity along with the corresponding
response of γ. It is clearly visible that γ describes the structure of the color
change as there is a stronger response for highly saturated colors. In the lower
half of the intensity range we predominantly detect the primary colors red, green
and blue. As the intensity increases γ shows primary responses from yellow, cyan
and magenta. The intensity axis is located in the center of these discs and, as
expected, we do not obtain a value of colorfulness.

The geometric interpretation of γ is illustrated as an example via the r − g-
component. The other two color difference terms follow with similar reasoning.
We know that the color yellow, y, is composed as a sum of red and green,
i.e., y = r + g, and written in vector form we have r − g = (1,−1, 0)> and
y = r + g = (1, 1, 0)>. We see that yellow is perpendicular to the difference
r − g, i.e., y ⊥ (r − g) = 0. This is illustrated in Figure 4 (b). Analogous
argument hold for the other terms of γ, i.e., b − r is orthogonal to magenta,
and g − b orthogonal to cyan. In this way γ covers the RGB space. Moreover,
as γ describes the color structure, preserving its edge information prevents color
distortion in the filtering process. Based on this analysis, we are now prepared
to introduce the double-opponent VTV regularization term.
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4 Double-opponent vectorial total variation

The energy. Channel-by-channel filtering of the RGB space is prone to intro-
duce color artifacts [14, 21]. On the other hand, purely decorrelating the color
channels without considering the geometry is also sub-optimal, see e.g., [16, 9].
We propose a two-component regularizer: one component performs channel-by-
channel filtering penalizing all intra-channel content and one component which
explicitly targets the color information. The color specific prior, JOPP , defines a
natural inter-channel coupling from the geometry of the double-opponent space.
Let g be the observed (noisy) image data. The energy we introduce is

min
u

{
E(u) =

µ

2
‖u− g‖2L2(Ω) +R(u)

}
(15a)

R(u) = α

3∑
i=1

TV(ui) + βJOPP (u), (15b)

where µ, α, β > 0.
Furthermore, let ∇u = (∇u1,∇u2,∇u3) : Ω → R2×3 be the vectorial gra-

dient of an color image (M = 3) in the generalized sense as discussed in
connection with eq. (2), and p = (p1,p2,p2) ∈ C1

c (Ω; R2×3) with Div (p) =
(div (p1) ,div (p2) ,div (p3))>.

Definition 1 (Double-opponent VTV). The double opponent regularizer is
defined as

JOPP (u) :=

∫
Ω

‖∇Qu‖ (16a)

:= sup
‖p‖∞≤1

{∫
Ω

〈Qu,Div (p)〉 dx
}

(16b)

where ‖p‖∞ = max{|p1|, |p2|, |p3|}.

Remark 1. Note that although this looks like an anisotropic TV formulation, it
does incorporate a proper coupling of the channels through the matrix Q.

Theorem 1 (Invariance and convexity). JOPP is rotationally and intensity
invariant, 1-homogeneous and convex.

Proof. Rotational invariance follows from the isotropy of the feasible set of the
dual variable p, that is ‖p‖∞ = ‖(p1,p2,p3)‖∞ ≤ 1 =⇒ ‖(Rp1,Rp2,Rp3)‖∞ ≤
1, for any orthogonal matrix R. As a consequence of property (P1) and (P2)
of Prop. 1, JOPP is invariant to intensity shifts, and the relation JOPP (cu) =
cJOPP (u) is immediate, for any positive constant c > 0. Finally, convexity fol-
lows from the definition of JOPP as pointwise supremum of affine functions.

Existence of solution. Next we show that the variational approach (15a)
is well posed.
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Lemma 1 (Bounded variation). Let u ∈ BV (Ω; R3) then Qu ∈ BV (Ω; R3).

Proof. If u is in L1(Ω; R3), then so is Qu, because Q is a constant matrix.
Furthermore, expanding the bilinear form under the integral of (16b) results in
a linear combination of terms of the form (3), which are finite by the assumption
u ∈ BV (Ω; R3).

As a consequence, the objective function E(u) (15a) is well defined. We next
show that there is a unique color image u minimizing E(u).

Theorem 2 (Uniqueness and existence of solution). Let g ∈ L∞(Ω,R3)
and u ∈ BV (Ω,R3). Then there exists a unique minimizer u∗ of E(u) in (15a).

Proof. We adapt and sketch a standard proof pattern from [13]. Due to g ∈
L∞(Ω,RM ), we may assume that all admissible u are uniformly bounded in
the sense that |ui(x)| ≤ ‖gi‖L∞(Ω), i = 1, 2, 3, ∀x ∈ Ω. Let (un)n∈N be a min-
imizing sequence with respect to E(u). Then, after passing to a subsequence
(unk

)k∈N, there exists a u∗ ∈ BV (Ω; R3) with unk
→ u∗ strongly in L1

loc(Ω; R3),
∇(ui)nk

→ ∇u∗i in an appropriate weak sense, and Jopp(unk
)→ Jopp(u

∗) in view
of Lemma 1. It follows from Fatou’s lemma and the lower-semicontinuity of E(u)
that u∗ minimizes E(u), whereas uniqueness of u∗ is a consequence of the strict
convexity of E(u) due to the data term of (15a).

Next, we derive an efficient numerical scheme which optimize our novel energy.
Discretization. With slight abuse of notation, we denote again by u, g ∈

R3N the discretized representations of u and g as column vectors where the image
channels are stacked in the order u1, u2, u3. N is the number of pixels in one

channel. We define the discrete image gradient for one channel as D1 =

[
Dx

Dy

]
∈

R2N×N , Dx,Dy ∈ RN×N and subscript denotes the forward finite difference
operator in x and y directions, respectively. Furthermore, we let q ∈ N+ s.t. Iq ∈
Rq×q denotes the identity matrix. In this notation, the three channel derivative
matrix for a color image is D = D1 ⊗ I3 ∈ R6N×3N where ⊗ is the Kronecker
product. Then Du : R3N → R6N is the derivative for the three channels. The
discrete representation of the Laplacian is denoted L = (D>1 D1)⊗I3 ∈ R3N×3N

such that Lu : R3N → R3N . The channel coupling matrix for the discretized
image is denoted as C = Q⊗ IN ∈ R3N×3N .

Optimization. With the notation introduced above, we write the corre-
sponding discretized form of (15a) as

min
u,d,e

µ

2
‖u− g‖22 + α‖d‖1 + β‖e‖1 s.t. d = Du, e = DCu. (17)

To minimize this objective function we may use any standard optimization tech-
nique, e.g., [27–30]. Here we adopt the Split Bregman approach [31] as it yields
a simple numerical scheme. In the following, we let ‖v‖2W := 〈v,Wv〉 be a
weighted Euclidean norm and set

B(u, b,d, e) :=

(
d
e

)
−
(
D
DC

)
u− b. (18)
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Applying the Split Bregman approach yields the iteration

(uk+1,dk+1, ek+1)

= min
u,d,e

µ

2
‖u− g‖22 + ‖d‖1 + ‖e‖1 +

1

2
‖B(u, b,d, e)‖2W , (19a)

W =

(
αI6N 0

0 βI6N

)
, α, β > 0 (19b)

bk+1 = bk +

(
D
DC

)
uk+1 −

(
dk+1

ek+1

)
. (19c)

The former problem is solved iteratively by

uk+1 = min
u

µ

2
‖u− g‖22 +

1

2

∥∥B(u, bk,dk, ek)
∥∥2
W

(20)

followed by two shrinkage updates for dk+1, ek+1. Regarding, subproblem (20),
we set b = [b>1 , b

>
2 ]>, b1, b2 ∈ R6N for notational convenience and obtain the

update step

((µI + αI)L+ βC>LC)uk+1

= µg + αD>(dk − bk1) + β(DC)>(ek − bk2). (21)

Our experiments confirm the observation of [31] that only computing an ap-
proximate solution accelerates the overall iterative scheme without compromis-
ing convergence. Consequently, we merely apply few conjugate gradient iterative
steps to compute uk+1. This is computationally cheap since all matrices involved
are sparse.

Finally, we update bk+1 according to (19c) and iterate all steps until ‖uk −
uk+1‖22/‖uk+1‖22 < 0.9

√
3Nσ2/2552 and σ is the noise level standard deviation.

5 Experiments

Setup. The experimental evaluation use all 100 images of the Berkeley vali-
dation dataset [34]. The image data is normalized to the range [0, 1] from an
8-bit representation. In addition to a qualitative evaluation we include the peak
signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [35] and the
CIEDE 2000, a measure of color consistency [36]. We optimize the parameter
settings in a given feasible range for each method, image and noise level with
respect to the best obtained SSIM value. The following methods and parameter
ranges are included in the evaluation and we refer to the respective works for
further details:

– Decorrelated VTV [9] (DVTV): Search space for optimal parameter config-
uration is τ ∈ {0.95, 1, 1.05}, w ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

– Primal-dual VTV [21] (PDVTV): The regularization parameter was opti-
mized for 5 uniformly sampled values in the range 10−3 to 0.2.
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Original

Noisy (20)

β = 5/255 10/255 15/255

5
/
2
5
5

0.80/3.84 0.83/3.13 0.76/3.36
1
0
/
2
5
5

0.79/3.96 0.84/3.00 0.77/3.31

µ
=

1
5
/
2
5
5

0.74/4.40 0.84/2.97 0.77/3.31

Fig. 5. Visual comparison of the double-opponent regularization and influence of µ
and β for fixed α = 1. Error measures are SSIM/CIEDE. As µ increases details are
oversmoothed. β influence the double-opponent term and we see (in this example) the
best performance at β = 10/255.

– Double Opponent VTV (ours) (OVTV): Optimized parameter space of µ
are 5 uniformly sampled values from 1/255 to 30/255, α = 1 and β was
uniformly sampled in from 5 values in the range 1/255 to 5/255.

– Total generalized variation [33] (TGV): Applied componentwise and only in-
cluded for comparison. The regularization parameter was uniformly sampled
with 5 values in the range 10−3 and 0.25.

– Color BM3D [32] (BM3D): Standard deviation of the additive Gaussian
noise was given as input.

Impact of parameters. We check the sensitivity of different parameter set-
tings for our double-opponent regularizer in relation to the dataterm in Figure 5.
The image was corrupted with standard deviation 20 of additive Gaussian noise
and in this example we consider the visual quality and the color consistency mea-
sured with the CIEDE measure (lower value is better) and SSIM value (higher
is better). The first row illustrates that the noise is not accurately removed as
there is considerable amount of speckle-effect, i.e., the regularizer treats noise as
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Original Noisy (50) OVTV (ours) BM3D [32]
PSNR/SSIM/CIEDE16.8/0.41/20.84 25.4/0.88/6.30 24.2/0.84/6.19

DVTV [9] PDVTV [21] TGV [33] BM3DS [32]
22.2/0.83/8.20 22.8/0.76/9.25 23.0/0.75/9.74 24.5/0.79/7.63

Fig. 6. Visual comparison of the compared methods and corresponding error values.
The result of our OVTV produces the most accurate result, only marginally beaten by
BM3D in terms of color accuracy. Yet, the visual quality of OVTV is more clear and
does not suffer from desaturated colors as in DVTV.

structure. Increasing the influence of the data term improves the visual quality
significantly and we do not observe any color shimmer. In the last row µ is clearly
too large as image details are oversmoothed.

Color Denoising. Common artifacts in color image denoising is color shim-
mer in homogeneous regions and the introduction of artificial colors. Examples
of these artifacts were given in Figure 2. In this work, we introduce a challenging
image recovering problem where current state of art denoising algorithms con-
sistently show poor performance. Rather than corrupting all image data with
additive noise, we corrupt the color components (o2 and o3) with 20, 50 or
80 standard deviations of Gaussian noise and ignore the intensity channel. Re-
markably, after transforming from the (now noisy) opponent representation to
the RGB space, one can show that the r,g,b components retain a Gaussian noise
distribution of zero mean but with

√
2/3 scaled standard deviation. For this rea-

son we also evaluate BM3D (our main competing method) which only requires
an accurate estimation of the image noise, with this scaled noise variance, we
denote this with

– Color BM3D with scaled noise distribution (BM3DS)

Results. Table 1 shows the average error and standard deviation values for
each method and noise level for the 100 Berkeley images. Our double-opponent
approach (OVTV) compares well to DVTV and BM3D. Close-ups from few
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Original Noisy (50) OVTV (ours) BM3D [32]
PSNR/SSIM/CIEDE16.3/0.21/21.87 28.2/0.75/4.01 26.5/0.67/3.85

DVTV [9] PDVTV [21] TGV [33] BM3DS [32]
25.9/0.70/4.19 25.5/0.63/6.62 24.8/0.62/5.52 26.3/0.61/5.60

Fig. 7. In this image, accurate restoration of the surfer is highly non-trivial due to the
large uniform and non-texturized regions surrounding it. Our OVTV approach produces
sharp color borders which are similar to the original noise free image. Although the state
of the art VTV method DVTV does restore the uniform background accurately the red
color appears desaturated. PDVTV produces color shimmering. TGV and BM3D(S)
both oversmooth the image.

result images are given in Figures 6 and 7. It is clearly visible that the our
OVTV produces clean images, does not introduce artificial color artifacts, does
not oversmooth details and does not suffer from color shimmering.

Figure 9 shows additional denoising results for standard deviation 50 (first
row) and 80 (second row) of Gaussian noise. Although BM3D and DVTV show
better color consistency in these examples, the structural coherence measured in
PSNR is similar and SSIM is significantly improved for OVTV.

Inpainting and Deconvolution. We adopt our scheme to include inpaint-
ing and deconvolution in Figure 8. As seen, homogeneous regions and edges are
accurately restored without introducing color shimmering and artificial colors.

6 Conclusion

We have shown that the double-opponent theory can greatly improve the perfor-
mance of VTV-based methods. Motivated by recent and classical results in color
theory we let the mapping from the opponent-space to the observation space
serve as a basis of our vectorial formulation. If the aim is consistent image filter-
ing, then clearly the double-opponent VTV is preferable for image restoration.
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DVTV PDVTV OVTV TGV BM3D BM3DS
σ = 20 (Ours)

PSNR 29.1 ± 1.94 27.8 ± 1.05 31.6 ± 2.03 26.4 ± 2.43 32.0 ± 1.93 31.9 ± 1.30
SSIM 0.83 ± 0.06 0.82 ± 0.06 0.89 ± 0.05 0.74 ± 0.07 0.88 ± 0.06 0.87 ± 0.05
CIEDE 5.40 ± 1.83 4.69 ± 0.73 2.79 ± 0.65 5.97 ± 3.61 2.77 ± 0.54 3.85 ± 0.64
σ = 50

PSNR 24.6 ± 1.85 25.2 ± 1.91 27.2 ± 1.94 24.3 ± 2.07 26.1 ± 2.32 25.9 ± 1.71
SSIM 0.66 ± 0.06 0.72 ± 0.09 0.78 ± 0.06 0.66 ± 0.08 0.72 ± 0.10 0.68 ± 0.09
CIEDE 8.36 ± 1.97 6.10 ± 1.14 5.71 ± 2.17 8.07 ± 2.39 4.79 ± 0.85 6.26 ± 1.01
σ = 80

PSNR 21.0 ± 0.96 23.7 ± 1.89 24.0 ± 1.73 22.1 ± 2.00 23.5 ± 2.26 23.4 ± 1.95
SSIM 0.44 ± 0.06 0.69 ± 0.09 0.69 ± 0.07 0.57 ± 0.09 0.63 ± 0.12 0.61 ± 0.10
CIEDE 13.89 ± 1.39 6.76 ± 1.12 8.07 ± 2.11 10.01 ± 2.74 6.31 ± 1.08 7.31 ± 1.03

Table 1. Error measures for the evaluated methods. The best values are marked in
bold. For lower noise levels, BM3D is the only competitor for our OVTV. As the noise
level increases OVTV consistently shows the best performance. See text for details.

Original Result Corrupted Original Result Blurred

Fig. 8. (left) Inpainting of 85% missing data and (right) deconvolution examples.
These illustrations show that the OVTV approach can accurately restore edges without
introducing color artifacts also in related variational problems.

Noisy OVTV BM3D Noisy OVTV DVTV

16.2/0.29/22.11 25.0/0.70/10.04 25.0/0.57/5.50 16.7/0.30/22.59 25.2/0.68/9.76 24.4/0.57/6.62

13.0/0.10/29.42 25.4/0.71/6.06 25.0/0.71/5.26 12.8/0.21/27.90 23.6/0.73/7.38 23.2/0.75/6.41

Fig. 9. Additional denoising results (ssim/psnr/ciede). The first and second row show
recovery of data corrupted with standard deviation 50 and 80 of additive Gaussian
noise. Our OVTV performs well for a wide range of images and noise levels.
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