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Abstract We introduce a novel geometric approach to the
image labeling problem. Abstracting from specific label-
ing applications, a general objective function is defined on
a manifold of stochastic matrices, whose elements assign
prior data that are given in any metric space, to observed
image measurements. The corresponding Riemannian gra-
dient flow entails a set of replicator equations, one for each
data point, that are spatially coupled by geometric averag-
ing on the manifold. Starting from uniform assignments at
the barycenter as natural initialization, the flow terminates
at some global maximum, each of which corresponds to an
image labeling that uniquely assigns the prior data. Our geo-
metric variational approach constitutes a smooth non-convex
inner approximation of the general image labeling problem,
implemented with sparse interior-point numerics in terms of
parallel multiplicative updates that converge efficiently.
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1 Introduction

1.1 Motivation

Image Labeling is a basic problem of variational low-level
image analysis. It amounts to determining a partition of the
image domain by uniquely assigning to each pixel a single
element from a finite set of labels. Most applications require
such decisions to bemade depending on other decisions. This
gives rise to a global objective function whose minima corre-
spond to favorable label assignments and partitions. Because
the problem of computing globally optimal partitions gener-
ally is NP hard, relaxations of the variational problem only
define computationally feasible optimization approaches.

Continuous Models and relaxations of the image labeling
problem were studied, e.g., in [13,32], including the specific
binary case, where two labels are only assigned [14] and
the convex relaxation is tight, such that the global optimum
can be determined by convex programming.Discrete models
prevail in the field of computer vision. They lead to poly-
hedral relaxations of the image partitioning problem that are
tighter than those obtained from continuous models after dis-
cretization. We refer to [22] for a comprehensive survey and
evaluation. Similar to the continuous case, the binary parti-
tion problem can be efficiently and globally optimal solved
using a subclass of binary discrete models [29].

Relaxations of the variational image labeling problem fall
into two categories: convex and non-convex relaxations. The
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dominant convex approach is based on the local polytope
relaxation, a particular linear programming (LP-) relaxation
[49]. This has spurred a lot of research on developing specific
algorithms for efficiently solving large problem instances, as
they often occur in applications.Wemention [28] as a promi-
nent example and otherwise refer again to [22]. Yet, models
with higher connectivity in terms of objective functions with
local potentials that are defined on larger cliques are still
difficult to solve efficiently. A major reason that has been
largely motivating our present work is the non-smoothness
of optimization problems resulting from convex relaxation—
the price to pay for convexity.

Major classes of non-convex relaxations are based on the
mean-field approach [39], [47, Section 5] or on approxima-
tions of the intractable entropy of the probability distribution
whose negative logarithm equals the functional to be min-
imized [50]. Examples for early applications of relaxations
of the former approach include [15,18]. The basic instance
of the latter class of approaches is known as the Bethe
approximation. In connection with image labeling, all these
approaches amount to non-convex inner relaxations of the
combinatorially complex set of feasible solutions (the so-
called marginal polytope), in contrast to the convex outer
relaxations in terms of the local polytope discussed above.
As a consequence, the non-convex approaches provide a
mathematically valid basis for probabilistic inference like
computingmarginal distributions, which in principle enables
a more sophisticated data analysis than mere energy mini-
mization ormaximum a posteriori inference, towhich energy
minimization corresponds from a probabilistic viewpoint.

On the other hand, like non-convex optimization problems
in general, these relaxations are plagued by the problem of
avoiding poor local minima. Although attempts were made
to tame this problem by local convexification [16], the class
of convex relaxation approaches has become dominant in
the field, because the ability to solve the relaxed problem
for a global optimum is a much better basis for research on
algorithms and also results inmore reliable software for users
and applications.

Both classes of convex and non-convex approaches to
the image labeling problem motivate the present work as an
attempt to address the following two issues.

– Smoothness versus Non-Smoothness Regarding con-
vex approaches and the development of efficient algo-
rithms, a major obstacle stems from the inherent non-
smoothness of the corresponding optimization problems.
This issue becomes particularly visible in connection
with decompositions of the optimization task into sim-
pler problems by dropping complicating constraints, at
the cost of a non-smooth dual master problem where
these constraints have to be enforced. Advanced bundle
methods [23] then seem to be among the most efficient

methods. Yet, how to make rapid progress in systematic
way does not seem obvious.
On the other hand, since the early days of linear program-
ming, e.g., [4,5], it has been known that endowing the
feasible set with a proper smooth geometry enables effi-
cient numerics. Yet, such interior-point methods [38] are
considered as not applicable for large-scale problems of
variational image analysis, due to dense numerical linear
algebra steps that are both too expensive and too memory
intensive.

In view of these aspects, our approach may be seen as a
smooth geometric approach to image labeling based on
first-order, sparse numerical operations.

– Local versus Global Optimality Global optimality dis-
tinguishes convex approaches from other ones and is the
major argument for the former ones. Yet, having com-
puted a global optimum of the relaxed problem, it has to
be projected to the feasible set of combinatorial solutions
(labelings) in a post-processing step. While the inher-
ent suboptimality of this step can be bounded [31], and
despite progress has been made to recover the true com-
binatorial optimum as least partially [46], it is clear that
the benefit of global optimality of convex optimization
has to be relativized when it constitutes a relaxation of an
intractable optimization problem. Turning to non-convex
problems, on the other hand, raises the two well-known
issues: local optimality of solutions instead of global opti-
mality, and susceptibility to initialization.
In view of these aspects, our approach enjoys the fol-
lowing properties. While being non-convex, there is a
single natural initialization only which makes obsolete
the need to search for a good initialization. Furthermore,
the approach returns a global optimum (out of many),
which corresponds to an image labeling (combinatorial
solution) without the need of further post-processing.
Clearly, the latter property is typical for concave min-
imization formulations of combinatorial optimization
problems [19] where solutions of the latter problem are
enforced by weighting the concave penalty sufficiently
large. Yet, in such cases, and in particular so when work-
ing in high dimensions as in image analysis, the problem
persists to determine good initializations and to carefully
design the numerics (search direction, step-size selection,
etc.), in order to ensure convergence and a reasonable
convergence rate.

1.2 Approach: Overview

Figure 1 illustrates our setup and the approach. We distin-
guish the feature spaceF thatmodels all application-specific
aspects, and the assignment manifold W used for mod-
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Fig. 1 Overview of the variational approach. Given data and prior
features in a metric space F , inference corresponds to a Riemannian
gradient flow with respect to an objective function J (W ) on the assign-
ment manifold W . The curve of matrices W (t) assigns at each t prior
data PF to observed data f and terminates at a global maximum
W ∗ that constitutes a labeling, i.e., a unique assignment of a single
prior datum to each data point. Spatial coherence of the labeling field
is enforced by geometric averaging over spatial neighborhoods. The
entire dynamic process on the assignment manifold achieves a MAP
labeling in a smooth, geometrical setting, realized with sparse interior-
point numerics in terms of parallel multiplicative updates

eling the image labeling problem and for computing a
solution. This distinction avoids to mix up physical dimen-
sions, specific data formats, etc., with the representation of
the inference problem. It ensures broad applicability to any
application domain that can be equipped with a metric which
properly reflects data similarity. It also enables to normalize
the representation used for inference, so as to remove any
bias toward a solution not induced by the data at hand.

We consider image labeling as the task to assign to the
image data an arbitrary prior data set PF , provided the
distance of its elements to any given data element can be
measured by a distance function dF , which the user has to
supply. Basic examples for the elements ofPF include pro-
totypical feature vectors, patches, etc. Collecting all pairwise
distance data into a distance matrix D, which could be com-
puted on the fly for extremely large problem sizes, provides
the input data to the inference problem.

The mapping expW lifts the distance matrix to the assign-
ment manifold W . The resulting likelihood matrix L con-
stitutes a normalized version of the distance matrix D that
reflects the initial feature space geometry as given by the dis-
tance function dF . Each point onW , like the matrices L , S,
andW , is stochastic matrix with strictly positive entries, that
is, with row vectors that are discrete probability distributions
having full support. Each such row vector indexed by i rep-
resents the assignment of prior elements ofPF to the given
datum a location i , in other words the labeling of datum i .We
equip the set of all such matrices with the geometry induced
by the Fisher–Rao metric and call it assignment manifold.

The inference task (image labeling) is accomplished by
geometric averaging in terms of Riemannian means of
assignment vectors over spatial neighborhoods. This step

transforms the likelihood matrix L into the similarity matrix
S. It also induces a dependency of labeling decisions on each
other, akin to the prior (regularization) terms of the estab-
lished variational approaches to image labeling, as discussed
in the preceding section. These dependencies are resolved
by maximizing the correlation (inner product) between the
assignment in terms of thematrixW and the similaritymatrix
S, where the latter matrix is induced by W as well. The
Riemannian gradient flow of the corresponding objective
function J (W ), that is highly nonlinear but smooth, evolves
W (t) on the manifoldW until a fixed point is reached which
terminates the loop on the right-hand side of Fig. 1. The
resulting fixed point corresponds to an image labelingwhich
uniquely assigns to each datum a prior element of PF .

Adopting a probabilistic Bayesian viewpoint, this fixed-
point iteration may be viewed as maximum a posteriori
inference carried out in a geometric setting with multiplica-
tive, sparse, and highly parallel numerical operations.

1.3 Further Related Work

Besides current research on image labeling, there are further
classes of approaches that resemble our approach.We briefly
sketch each of them in turn and highlight similarities and
differences.

Neighborhood Filters. A large class of approaches to
denoising of given image data f are defined in terms of
neighborhood filters that iteratively perform operations of
the form

u(k+1)
i =

∑

j

K
(
xi , x j , u

(k)
i , u(k)

j

)

∑
l K

(
xi , xl , u

(k)
i , u(k)

l

)u(k)
j , u(0)= f, ∀i,

(1.1)

where K is a nonnegative kernel function that is symmet-
ric with respect to the two indexed locations (e.g., i, j
in the numerator) and may depend on both the spatial
distance ‖xi − x j‖ and the values |ui − u j | of pairs of
pixels. Maybe the most prominent example is the non-
local means filter [9] where K depends on the distance of
patches centered at i and j , respectively. We refer to [35]
for a recent survey.
Noting that (1.1) is a linear operation with a row-
normalized nonnegative (i.e., stochastic) matrix, a similar
situation would be

ui =
∑

j

Li j (W )u j , (1.2)

with the likelihoodmatrix fromFig. 1, if wewould replace
the prior dataPF with the given image data f itself and
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adopt a distance function dF , in order to mimic the kernel
function K of (1.1).
In our approach, however, the likelihood matrix along
with its nonlinear geometric transformation, the similarity
matrix S(W ), evolves along with the evolution of assign-
ment matrixW , so as to determine a labeling with unique
assignments to each pixel i , rather than convex combi-
nations as required for denoising. Furthermore, the prior
data set PF that is assigned in our case may be very
different from the given image data and, accordingly, the
assignment matrix may have any rectangular shape rather
than being a quadratic m × m matrix.
Conceptually, we are concerned with decision making
(labeling, partitioning, unique assignments) rather than
with mapping one image to another one. Whenever the
prior dataPF comprise a finite set of prototypical image
values or patches, such that a mapping of the form

ui =
∑

j

Wi j f
∗
j , f ∗

j ∈ PF , ∀i, (1.3)

is well defined, then this does result in a transformed
image u after having reached a fixed point of the evo-
lution of W . This result then should not be considered as
a denoised image, however. Rather, it merely illustrates
the interpretation of the given data f in terms of the prior
data PF and a corresponding optimal assignment.

Nonlinear Diffusion.Neighborhoodfilters are closely related
to iterative algorithms for numerically solving discretized
diffusion equations. Just think of the basic 5-point stencil
of the discrete Laplacian, the iterative averaging of nearest
neighbor differences, and the large class of adaptive gener-
alizations in terms of nonlinear diffusion filters [48].More
recent work directly addressing this connection includes
[10,36,44]. The author of [36], for instance, advocates
the approximation of the matrix of (1.1) by a symmet-
ric (hence, doubly stochastic) positive-definite matrix, in
order to enable interpretations of the denoising operation
in terms of the spectral decomposition of the assignment
matrix, and to make the connection to diffusion mappings
on graphs.
The connection to our work is implicitly given by the dis-
cussion of the previous point, the relation of our approach
to neighborhoodfilters. Roughly speaking, the application
of our approach in the specific case of assigning image
data to image data may be seen as some kind of nonlinear
diffusion that results in an image whose degrees of free-
dom are given by the cardinality of the prior setPF . We
plan to explore the exact nature of this connection in more
detail in our future work.

Replicator Dynamics. Replicator dynamics and the corre-
sponding equations are well known [17]. They play a
major role in models of various disciplines, including

theoretical biology and applications of game theory to
economy. In the field of image analysis, such models have
been promoted by Pelillo and co-workers, mainly to effi-
ciently determine by continuous optimization techniques
good local optima of intractable problems, like matchings
through maximum-clique search in an association graph
[42]. Although the corresponding objective functions are
merely quadratic, the analysis of the corresponding equa-
tions is rather involved [8]. Accordingly, clever heuristics
have been suggested to tame related problems of non-
convex optimization [7].

Regarding our approach, we aim to get rid of these
issues—see the discussion of “Global optimality” in
Sect. 1.1—through three ingredients: (1) a unique natural
initialization, (2) spatial averaging that removes spurious
local affects of noisy data, and (3) adopting the Rie-
mannian geometry which determines the structure of the
replicator equations, for both geometric spatial averaging
and numerical optimization.

Relaxation Labeling. The task of labeling primitives in
images has been formulated as a problem of contextual
decision making already 40years ago [20,43]. Originally,
update rules were merely formulated in order to find
mutually consistent individual label assignments. Subse-
quent research related these labeling rules to optimization
tasks. We refer to [41] for a concise account of the lit-
erature and for putting the approach on mathematically
solid ground. Specifically, the so-called Baum–Eager the-
orem was applied in order to show that updates increase
themutual consistency of label assignments. Applications
include pairwise clustering [40] that boils down to deter-
mining a local optimum by continuous optimization of
a non-convex quadratic form, similar to the optimization
tasks considered in [8,42]. We attribute the fact that these
approaches have not been widely applied to the problems
of non-convex optimization discussed above.

The measure of mutual consistency of our approach
is non-quadratic, and the Baum–Eager theorem about
polynomial growth transforms does not apply. Increas-
ing consistency follows from the Riemannian gradient
flow that governs the evolution of label assignments.
Regarding the non-convexity from the viewpoint of opti-
mization, we believe that the setup of our approach
displayed by Fig. 1 significantly alleviates these prob-
lems, in particular through the geometric averaging of
assignments that emanates from a natural initializa-
tion.

We address again some of these points that are relevant for
our future work, in Sect. 5.
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1.4 Organization

Section 2 summarizes the geometry of the probability sim-
plex in order to define the assignment manifold, which is the
basis of our variational approach. The approach is presented
in Sect. 3 by repeating the discussion of Fig. 1, together
with the mathematical details. Finally, several numerical
experiments are reported in Sect. 4. They are academical,
yet non-trivial, and supposed to illustrate properties of the
approach as claimed in the preceding sections. Specific appli-
cations of image labeling are not within the scope of this
paper.Weconclude and indicate further directions of research
in Sect. 5.
Major symbols and the basic notation used in this paper are
listed in “Appendix 1.” In order not to disrupt the flow of
reading and reasoning, proofs, and technical details, all of
which are elementary but essentially complement the pre-
sentation and make this paper self-contained, are listed as
“Appendix 2.”

2 The Assignment Manifold

In this section, we define the feasible set for representing
and computating image labelings in terms of assignment
matrices W ∈ W , the assignment manifold W . The basic
building block is the open probability simplex S equipped
with the Fisher–Rao metric. We collect below and in “Proofs
of Section 2 of Appendix 2” corresponding definitions and
properties.

For background reading and much more details on infor-
mation and Riemannian geometry, we refer to [1,21].

2.1 Geometry of the Probability Simplex

The relative interior S = Δ̊n−1 of the probability sim-
plex given by (6.8a) becomes a differentiable Riemannian
manifold when endowed with the Fisher–Rao metric. In the
present particular case, it reads (cf. the notation (6.16))

〈u, v〉p := 〈 u√
p
,

v√
p

〉
, ∀u, v ∈ TpS , (2.1)

with tangent spaces given by

TpS = {v ∈ R
n : 〈1, v〉 = 0}, p ∈ S . (2.2)

We regard the scaled sphere N = 2Sn−1 as manifold with
Riemannian metric induced by the Euclidean inner product
of Rn . The following diffeomorphism ψ between Sn and
the open subset ψ(Sn) ⊂ N was suggested, e.g., by [27,
Section 2.1] and [1, Section 2.5].

Fig. 2 The Triangle encloses the image ψ(S2) ⊂ 2S2 of the simplex
S2 under the sphere map (2.3)

Definition 1 (Sphere Map) We call the diffeomorphism

ψ : S → N , p �→ s = ψ(p) := 2
√
p, (2.3)

sphere map (see Fig. 2).

The sphere map enables to compute the geometry ofS from
the geometry of the 2-sphere.

Lemma 1 The sphere map ψ (2.3) is an isometry, i.e., the
Riemannian metric is preserved. Consequently, lenghts of
tangent vectors and curves are preserved as well.

Proof See “Proofs of Section 2” in Appendix 2. �
In particular, geodesics as critical points of length functionals
are mapped by ψ to geodesics. As a consequence, we have

Lemma 2 [Riemannian Distance on S ] The Riemannian
distance on S is given by

dS (p, q) = 2 arccos

( ∑

i∈[n]

√
piqi

)
∈ [0, π). (2.4)

The objective function for computing Riemannian means
(geometric averaging; seeDefinition 2 andEq. (2.8) below) is
based on the distance (2.4). Figure 3 visualizes corresponding
geodesics and level sets onS3 that differ for discrete distribu-
tions p ∈ S3 close to the barycenter and for low-entropy dis-
tributions close to the vertices. See also the caption of Fig. 3.

It is well known from the literature (e.g., [3,30]) that
geometries may considerably change in higher dimensions.
Figure 4 displays the Riemannian distances of points on
curves that connect the barycenter and vertices on S n (to
which the distance (2.4) extends), depending on the dimen-
sion n. The normalizing effect on geometric averaging,
further discussed in the caption, increases with n and is rel-
evant to image labeling, where large values of n may occur
in applications.
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Fig. 3 Geometry of the probability simplex induced by the Fisher–
Rao Metric. The left panel shows Euclidean (black) and non-Euclidean
geodesics (brown) connecting the barycenter (red) and the blue points,
along with the corresponding Euclidean and Riemannian means: In
comparison with Euclidean means, geometric averaging pushes toward
the boundary. The right panel shows contour lines of points that have the
sameRiemannian distance from the respective center point (black dots).
The different sizes of these regions indicate that geometric averaging
causes a larger effect around the barycenters of both the simplex and its
faces, where such points represent fuzzy labelings, and a smaller effect
within regions close to the vertices (unit vectors)

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

dSn
(p(0), p(t))

Fig. 4 Each curve, from bottom to top, represents the Riemannian dis-
tances dS n

(
p(0), p(t)

)
(normalized to [0,1]; Eq. (2.4)) of points on the

curve {p(t)}t∈[0,1] that linearly (i.e., Euclidean) interpolates between the
fixed vertex p(0) = e1 of the simplex S n = Δn−1 and the barycenter
p(1) = p, for dimensions n = 2k , k ∈ {1, 2, 3, 4, 8}. As the dimen-
sion n grows, the barycenter is located as far away from e1 as all other
boundary points ei , tei + (1 − t)e j , t ∈ [0, 1], i, j �= 1, etc., which
have disjoint supports. This entails a normalizing effect on the Rieman-
nian mean of points that are far away, unlike with Euclidean averaging
where this influence increases with the Euclidean distance

Let M be a smooth Riemannian manifold (see the para-
graph around Eq. (6.14) introducing our notation). The
Riemannian gradient ∇M f (p) ∈ TpM of a smooth func-
tion f : M → R at p ∈ M is the tangent vector defined by
[21, p. 89]

〈∇M f (p), v〉p = Df (p)[v] = 〈∇ f (p), v〉, ∀v ∈ TpM .

(2.5)

We consider next the specific case M = S = Sn .

Proposition 1 (Riemannian Gradient on Sn) For any
smooth function f : S → R, the Riemannian gradient of
f at p ∈ S is given by

∇S f (p) = p
(∇ f (p) − 〈p,∇ f (p)〉1)

. (2.6)

Proof See “Proofs of Section 2” in Appendix 2. �
The exponential map associated with the open probability
simplex S is detailed next.

Proposition 2 (Exponential Map (ManifoldS )) The expo-
nential mapping

Expp : Vp → S , v �→ Expp(v) = γv(1), p ∈ S ,

(2.7a)

is given by

γv(t) = 1

2

(
p + v2p

‖vp‖2
)

+ 1

2

(
p − v2p

‖vp‖2
)
cos

(‖vp‖t
)

(2.7b)

+ vp

‖vp‖
√
p sin

(‖vp‖t
)
, (2.7c)

with t = 1, vp = v/
√
p, p = γ (0), γ̇v(0) = v and

Vp = {
v ∈ TpS : γv(t) ∈ S , t ∈ [0, 1]}. (2.7d)

Proof See “Proofs of Section 2” of Appendix 2. �
Remark 1 Checking the inclusion v ∈ Vp due to (2.7d),
for a given tangent vector v ∈ TpS , is inconvenient for
applications. Therefore, the mapping exp is defined below
by Eq. (3.8a) which approximates the exponential mapping
Exp, with the feasible set Vp replaced by the entire space
TpS (Lemma 3).

Accordingly, geometric averaging as defined next
(Sect. 2.2) based on Exp can be approximated as well using
the mapping exp. This is discussed in Sect. 3.3.2.

2.2 Riemannian Means

The Riemannian center of mass is commonly called Karcher
mean orFréchetmean in themore recent literature, in particu-
lar outside the field ofmathematics.Weprefer—cf. [26]—the
former notion and use the shorter term Riemannian mean.

Definition 2 (Riemannian Mean, Geometric Averaging)
The Riemannian mean p of a set of points {pi }i∈[N ] ⊂ S
with correspondingweightsw ∈ ΔN−1 minimizes the objec-
tive function

p �→ 1

2

∑

i∈[N ]
wi d

2
S (p, pi ) (2.8)

and satisfies the optimality condition [21, Lemma 4.8.4]

∑

i∈[N ]
wi Exp

−1
p (pi ) = 0, (2.9)
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with the inverse of the exponential mapping Exp−1
p : S →

TpS . We denote the Riemannian mean by

meanS ,w(P), w ∈ ΔN−1, P = {p1, . . . , pN },
(2.10)

and drop the subscript w in the case of uniform weights
w = 1

N 1N .

Lemma 3 The Riemannian mean (2.10) defined as mini-
mizer of (2.8) is unique for any data P = {pi }i∈[N ] ⊂ S
and weights w ∈ ΔN−1.

Proof Using the isometry ψ given by (2.3), we may con-
sider the scenario transferred to the domain on the 2-sphere
depicted in Fig. 2. Due to [25, Thm. 1.2], the objective
(2.8) is convex along geodesics and has a unique minimizer
within any geodesic Ball Br with diameter upper bounded
by 2r ≤ π

2
√

κ
, where κ upper bounds the sectional curvatures

in Br . For the 2-sphere N , we have κ = 1/4 constant, and
hence the inequality is satisfied for the domain ψ(S ) ⊂ N
which has geodesic diameter π . �
We call the computation of Riemannian means geometric
averaging. The implementation of this iterative operation and
its efficient approximation by a closed-form expression are
addressed in Sect. 3.3.

2.3 Assignment Matrices and Manifold

A natural question is how to extend the geometry of S to
stochastic matricesW ∈ R

m×n withWi ∈ S , i ∈ [m], so as
to preserve the information-theoretic properties induced by
this metric (that we do not discuss here—cf. [1,12]).

This problem was recently studied by [37]. The authors
suggested three natural definitions of manifolds. It turned
out that all of them are slight variations of taking the product
of S , differing only by the scaling of the resulting product
metric. As a consequence, we make the following

Definition 3 (AssignmentManifold) Themanifold of assign-
ment matrices, called assignment manifold, is the set

W = {W ∈ R
m×n : Wi ∈ S , i ∈ [m]}. (2.11)

According to this product structure and based on (2.1), the
Riemannian metric is given by

〈U, V 〉W :=
∑

i∈[m]
〈Ui , Vi 〉Wi , U, V ∈ TWW . (2.12)

Note that V ∈ TWW means Vi ∈ TWiS , i ∈ [m].
Remark 2 We call stochastic matrices contained in W
assignment matrices, due to their role in the variational
approach (Sect. 3).

3 Variational Approach

We introduce in this section the basic components of the vari-
ational approach and the corresponding optimization task, as
illustrated in Fig. 1.

3.1 Basic Components

3.1.1 Features, Distance Function, Assignment Task

Let

f : V → F , i �→ fi , i ∈ V = [m], (3.1)

denote any given data, either raw image data or features
extracted from the data in a preprocessing step. In any case,
we call f feature. At this point, we do not make any assump-
tion about the feature spaceF except that a distance function

dF : F × F → R, (3.2)

is specified. We assume that a finite subset ofF

PF := { f ∗
j } j∈[n], (3.3)

additionally is given, called prior set. We are interested in
the assignment of the prior set to the data in terms of an
assignment matrix

W ∈ W ⊂ R
m×n, (3.4)

with the manifold W defined by (2.11). Thus, by definition,
every row vector 0 < Wi ∈ S is a discrete distribution with
full support supp(Wi ) = [n]. The element

Wi j = Pr( f ∗
j | fi ), i ∈ [m], j ∈ [n], (3.5)

quantifies the assignment of prior item f ∗
j to the observed

data point fi . We may think of this number as the posterior
probability that f ∗

j generated the observation fi .
The assignment task asks for determining an optimal

assignment W ∗, considered as “explanation” of the data
based on the prior dataPF . We discuss next the ingredients
of the objective function that will be used to solve assignment
tasks.

3.1.2 Distance Matrix

Given F , dF and PF , we compute the distance matrix

D ∈ R
m×n, Di ∈ R

n, Di j = 1

ρ
dF ( fi , f ∗

j ), (3.6a)

ρ > 0, i ∈ [m], j ∈ [n],
(3.6b)
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where ρ is the first (from two) user parameters to be set. This
parameter serves two purposes. It accounts for the unknown
scale of the data f that depends on the application and
hence cannot be known beforehand. Furthermore, its value
determines what subset of the prior features f ∗

j , j ∈ [n]
effectively affects the process of determining the assignment
matrixW . This becomes explicit through the definition of the
next processing stage, given by Eq. (3.12) below, that uses
D as input. We call ρ selectivity parameter.

Furthermore, we set the initial value

W = W (0), Wi (0) := 1

n
1n, i ∈ [m]. (3.7)

of the flow (3.21) determining W (t) that is introduced and
discussed below in Sect. 3.2.3.

Note that W is initialized with the uninformative uniform
assignment that is not biased toward a solution in any way.

3.1.3 Likelihood Matrix

The next processing step is based on the following

Definition 4 (Lifting Map (Manifolds S ,W )) The lifting
mapping is defined by

exp : TS → S , (p, u) �→expp(u)= peu

〈p, eu〉 , (3.8a)

exp : TW → W , (W,U ) �→expW (U )=
⎛

⎝
expW1

(U1)

. . .

expWm
(Um)

⎞

⎠ ,

(3.8b)

where Ui ,Wi , i ∈ [m] index the row vectors of the matrices
U,W , and where the argument decides which of the two
mappings exp applies.

Remark 3 After replacing the arbitrary point p ∈ S by the
barycenter 1

n1n , readers will recognize the softmax function

in (3.8a), i.e., 〈 1n1n, eu〉−1
( 1
n1neu

) = eu
〈1,eu〉 . This function is

widely used in various application fields of applied statistics
(e.g., [45]), ranging from parametrizations of distributions,
e.g., for logistic classification [6], to other problems of mod-
eling [34] not related to our approach.

The lifting mapping generalizes the softmax function
through the dependency on the base point p. In addition,
it approximates geodesics and accordingly the exponential
mapping Exp, as stated next. We therefore use the symbol
exp as mnemonic. Unlike Expp, the mapping expp is defined
on the entire tangent space, cf. Remark 1.

Proposition 3 Let

v = (
Diag(p) − pp�)

u, v ∈ TpS . (3.9)

Fig. 5 Illustration of Proposition 3. Various geodesics γvi (t), i ∈
[k], t ∈ [t, tmax] (solid lines) emanating from p (red point) with the
same speed ‖vi‖p = ‖v j‖p, ∀i, j , are displayed together with the
curves expp(u

i t), i ∈ [k], t ∈ [t, tmax], where the vectors ui , vi , i ∈
[k] satisfy (3.9)

Then expp(ut) given by (3.8a) solves

ṗ(t) = p(t)u − 〈p(t), u〉p(t), p(0) = p, (3.10)

and provides a first-order approximation of the geodesic
γv(t) from (2.7a)

expp(ut) ≈ p+vt, ‖γv(t)−expp(ut)‖ = O(t2). (3.11)

Proof See “Proofs of Section 3 and Further Details” of
Appendix 2. �

Figure 5 illustrates the approximation of geodesics γv and
the exponential mapping Expp, respectively, by the lifting
mapping expp.

Remark 4 Note that adding any constant vector c1, c ∈ R to

a vector u does not change expp(u): peu+c1

〈p,eu+c1〉 = p(ec1)eu

〈p,(ec1)eu〉 =
peu

〈p,eu〉 = expp(u). Accordingly, the same vector v is gen-
erated by (3.9). While the definition (3.8a) removes this
ambiguity, there is no need to remove the mean of the vector
u in numerical computations.

Given D and W as described in Sect. 3.1.2, we lift the
matrix D to the manifold W by

L = L(W ) := expW (−U ) ∈ W , (3.12a)

Ui = Di − 1

n
〈1, Di 〉1, i ∈ [m], (3.12b)

with exp defined by (3.8b). We call L likelihood matrix
because the row vectors are discrete probability distributions
which separately represent the similarity of each observation
fi to the prior dataPF , as measured by the distance dF in
(3.6).

Note that the operation (3.12) depends on the assignment
matrix W ∈ W .
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3.1.4 Similarity Matrix

Based on the likelihood matrix L , we define the similarity
matrix

S = S(W ) ∈ W , (3.13a)

Si = meanS {L j } j∈ ˜NE (i), i ∈ [m], (3.13b)

where each row is the Riemannian mean (2.10) (using uni-
form weights) of the likelihood vectors, indexed by the
neighborhoods as specified by the underlying graph G =
(V ,E ),

˜NE (i) = {i}∪NE (i), NE (i) = { j ∈ V : i j ∈ E }. (3.14)

Thus, S represents the similarity of the data within a local
spatial neighborhood to the prior data PF .

Note that S depends on W because L does so by (3.12).
The size of the neighborhoods | ˜NE (i)| is the second-user
parameter, besides the selectivity parameter ρ for scaling
the distance matrix (3.6). Typically, each ˜NE (i) indexes the
same local “window” around pixel location i . We then call
the window size | ˜NE (i)| scale parameter.
Remark 5 In basic applications, the distance matrix D will
not change once the features and the feature distance dF are
determined. On the other hand, the likelihood matrix L(W )

and the similarity matrix S(W ) have to be recomputed as the
assignment W evolves, as part of any numerical algorithm
used to compute an optimal assignment W ∗.

We point out, however, that more general scenarios
are conceivable —without essentially changing the overall
approach—where D = D(W ) depends on the assignment as
well and hence has to be updated too, as part of the optimiza-
tion process. Section 4.5 provides an example.

3.2 Objective Function, Optimal Assignment

We specify next the objective function as criterion for assign-
ments and the gradient flow on the assignment manifold, to
compute an optimal assignment W ∗. Finally, based on W ∗,
the so-called assignment mapping is defined.

3.2.1 Objective Function

Getting back to the interpretation from Sect. 3.1.1 of the
assignment matrix W ∈ W as posterior probabilities,

Wi j = Pr( f ∗
j | fi ), (3.15)

of assigning prior feature f ∗
j to the observed feature fi , a

natural objective function to be maximized is

max
W∈W

J (W ), J (W ) := 〈S(W ),W 〉. (3.16)

The functional J together with the feasible setW formalizes
the following objectives:

1. Assignments W should maximally correlate with the
feature-induced similarities S = S(W ), as measured by
the inner product which defines the objective function
J (W ).

2. Assignments of prior data to observations should be done
in a spatially coherent way. This is accomplished by geo-
metric averaging of likelihood vectors over local spatial
neighborhoods, which turns the likelihood matrix L(W )

into the similarity matrix S(W ), depending on W .
3. MaximizersW ∗ should define image labelings in termsof

rows W
∗
i = eki ∈ {0, 1}n, i, ki ∈ [m], that are indicator

vectors. While the latter matrices are not contained in the
assignment manifold W as feasible set, we compute in
practice assignments W ∗ ≈ W

∗
arbitrarily close to such

points. It will turn out below that the geometry enforces
this approximation.
As a consequence, in viewof (3.15), such pointsW ∗ max-
imize posterior probabilities, akin to the interpretation of
MAP inference with discrete graphical models by min-
imizing corresponding energy functionals. As discussed
in Sect. 1, however, the mathematical structure of the
optimization task of our approach and the way of fusing
data and prior information are quite different.

The following statement formalizes the discussion of the
form of desired maximizers W ∗.
Lemma 4 We have

sup
W∈W

J (W ) = m, (3.17)

and the supremum is attained at the extreme points

W
∗ := {

W
∗ ∈ {0, 1}m×n : W ∗

i = eki , (3.18a)

i ∈ [m], k1, . . . , km ∈ [n]} ⊂ W , (3.18b)

corresponding to matrices with unit vectors as row vectors.

Proof See “Proofs of Section 3 and Further Details” of
Appendix 2. �

3.2.2 Assignment Mapping

Regarding the feature space F , no assumptions were made
so far, except for specifying a distance function dF . We have
to be more specific aboutF only if we wish to synthesize the
approximation to the given data f , in terms of an assignment
W ∗ that optimizes (3.16) and the prior dataPF . We denote
the corresponding approximation by

u : W → F |V |, W �→ u(W ), u∗ := u(W ∗), (3.19)
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and call it assignment mapping.
A trivial example of such amapping concerns cases where

prototypical feature vectors f ∗ j , j ∈ [n] are assigned to
data vectors f i , i ∈ [m]: the mapping u(W ∗) then simply
replaces each data vector by the convex combination of prior
vectors assigned to it,

u∗i =
∑

j∈[n]
W ∗

i j f
∗ j , i ∈ [m]. (3.20)

And ifW ∗ approximates a globalmaximumW
∗
as character-

ized by Lemma 4, then each fi is (almost) uniquely replaced
by some u∗ki = f ∗ki .

A less trivial example is the case of prior information in
terms of patches. We specify the mapping u for this case and
further concrete scenarios in Sect. 4.

3.2.3 Optimization Approach

The optimization task (3.16) does not admit a closed-form
solution. We therefore compute the assignment by the Rie-
mannian gradient ascent flow on the manifold W ,

Ẇi j = (∇W J (W )
)
i j (3.21a)

= Wi j

((∇i J (W )
)
j − 〈

Wi ,∇i J (W )
〉)

, (3.21b)

Wi (0) = 1

n
1, j ∈ [n], (3.21c)

with

∇i J (W ) := ∂

∂Wi
J (W ) (3.21d)

=
( ∂

∂Wi1
J (W ), . . . ,

∂

∂Win
J (W )

)�
, i ∈ [m],

(3.21e)

which results from applying (2.6) to the objective (3.16).
The flows (3.21), for i ∈ [m], are not independent as the
product structure ofW (cf. Sect. 2.3) might suggest. Rather,
they are coupled through the gradient ∇ J (W ) which reflects
the interaction of the distributions Wi , i ∈ [m], due to the
geometric averaging which results in the similarity matrix
(3.13).

Observe that, by (3.21a) and 〈1,Wi 〉 = 1,

〈1, Ẇi 〉 = 〈1,Wi∇i J (W )〉 (3.22a)

− 〈Wi ,∇i J (W )〉〈1,Wi 〉 = 0, i ∈ [m],
(3.22b)

that is ∇W J (W ) ∈ TWW , and thus the flow (3.21a) evolves
on W . Let W (t) ∈ W , t ≥ 0 solve (3.21a). Then, with the

Riemannian metric (2.12),

d

dt
J
(
W (t)

) = 〈∇W J
(
W (t)

)
, Ẇ (t)

〉
W (t) (3.23a)

(3.21a)= ∥∥∇W J
(
W (t)

)∥∥2
W (t) ≥ 0, (3.23b)

that is, the objectivefunction value increases until a sta-
tionary point is reached where the Riemannian gradient
vanishes. Clearly, we expect W (t) to approximate a global
maximum due to Lemma 4, which all satisfy the condition
for stationary points W ,

0 = Ẇ i = Wi
(∇i J (W ) − 〈Wi ,∇i J (W )〉1)

, i ∈ [m],
(3.24)

because replacing Wi in (3.24) by W
∗
i = eki for some ki ∈

[n] makes the bracket vanish for the ki -th equation, whereas
all other equations indexed by j �= ki , j ∈ [n] are satisfied
due to W

∗
i j = 0.

Regarding interior stationary pointsW ∈ W withW ≥ 0
due to the definition of W , all brackets (· · · ) on the r.h.s. of
(3.24) must vanish, which can only happen if the Euclidean
gradient satisfies

∇i J (W ) = 〈Wi ,∇i J (W )〉1, i ∈ [m] (3.25)

including the case ∇ J (W ) = 0. Inspecting the gradient of
the objective function (3.16), we get

∂

∂Wi j
J (W ) = ∂

∂Wi j
〈S(W ),W 〉 =

∑

k,l

∂

∂Wi j

(
Skl(W )Wkl

)

(3.26a)

=
∑

k,l

( ∂

∂Wi j
Skl(W )

)
Wkl + Si j (W ) (3.26b)

= 〈T i j (W ),W 〉 + Si j (W ), (3.26c)

where bothmatrices S(W ) and T i j (W ) = ∂
∂Wi j

S(W ) depend
in a smooth way on the data (3.1) and the prior set (3.3)
through the distancematrix (3.6), the likelihoodmatrix (3.12)
and the geometric averaging (3.13) which forms the similar-
ity matrix S(W ). Regarding the second term on the r.h.s. of
(3.26b), a computation relegated to “Proofs of Section 3 and
Further Details of Appendix 2” yields

〈T i j (W ),W 〉 =
∑

k,l

−
((

Hk(W )
)−1

hk,i j (W )
)

l
Wkl . (3.27)

The way to compute the somewhat unwieldy explicit form
of the r.h.s. is explained by (7.14f) and the corresponding
appendix. In terms of these quantities, condition (3.25) for
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stationary interior points translates to

〈T i j (W ),W 〉 + Si j (W ) (3.28a)

=
∑

j

(〈T i j (W ),W 〉 + Si j (W )
)
Wi j ,

(3.28b)

∀i ∈ [m], ∀ j ∈ [n] (3.28c)

including the special case Si j (W ) = −〈T i j (W ),W 〉, ∀i ∈
[m], j ∈ [n], corresponding to ∇ J (W ) = 0. Note that con-
dition (3.28) requires that for every i ∈ [m], the l.h.s. takes
the same value for every j ∈ [n], such that averaging with
respect to Wi on the r.h.s. causes no change.

We do not have evidence for the nonexistence of specific
data configurations, for which the flow (3.21)may reach such
very specific stationary interior points. Any such point, how-
ever, will not be a maximum and be isolated, by virtue of
the local strict convexity of the objective function (2.8) for
Riemannian means (cf. Lemma 3 below), which determines
the similarity matrix (3.13). Consequently, any perturbation
(e.g., by numerical computation)will let the flowescape from
such a point, in order to maximize the objective due to (3.23).

We summarize this reasoning by the

Conjecture 1 For any data (3.1) and prior sets (3.3), up to
a subset of W of measure zero, the flow W (t) generated by
(3.21) approximates a global maximum as defined by (3.18)
in the sense that, for any 0 < ε � 1, there is a t = t (ε) such
that

∥∥W
(
t (ε)

) − W
∗∥∥ ≤ ε, for some W

∗ ∈ W
∗
. (3.29)

Remark 6 1. Since W
∗

/∈ W , the flow W (t) cannot con-
verge to a globalmaximum, andnumerical problems arise
when (3.29) holds for ε very close to zero. Our strategy
to avoid such problems is described in Sect. 3.3.1.

2. Although globalmaxima are not attained,we agree to call
a point W ∗ = W (t) maximum and optimal assignment
that satisfies (3.29) for some fixed small ε. The criterion
which terminates our algorithm is specified in Sect. 3.3.4.

3. Our numerical approximation of the flow (3.21) is
detailed in Sect. 3.3.3.

3.3 Implementation

We discuss in this section specific aspects of the implemen-
tation of the variational approach.

3.3.1 Assignment Normalization

Because each vector Wi approaches some vertex W
∗ ∈ W

∗

by construction, and because the numerical computations

are designed to evolve on W , we avoid numerical issues by
checking for each i ∈ [m] every entry Wi j , j ∈ [n], after
each iteration of the algorithm (3.36) below. Whenever an
entry drops below ε = 10−10, we rectify Wi by

Wi ← 1

〈1, W̃i 〉
W̃i , (3.30a)

W̃i = Wi − min
j∈[n] Wi j + ε, ε = 10−10. (3.30b)

In other words, the number ε plays the role of 0 in our imple-
mentation. Our numerical experiments (Sect. 4) showed
that this operation removed any numerical issues without
affecting convergence in terms of the criterion specified in
Sect. 3.3.4.

3.3.2 Computing Riemannian Means

Computation of the similarity matrix S(W ) due to Eq. (3.13)
involves the computation of Riemannian means. In view of
Definition 2, we compute the Riemannian mean meanS (P)

of given pointsP = {pi }i∈[N ] ⊂ S , using uniformweights,
as fixed point p(∞) by iterating the following steps.

(1) Set p(0) = 1

n
1. (3.31a)

Given p(k), k ≥ 0, compute (cf. the explicit expressions
(7.16b) and (2.7))

(2) vi = Exp−1
p(k) (p

i ), i ∈ [N ], (3.31b)

(3) v = 1

N

∑

i∈[N ]
vi , (3.31c)

(4) p(k+1) = Expp(k) (v), (3.31d)

and continue with step (2) until convergence. In view of
the optimality condition (2.9), our implementation returns
p(k+1) as a result if after carrying out step (3) the condition
‖v‖∞ ≤ 10−3 holds.

We point out that numerical problems arise at step (2)
if identical vectors are averaged, as the expression (7.16b)
shows. Such situationsmayoccur, e.g.,when computer-gene-
rated images are processed. Setting ε = 1 − 〈√p,

√
q〉 for

two vectors p, q ∈ S , we replace the expression (7.16b) by

Exp−1
p (q) ≈ 9ε2 + 40ε + 480

240
√
1 − ε/2

(
√
pq − (1 − ε)p)

if ε < 10−3.

(3.32)

Although the iteration (3.31) converges quickly, carrying
out such iterations as a subroutine, at each pixel and iter-
ative step of the outer iteration (3.36), increases runtime
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(of non-parallel implementations) noticeably. In view of the
approximation of the exponential map Expp(v) = γv(1) by
(3.11), it seems natural to approximate the Riemannianmean
as well by modifying steps (2) and (4) above accordingly.

Lemma 5 Replacing in the iteration (3.31) above the expo-
nential mapping Expp by the lifting map expp (3.8a) yields
the closed-form expression

meanS (P) ≈ meang(P)

〈1,meang(P)〉 ,

meang(P) =
( ∏

i∈[N ]
pi

) 1
N

(3.33)

as approximation of the Riemannian meanmeanS (P), with
the geometric mean meang(P) applied componentwise to
the vectors in P .

Proof See “Proofs of Section 3 and Further Details” of
Appendix 2. �
Remark 7 Taking into account non-uniform weights w ∈
ΔN−1, according to Definition 2, is straightforward. We
briefly take up this point in Sect. 5: see Eq. (5.2) and the
corresponding paragraph together with figure 14.

3.3.3 Optimization Algorithm

A thorough analysis of various discrete schemes for numeri-
cally integrating the gradient flow (3.21), including stability
estimates, is beyond the scope of this paper and will be sep-
arately addressed in follow-up work (see Sect. 5 for a short
discussion).

Here,wemerely adopted the following basic strategy from
[33] that has been widely applied in the literature and per-
formed remarkably well in our experiments. Approximating
the flow (3.21) for each vector Wi , i ∈ [m], by the time-
discrete scheme

W (k+1)
i − W (k)

i

t (k+1)
i − t (k)i

=W (k)
i

(∇i J (W (k))−〈W (k)
i ,∇i J (W (k))〉1)

,

(3.34a)

W (k)
i := Wi

(
t (k)i

)
, (3.34b)

and choosing the adaptive step sizes t (k+1)
i − t (k)i= 1

〈W (k)
i ,∇i J(W (k))〉 , yields the multiplicative updates

W (k+1)
i = W (k)

i

(∇i J (W (k))
)

〈W (k)
i ,∇i J (W (k))〉

, i ∈ [m]. (3.35)

We further simplify this update in view of the explicit expres-
sion (3.26) of the gradient ∇i J (W ) of the objective function

that comprises two terms. The first one contributes the deriva-
tive of S(W )with respect toWi ,which is significantly smaller
than the second term Si (W ) of (3.26), because Si (W ) results
from averaging (3.13) the likelihood vectors L j (Wj ) over
spatial neighborhoods and hence changes slowly. As a conse-
quence, we simply drop this first termwhich, as a by-product,
avoids the numerical evaluation of the expensive expressions
(3.27) specifying the first term.

Thus, for computing the numerical results reported in this
paper, we used the fixed-point iteration

W (k+1)
i = W (k)

i

(
Si (W (k))

)

〈W (k)
i , Si (W (k))〉

, W (0)
i = 1

n
1, i ∈ [m]

(3.36)

together with the approximation due to Lemma 5 for comput-
ing Riemannian means, which define by (3.13) the similarity
matrices S(W (k)). Note that this requires to recompute the
likelihood matrices (3.12) as well, at each iteration k (see
Fig. 1).

3.3.4 Termination Criterion

Algorithm (3.36) was terminated if the average entropy

− 1

m

∑

i∈[m]

∑

j∈[n]
W (k)

i j logW (k)
i j (3.37)

dropped below a threshold. For example, a threshold value
10−3 means in practice that, up to a tiny fraction of indices
i ⊂ [m] that should not matter for a subsequent fur-
ther analysis, all vectors Wi are very close to unit vectors,
thus indicating an almost unique assignment of prior items
f ∗
j , j ∈ [n] to the data fi , i ∈ [m]. Note that this termina-

tion criterion conforms to Conjecture 1 and was met in all
experiments.

4 Illustrative Applications and Discussion

We focus in this section on few academical, yet non-trivial
numerical examples, to illustrate and discuss basic proper-
ties of the approach. Elaborating any specific application is
outside the scope of this paper.

4.1 Parameters, Empirical Convergence Rate

Figure 6 shows a color image and a noisy version of it. The
latter image was used as input data of a labeling problem.
Both images comprise 31 color vectors forming the prior data
set PF = { f 1∗, . . . , f 31∗}. The labeling task is to assign
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Fig. 6 Parameter influence on
labeling. The top row shows a
ground-truth image and noisy
input data. Both images and the
prior data set PF are
composed of 31 color vectors.
Each color vectoris encoded as
a vertex of the simplex 
30.
This results in unit distances
between all colors and thus
enables an unbiased assessment
of the impact of geometric
averaging and the two parameter
values ρ, |Nε|. The remaining
panels show the assignments
u(W ∗) for various parameter
values where W ∗ maximizes the
objective function (3.16). The
spatial scale |NE | increases
from left to right. The parameter
ρ increases downwards. The
results illustrate the compromise
between sensitivity to noise and
to the geometry of signal
transitions. The selectivity
parameter ρ increases from top
to bottom. If ρ is chosen too
small, then there is a tendency to
noise-induced
oversegmentation, in particular
at small spatial scales |NE |.
Depending on the application,
however, the ability to separate
the physical and the spatial scale
in order to recognize outliers
with small spatial support, while
performing diffusion at a larger
spatial scale as in the panels of
the left column, may be
beneficial

these vectors in a spatially coherent way to the input data so
as to recover the ground-truth image.

This tasks should not be confused with image denoising
in the traditional sense [9] where noise has to be removed
from real-valued imagedata.Rather, the experiment depicted
by Fig. 6 represents difficult classification tasks where the
assignment process is essential in order to cope with the high
noise level.

Every color vector was encoded by the vertices of the sim-
plexΔ30, that is, by the unit vectors {e1, . . . , e31} ⊂ {0, 1}31.

Choosing the distance dF ( f i , f j ) := ‖ f i − f j‖1, this
results in unit distances between all pairs of data points and
hence enables to assess most clearly the impact of geometric
spatial averaging and the influence of the two parameters ρ

and |Nε|, introduced in Sects. 3.1.2 and 3.1.4, respectively.
We refer to the caption for a brief discussion of the selectivity
parameter ρ and the spatial scale in terms of |Nε|.

The reader familiar with total variation-based denoising,
where a single parameter is only used to control the influence
of regularization, may ask why two parameters are used in
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Fig. 7 Parameter values and convergence rate. Average entropy (3.37)
of the assignment vectors W (k)

i as a function of the iteration counter
k and the two parameters ρ and |Nε|, for the labeling task illustrated
in Fig. 6. The left panel shows that despite high selectivity in terms
of a small value of ρ, small spatial scales necessitate to resolve more
conflicting assignments through propagating information by geomet-

ric spatial averaging. As a consequence, more iterations are needed to
achieve convergence and a labeling. The right panel, on the other hand,
shows that at a fixed spatial scale |Nε|, higher selectivity leads to faster
convergence, because outliers are simply removed from the averaging
process,whereas low selectivity leads to an assignment (labeling) taking
all data into account

the present approach and if they are necessary.We refer again
to Fig. 6 and the caption where the separation of the phys-
ical and spatial scale based on different parameter choices
is demonstrated. The total variation measure couples these
scales as the co-area formula explicitly shows. As a conse-
quence, a single parameter is only needed. On the other hand,
larger values of this parameter lead to the well-known loss-
of-contrast effect, which using the present approach can be
avoided by properly choosing the parameters ρ, |Nε| corre-
sponding to these two scales.

Figure 7 shows how convergence of the iterative algorithm
(3.36) is affected by these two parameters. It also demon-
strates that few tens of massively parallel outer iterations
suffice to reach the termination criterion of Sect. 3.3.4. A par-
allel implementation only has to take into account the spatial
neighborhood (3.14) where pixel locations directly interact
in order to compute by geometric averaging the likelihood
matrix (3.13).

All results were computed using the assignment mapping
(3.20) without rounding. This shows that the termination cri-
terion of Sect. 3.3.4, illustrated in Fig. 7, leads to (almost)
unique assignments .

4.2 Vector-Valued Data

Let f i ∈ R
d denote vector-valued image data or extracted

feature vectors at locations i ∈ [m], and let

PF = { f ∗1, . . . , f ∗n} (4.1)

denote the prior information given by prototypical feature
vectors. In the example that follows below, f i will be a RGB
color vector. It should be clear, however, that any feature vec-

tor of arbitrary dimension d could be used instead, depending
on the application at hand. We used the distance function

dF ( f i , f ∗ j ) = 1

d
‖ f i − f ∗ j‖1, (4.2)

with the normalizing factor 1/d to make the choice of the
parameter ρ insensitive with respect to the dimension d of
the feature space. Given an optimal assignment matrix W ∗
as solution to (3.16), the prior information assigned to the
data is given by the assignment mapping

ui = ui (W ∗) = EW ∗
i
[PF ], i ∈ [m], (4.3)

whichmerely replaces each data vector f i by the prior vector
f ∗ j assigned to it through W ∗

i .
Figure 8 shows the assignment of 20 prototypical color

vectors to a color image for various values of the spatial scale
parameter |Nε|, while keeping the selectivity parameter ρ

fixed. As a consequence, the induced assignments and image
partitions exhibit a natural coarsening effect in the spatial
domain.

4.3 Patches

Let f i denote a patch of raw image data (or, more generally,
a patch of features vectors)

f i j ∈ R
d , j ∈ Np(i), i ∈ [m], (4.4)

centered at location i ∈ [m] and indexed by Np(i) ⊂ V
(subscript p indicates neighborhoods for patches).With each
entry j ∈ Np(i), we associate the Gaussian weight
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(a)

(b)

(c)

(d)

Fig. 8 Image labeling at different spatial scales. The two rightmost
columns show the same information using a random color code for
the assignment of the 20 prior vectors to pixel locations, to highlight
the induced image partitions. Increasing the spatial scale |Nε| for a
fixed value of the selectivity parameter ρ induces a natural coarsen-
ing of the assignments and the corresponding image partitions along

the spatial scale. a Input image (left panel) and a section of it. Twenty
color vectors (right panel) forming the set prior data set PF accord-
ing to Eq. (4.1). b Assignment u(W ∗), |Nε| = 3 × 3, ρ = 0.01. c
Assignment u(W ∗), |Nε| = 7 × 7, ρ = 0.01. d Assignment u(W ∗),
|Nε| = 11 × 11, ρ = 0.01
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w
p
i j := Gσ (‖xi − x j‖), i, j ∈ Np(i), (4.5)

where the vectors xi , x j ∈ R
d correspond to the locations in

the image domain indexed by i, j ∈ V . Specifically, w p is
chosen to be the discrete impulse response of aGaussian low-
pass filter supported on Np(i), so that the scale σ directly
depends on the patch size and does not need to be chosen
by hand. Such downweighting of values that are less close
to the center location of a patch is an established elementary
technique for reducing boundary and ringing effects of patch
(“window”)-based image processing.

The prior information is given in terms of n prototypical
patches

PF = { f ∗1, . . . , f ∗n}, (4.6)

and a corresponding distance

dF ( f i , f ∗ j ), i ∈ [m], j ∈ [n]. (4.7)

There are many ways to choose this distance depending on
the application at hand. We refer to the Examples 1 and 2
below. Expression (4.7) is based on the tacit assumption that
patch f ∗ j is centered at i and indexed by Np(i) as well.

Given an optimal assignment matrix W ∗, it remains to
specify how prior information is assigned to every location
i ∈ V , resulting in a vector ui = ui (W ∗) that is the overall
result of processing the input image f . Location i is affected
by patches that overlap with i . Let us denote the indices of
these patches by

N
i← j
p := { j ∈ V : i ∈ Np( j)}. (4.8)

Every such patch is centered at location j to which prior
patches are assigned by

EW ∗
j
[PF ] =

∑

k∈[n]
W ∗

jk f
∗k . (4.9)

Let location i be indexed by i j in patch j (local coordi-
nate inside patch j). Then, by summing over all patches
indexed by N

i← j
p whose supports include location i , and

by weighting the contributions to location i by the corre-
sponding weights (4.5), we obtain the vector

ui = ui (W ∗) = 1
∑

j ′∈N i← j
p

w
p
j ′i j

∑

j∈N i← j
p

w
p
ji j

∑

k∈[n]
W ∗

jk f
∗ki j ∈ R

d , (4.10)

that is assigned by W ∗ to location i . This expression looks
more clumsy than it actually is. In words, the vector ui

assigned to location i is the convex combination of vectors

contributed from patches overlapping with i that itself are
formed as convex combinations of prior patches. In particu-
lar, if we consider the common case of equal patch supports
Np(i) for every i that additionally are symmetricwith respect

to the center location i , then N
i← j
p = Np(i). As a conse-

quence, due to the symmetry of theweights (4.5), thefirst sum
of (4.10) sums up all weights w

p
i j . Hence, the normalization

factor on the right-hand side of (4.10) equals 1, because the
low-pass filter w p preserves the zero-order moment (mean)
of signals. Furthermore, it then makes sense to denote by
(−i) the location i p corresponding to i in patch j . Thus (4.10)
becomes

ui = ui (W ∗) =
∑

j∈Np(i)

w
p
j (−i)

∑

k∈[n]
W ∗

jk f
∗k(−i). (4.11)

Introducing in view of (4.9) the shorthand

E
i
W ∗

j
[PF ] :=

∑

k∈[n]
W ∗

jk f
∗k(−i) (4.12)

for the vector assigned to i by the convex combination of
prior patches assigned to j , we finally rewrite (4.10) due the
symmetry w

p
j (−i) = w

p
ji = w

p
i j in the more handy form1

ui = ui (W ∗) = Ew p
[
E
i
W ∗

j
[PF ]]. (4.13)

The inner expression represents the assignment of prior vec-
tors to location i by fitting prior patches to all locations
j ∈ N (i). The outer expression fuses the assigned vectors.
If they were all the same, the outer operation would have no
effect, of course.

We discuss further properties of this approach by concrete
examples.

Example 1 (Patch Assignment) Figure 9 shows an image f
and the corresponding assignment u(W ∗) based on a patch
dictionaryPF that was formed as explained in the caption.

We chose the distance dF of Eq. (4.2),

dF ( f i , f ∗ j ) = 1

|Np(i)| ‖ f i − f ∗ j (i)‖1, (4.14)

where here the arguments f i , f ∗ j stand for the vectorized
scalar-valued patches centered at location i , after adapting
each prior template f ∗ j at each pixel location i to the data f ,
denoted by f ∗ j = f ∗ j (i) in (4.14). Each such template takes
two values that were adapted to the template f i to which it
is compared, i.e.,

1 For locations i close to the boundary of the image domainwhere patch
supportsNp(i) shrink, the definition of the vectorw p has to be adapted
accordingly.
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(a) (b) (c) (d)

Fig. 9 a A patch supposed to represent prior knowledge about the
structure of an image f (b). The dictionary PF of Eq. (4.6) was gen-
erated by all translations of (a) and assigned to the image (b), using a
distance dF that adapts the two grayvalues of each template to the

data—see Eqs. (4.14) and (4.15). The resulting assignment u(W ∗)
is depicted by (c). d The residual image v(W ∗) := f − u(W ∗) by
subtracting (c) from (b) (rescaled for better visibility)

f ∗ j (i)
k ∈

{
f ilow, f ihigh

}
, ∀k, (4.15a)

where

f ilow =median
{
f ij : j ∈Np(i), f ij <median{ f ij } j∈Np(i)

}
,

(4.15b)

f ihigh =median
{
f ij : j ∈Np(i), f ij ≥median{ f ij } j∈Np(i)

}
.

(4.15c)

The result in Fig. 9c illustrates how the approximation
u(W ∗) of f is restricted by the prior knowledge, leading
to normalized signal transitions regarding both the spatial
geometry and the signal values. Bymaximizing the objective
(3.16), a patch-consistent and dense cover of the image is
computed. It induces a strong nonlinear image filtering effect
by fusing through assignment for each single pixel value
more than 200 predictions of possible values based on the
patch dictionary PF .

The approach enables to model additive image decompo-
sitions

f = u(W ∗) + v(W ∗), (4.16)

that is, image=geometry+ texture&noise, for specific image
classes, which are implicitly represented by the dictionary
PF . Such decomposition appears to be more discrimina-
tive than additive image decompositions achieved by convex
variational approaches (see, e.g., [2]) that employ various
regularizing norms, for this purpose.

Example 2 (Patch Assignment) Figure 10 shows a finger-
print image characterized by two gray values f ∗

dark, f ∗
bright

that were extracted from the histogram of f after removing
a smooth function of the spatially varying mean value (panel
(b)). The latter was computed by interpolating the median
values for each patch of a coarse 16 × 16 partition of the
entire image.

Figure 10c shows the dictionary of patches modeling the
remaining binary signal transitions. An essential difference
to Example 1 is the subdivision of the dictionary into classes
of equivalent patches corresponding to each orientation. The
averaging process was set up to distinguish only the assign-
ment of patches of different patch classes and to treat patches
of the same class equally. This makes geometric averaging
particularly effective if signal structures conform to a sin-
gle class on larger spatial connected supports. Moreover, it
reduces the problem size to merely 13 class labels: 12 orien-
tations at k · 30◦, k ∈ [12] degrees, together with the single
constant patch complementing the dictionary.

The distance dF ( f i , f ∗ j ) between the image patch cen-
tered at i and the j-th prior patch was chosen depending on
both the prior patch and the data patch it was compared to:
For the constant prior patch, the distance was

dF ( f i , f ∗ j ) = 1

|Np(i)| ‖ f i − f ∗
i f ∗ j‖1 (4.17a)

with

f ∗
i =

⎧
⎨

⎩
f ∗
dark, if med{ f ij } j∈Np(i) ≤ 1

2

(
f ∗
dark + f ∗

bright

)
,

f ∗
bright, otherwise.

(4.17b)
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(a)

(e) (f) (g)

(h) (i) (j)

(b) (c) (d)

Fig. 10 Analysis of the local signal structure of image a by patch
assignment. This process is twofold non-local: i through the assignment
of 3×3 patches (center row) and 7×7 patches, respectively, and ii due to
the gradient flow (3.21) that promotes the spatially coherent assignment
of patches corresponding to different orientations of signal transitions,
in order to maximize the similarity objective (3.16). a Input image f .
b Contourplot of a smooth image computed and subtracted from f as a
preprocessing step. cPrior patches representing binary signal transitions
at orientations 0◦, 30◦, . . . (top row), and the corresponding translation
invariant dictionary (bottom row). Each row of patches constitutes an

equivalence class of patches.dColor code indicating oriented bright-to-
dark signal transitions. e Assignment u(W ∗) of 3× 3 patches to image
f from (a) (ρ = 0.02). f Class label of assigned patches encoded due
to (d). Black means assignment of the constant template that was added
to the dictionary (c). g Residual image v(W ∗) = f − u(W ∗) (rescaled
for visualization). h Assignment u(W ∗) of 7 × 7 patches to image f
from (a) (ρ = 0.02). i Class label of assigned patches encoded due to
(d). j Residual image v(W ∗) = f − u(W ∗) (rescaled for visualization)

For all other prior patches, the distance was

dF
(
f i , f ∗ j) = 1

|Np(i)| ‖ f i − f ∗ j‖1. (4.18)

The center and bottom rows in Fig. 10, respectively, show
the assignment u(W ∗) of the dictionary of 3 × 3 patches
(center row) and of 7 × 7 patches (bottom row). The center
panels (f) and (i) depict the class labels of these assignments
according to the color code of panel (d). These images display
the interpretation of the image structure of f from panel (a).
While the assignment of patches of size 3×3 is slightly noisy,

which becomes visible through the assignment of the con-
stant templatemarked by black in panel (f), the assignment of
5× 5 or 7× 7 patches results in a robust and spatially coher-
ent, accurate representation of the local image structure. The
corresponding pronounced nonlinear filtering effect is due
to the consistent assignment of a large number of patches at
each pixel location and fusing the corresponding predicted
values.

Panels (g) and (j) show the resulting additive image
decompositions (4.16) that seem difficult to achieve when
using established convex variational approaches (see, e.g.,
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Fig. 11 Unsupervised assignment of uniform noise a to itself in terms
of a uniform discretization of the rgb color cube [0, 1]3 that does not
include the color gray 0.5(1, 1, 1)�. The assignment selects the 8 colors
(d) closest to gray with random frequencies (c) and a spatially random
partition (b) (rescaled to highlight the partition). a Uniform noise, b
sparse assignment u(W ∗) (displayed after rescaling) of 63 color vectors
corresponding to a uniform discretization of the rgb-cube [0, 1]3 to the
image (a) yields a noise-induced random piecewise constant partition

through geometric averaging (parameters: |Nε| = 7 × 7, ρ = 0.01), c
Relative frequencies of assignment of the prior color vectors f ∗ j , j ∈
[63]. The 8 nonzero frequencies correspond to vectors indicated in the
color cube (d), d 8 color vectors (out of 63) closest to gray (with equal
distance) only were assigned to (a), resulting in (b). These colors look
differently in (b) due to rescaling the image u(W ∗) to [0, 1]3 for better
visibility

[2]) that employ various regularizing norms and duality, for
this purpose.

Finally, we point out that it would be straightforward to
add to the dictionary further patches modeling minutiae and
other features relevant to fingerprint analysis.We do not con-
sider in this paper any application-specific aspects, however.

4.4 Unsupervised Assignment

We consider the case that no prior information is available.
The simplest way to handle the absence of prior informa-

tion is to use the given data themselves as prior information
along with a suitable constraint, to enforce selection of the
most important parts by self-assignment.

In order to illustrate this mechanism clearly, Fig. 11 shows
as example the assignment of uniform noise to itself. As
prior dataPF , we uniformly discretized the rgb color cube
[0, 1]3 at 0, 0.2, 0.4, . . . , 1 along each axis, resulting in
|PF | = 63 = 216 color vectors. Because there is no pref-
erence for any of these vectors, spatial diffusion of uniform
noise at any spatial scale will inherently end upwith the aver-
age color gray, which however is excluded from the prior set,
by construction. Accordingly, the process terminated with a
spatially random assignment of the 8 color vectors closest to
gray (Figs. 11b rescaled and 11d) solely induced by the input
noise and geometric averaging at a certain scale. Figure 11c
depicts the relative frequencies each prior vector is assigned
to some location. Except for the 8 aforementioned vectors,
all others are ignored.
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(a) (b) (c)

(e) (f) (g)

(d)

Fig. 12 Scenario for evaluating the approach of Sect. 4.5. f Illustrates
the set of all rectangles and corresponding subsets (c, d). Unlike (d),
the rectangles (c) do not intersect. Sampling the rectangles from both
(c, d), shown together by (a, b), produced the input data (e). The task is
to recognize among (f) all foreground objects (c) based on unary fea-
tures (coverage of points) and disjunctive constraints (rectangles should
not intersect). g Discusses the result. a Collection of rectangular areas
that result in (e) after uniform point sampling. b Decomposition of
the rectangles (a) into foreground (dark, cf. c), and background (light,
cf. d). c Randomly oriented foreground rectangles that do not intersect.

d Arbitrary sample of background rectangles from (f). e Input data:
point pattern resulting from uniformly sampling the rectangles (a). f
All possible rectangles densely cover the domain as indicated in the
center region (not completely shown for better visibility). g Assign-
ment (labeling) of the rectangles (f) based on the data (e): recognized
foreground objects from (c) (black) and recognized background objects
from (d) (dashed). Two foreground objects were erroneously labeled
as background (gray). All remaining rectangles from (f) also belong to
the background, four of which were erroneously labeled as foreground
(white)

A detailed elaboration of unsupervised scenarios based on
our approach, for both vector- and patch-valued data, will be
studied in our follow-up work (Sect. 5).

4.5 Labeling with Adaptive Distances

In this section, we consider a simple instance of the more
general class of scenarios where the distance matrix (3.6)
D = D(W ) depends on the assignment matrix W , in addi-
tion to the likelihood matrix L(W ) and the similarity matrix
S(W ).

Figure 12e displays a point pattern that was generated
by sampling a foreground and background process of ran-
domly oriented rectangles, as explained by the remaining
panels in Fig. 12. The task is to recover the foreground pro-
cess among all possible rectangles (Fig. 12f) based on (1)
unary features given by the fraction of points covered by
each rectangle, and on (2) the prior knowledge that unlike

background rectangles, elements of the foreground process
do not intersect. Rectangles of the background process were
slightly less densely sampled than foreground rectangles so
as to make the unary features indicative. Due to the overlap
of many rectangles (Fig. 12a), however, these unary features
are noisy (“weak”).

As a consequence, exploiting the prior knowledge that
foreground rectangles do not intersect becomes decisive.
This is done by determining the intersection pattern of all
rectangles (Fig. 12f) in terms of Boolean values that are
arranged into matrices Ri j , for each edge i j of the grid graph
whose vertices correspond to the centroids of the rectangles
in Fig. 12f: (Ri j )k,l = 1 if rectangle k at position i intersects
with rectangle l at position j , and (Ri j )k,l = 0 otherwise.
Due to the geometry of the rectangles, a rectangle at position
i may only intersect with 8 × 18 = 144 rectangles located
within a 8-neighborhood j ∈ Nε(i). Generalizations to other
geometries are straightforward.
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The inference task to recover the foreground rectangles
(Fig. 12c) from the point pattern (Fig. 12e) may be seen
as a multi-labeling problem based on an asymmetric Potts-
like model: Labels correspond to equally oriented rectangles
and have to be determined so as to maximize the coverage
of points, subject to the pairwise constraints that selected
rectangles do not intersect. Alternatively, we may think of
binary “off–on” variables that are assigned to each rectangle
in Fig. 12f, which have to be determined subject to disjunc-
tive constraints: At each location, at most a single variable
may become active, and pairwise active variables have to sat-
isfy the intersection constraints.Note that in order to suppress
intersecting rectangles, penalizing costs are only encountered
if (a subset of) pairs of variables receive the same value 1
(=active and intersecting). This violates the submodularity
constraint [29, Eq. (7)] and hence rules out global optimiza-
tion using graph cuts.

Taking all ingredients into account, we define the distance
vector field

Di = Di (W ) = 1

ρ

(
D̃i (W )

σ

)
, (4.19a)

D̃i (W ) = −pi + λ

|Nε(i)|
∑

j∈Nε(i)

Ri jW j , λ, σ > 0,

(4.19b)

where ρ > 0 is the selectivity parameter from (3.6), σ > 0
represents the cost of the additional label: “none rectangle,”
vector pi collects the fractions of points covered by the rect-
angles at position i , and λ > 0 weights the influence of the
intersection prior. This latter term is defined by the matrices
Ri j discussed above and given by the gradient with respect
to W of the penalty (λ/|Nε(i)|)∑

i j∈E 〈Wi , Ri jW j 〉.
In [24], a continuous optimization approach using DC

(difference of convex functions) programming was pro-
posed to compute local minimizers of non-convex func-
tionals similar to 〈D(W ),W 〉, with D given by (4.19).
This “Euclidean approach”—in contrast to the geometric
approach proposed here—entails to provide a DC decom-
position of the intersection penalty just discussed and to
explicitly take into account the affine constraints Wi ∈
Δn−1. As a result, the DC approach computes a local
minimizer by solving a sequence of convex quadratic pro-
grams.

In order to apply our present approach instead, we bypass
the averaging step (3.13) because labels will most likely be
different at adjacent vertices i in our random scenario, and
we thus set S(W ) = L(W ) with L(W ) given by (3.12)
based on (4.19). Applying then algorithm (3.36) implicitly
handles all constraints through the geometric flow and com-
putes a local minimizer by multiplicative updates, within a
small fraction of the runtime that the DC approach would

need, and without compromising the quality of the solution
(Fig. 12g).

4.6 Image Inpainting

Inpainting denotes the task to fill in a known region where
no image data were observed or are known to be corrupted,
based on the surrounding region and prior information.

Once the feature metric dF is fixed, we assign to each
pixel in the region to be inpainted as datum the uninformativ
feature vector f which has the same distance dF ( f, f ∗

j )

to every prior feature vector f ∗
j ∈ PF . Note that there is

not need to explicitly compute this data vector f . It merely
represents the rule for evaluating the distance dF if one of
its arguments belongs to a region to be inpainted.

Figure 13 shows two basic examples that were used by
the authors of [13,32], respectively, to examine numerically
the tightness of convex relaxations of the image labeling
problem. Unlike convex relaxations that constitute outer
approximations of the combinatorically complex feasible
set of assignments, our smooth non-convex approach may
be considered as an inner approximation that yields results
without the need of further rounding, i.e., the need of a post-
processing step for projecting the solution of a convex relaxed
problem onto the feasible set.

5 Conclusion and Further Work

We presented a novel approach to image labeling, formu-
lated in a smooth geometric setting. The approach contrasts
with established convex and non-convex relaxations of the
image labeling problem through smoothness and geomet-
ric averaging. The numerics boil down to parallel sparse
updates that maximize the objective along an interior path
in the feasible set of assignments and finally return a label-
ing. Although an elementary first-order approximation of
the gradient flow was only used, the convergence rate
seems competitive. In particular, a large number of labels,
like in Sect. 4.4, does not slow down convergence as is
the case of convex relaxations. All aspects specific to an
application domain are represented by a single distance
matrix D and a single user parameter ρ. This flexibil-
ity and the absence of ad hoc tuning parameters whose
values do not have an intrinsic meaning should promote
applications of the approach to various image labeling prob-
lems.

Aspects and open points to be addressed in future work
include the following.

Numerics Many alternatives exist to the simple algorithm
detailed in Sect. 3.3.3. An alternative first-order example
is exponential multiplicative update [11] that results from
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(a) (b)

Fig. 13 Two instances shown on the left in (a,b), adopted from [13,32]
to study the tightness of convex outer relaxations of the image labeling
problem. The task is both to inpaint and to label the gray regions. Our
smooth non-convex approach constitutes an inner approximation that
yields the labeling results shown on the right in (a, b, without the need
of a separate rounding post-processing step that projects the solution of

convex relaxations onto the feasible set of label assignments (parame-
ters: ρ = 1, |NE (i)| = 3 × 3). a Inpainting of the regions marked by
gray through assignment leads to the result on the right. b Inpainting of
the regions marked by gray through assignment leads to the result on
the right

(a) (b) (c) (d)

Fig. 14 Illustration of the influence of using nonuniform weights for
geometric averaging (2.8) based on the approximation (5.2). a Image
structure where only patch similarity enables to recognize pixel simi-
larity. b Noisy input image to which the three prior vectors red, green,
and blue are assigned. The 1 distance between data and prior vectors
was used as distance function dF . c Uniform labeling with weights

w j = 1
|N E | completely fails to recover the fine image structure (a). d

Using non-uniformweights based on the comparison of 7×7 patches of
the noise input data (b) considerably enhances the labeling. Errors nat-
urally occur in the center image region and along the diagonals where
patch similarity is not sufficiently supported by other pixels locations.
Parameters for (c, d): ρ = 0.1, |NE | = 7 × 7

an explicit Euler discretization of the flow (3.21) rewritten
in the form

d

dt
log

(
Wi (t)

) = ∇i J (W )−〈Wi ,∇i J (W )〉1, i ∈ [m].
(5.1)

Of course, higher-order schemes respecting the geometry
are conceivable as well. We point out that the inherent
smoothness of our problem formulation paves the way for
systematic progress.

Non-uniform geometric averaging So far, we did not
exploit the degrees of freedom offered by the weights
wi , i ∈ [N ] that define the Riemannian means by the
objective (2.8). By doing so, the approximation of these
means due to formula (3.33) generalizes in that the geo-
metric mean has to be replaced by the weighted geometric
mean

meang,w(P) =
∏

j∈[N ]
(p j )w j , w = ΔN−1 (5.2)

that is applied componentwise to the vectors p j ∈ P .
Figure 14 illustrates the influence of these weights w j

that were computed in a preprocessing step for each
pixel i within the neighborhood NE by computing the
distance dp(pi , p j ) (defined as mean of the 2-distance
of the respective color vectors) between 7 × 7 noisy
data patches pi , p j centered at i and j , respectively,

to obtain the normalized weights w j = w̃ j
〈1,w̃〉 , w̃ j

= exp
( − dp(pi , p j )/ρ

)
.

Turning this data-driven adaptivity of the assignment pro-
cess through non-uniform weights into a solution-driven
adaptivity, by replacing the data f by u(W ) due to (3.19)
that evolves with W , enables an even more general way
for further enhancing the assignment process.
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Connection to nonlinear diffusion Referring to the discus-
sion of neighborhood filters and nonlinear diffusion in
Sect. 1.3, research making these connections explicit is
attractive because, apparently, our approach is not cov-
ered by existing work.

Unsupervised scenarios. The nonexistence of a prior data
set PF in applications was only briefly addressed in
Sect. 4.4. In particular, the emergence of labels along with
assignments and a corresponding generalization of our
approach deserves attention.
Learning and updating prior information. This funda-
mental problem ties in with the preceding point: How can
we learn and evolve prior information from many assign-
ments over time?

We hope for a better mathematical understanding of cor-
responding models and that our work will stimulate corre-
sponding research.

Acknowledgements Support by the German Research Foundation
(DFG) was gratefully acknowledged, Grant GRK 1653.

6 Appendix 1: Basic Notation

For n ∈ N, we set [n] = {1, 2, . . . , n}. 1 = (1, 1, . . . , 1)�
denotes the vector with all components equal to 1, whose
dimension can either be inferred from the context or is indi-
cated by a subscript, e.g., 1n . Vectors v1, v2, . . . are indexed
by lowercase letters and superscripts, whereas subscripts
vi , i ∈ [n], index vector components. e1, . . . , en denotes
the canonical orthonormal basis of Rn .

We assume data to be indexed by a graph G = (V ,E )

with nodes i ∈ V = [m] and associated locations xi ∈
R
d , and with edges E . A regular grid graph and d = 2 is

the canonical example. But G may also be irregular due to
some preprocessing like forming super-pixels, for instance,
or correspond to 3D images or videos (d = 3). For simplicity,
we call i location although this actually is xi .

If A ∈ R
m×n , then the rowand columnvectors are denoted

by Ai ∈ R
n, i ∈ [m] and A j ∈ R

m, j ∈ [n], respectively,
and the entries by Ai j . This notation of row vectors Ai is
the only exception from our rule of indexing vectors stated
above.

The componentwise application of functions f : R → R

to a vector is simply denoted by f (v), e.g.,

∀v ∈ R
n,

√
v := (

√
v1, . . . ,

√
vn)

�, (6.1a)

exp(v) := (
ev1 , . . . , evn

)� etc. (6.1b)

Likewise, binary relations between vectors apply componen-
twise, e.g., u ≥ v ⇔ ui ≥ vi , i ∈ [n], and binary
componentwise operations are simply written in terms of the

vectors. For example,

pq := (. . . , piqi , . . .)
�,

p

q
:=

(
. . . ,

pi
qi

, . . .
)�

, (6.2)

where the latter operation is only applied to strictly posi-
tive vectors q > 0. The support supp(p) = {pi �= 0 : i ∈
supp(p)} ⊂ [n] of a vector p ∈ R

n is the index set of all
non-nonvanishing components of p.

〈x, y〉 denotes the standard Euclidean inner product and
‖x‖ = 〈x, x〉1/2 the corresponding norm. Other p-norms,
1 ≤ p �= 2 ≤ ∞, are indicated by a corresponding subscript,
‖x‖p = (∑

i∈[d] |xi |p
)1/p

, except for the case ‖x‖ = ‖x‖2.
For matrices A, B ∈ R

m×n , the canonical inner product is
〈A, B〉 = tr(A�B) with the corresponding Frobenius norm
‖A‖ = 〈A, A〉1/2. Diag(v) ∈ R

n×n, v ∈ R
n , is the diagonal

matrix with the vector v on its diagonal.
Other basic sets and their notation are

– the positive orthant

R
n+ = {p ∈ R

n : p ≥ 0}, (6.3)

– the set of strictly positive vectors

R
n++ = {p ∈ R

n : p > 0}, (6.4)

– the ball of radius r centered at p

Br (p) = {p ∈ R
n : ‖p‖ ≤ r}, (6.5)

– the unit sphere

S
n−1 = {p ∈ R

n : ‖p‖ = 1}, (6.6)

– the probability simplex

Δn−1 = {p ∈ R
n+ : 〈1, p〉 = 1} (6.7)

– and its relative interior

S = Δ̊n−1 = Δn−1 ∩ R
n++, (6.8a)

Sn = S with concrete value ofn(e.g., S3), (6.8b)

– closure (not regarded as manifold)

S = Δn−1, (6.9)

– the sphere with radius 2

N = 2Sn−1, (6.10)
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– the assignment manifold

W = S × · · · × S , (m times) (6.11)

– and its closure (not regarded as manifold)

W = S × · · · × S , (m times). (6.12)

For a discrete distribution p ∈ Δn−1 and a finite set
S = {s1, . . . , sn} vectors, we denote by

Ep[S] :=
∑

i∈[n]
pi s

i (6.13)

the mean of S with respect to p.
Let M be a any differentiable manifold. Then TpM

denotes the tangent space at base point p ∈ M and TM
the total space of the tangent bundle ofM . If F : M → N
is a smoothmapping between differentiablemanifoldM and
N , then the differential of F at p ∈ M is denoted by

DF(p) : TpM → TF(p)N , DF(p) : v �→ DF(p)[v].
(6.14)

If F : Rm → R
n , then DF(p) ∈ R

n×m is the Jacobianmatrix
at p, and the application DF(p)[v] to a vector v ∈ R

m means
matrix-vector multiplication. We then also write DF(p)v.
If F = F(p, q), then DpF(p, q) and Dq F(p, q) are the
Jacobians of the functions F(·, q) and F(p, ·), respectively.

The gradient of a differentiable function f : Rn → R

is denoted by ∇ f (x) = (
∂1 f (x), . . . , ∂n f (x)

)�, whereas
the Riemannian gradient of a function f : M → R defined
on Riemannian manifold M is denoted by ∇M f . Eq. (2.5)
recalls the formal definition.

The exponential mapping [21, Def. 1.4.3]

Expp : TpM → M , v �→ Expp(v) = γv(1), (6.15a)

γv(0) = p, γ̇v(0) = d

dt
γv(t)

∣∣
t=0 = v, (6.15b)

maps the tangent vector v to the point γv(1) ∈ M , uniquely
defined by the geodesic curve γv(t) emanating at p in direc-
tion v. γv(t) is the shortest path on M between the points
p, q ∈ M that γv connects. This minimal length equals the
Riemannian distance dM (p, q) induced by the Riemannian
metric, denoted by

〈u, v〉p, (6.16)

i.e., the inner product on the tangent spaces TpM , p ∈ M ,
that smoothly varies with p. Existence and uniqueness of
geodesics will not be an issue for the manifolds M consid-
ered in this paper.

Remark 8 The exponentialmappingExpp should not be con-
fused with

– the exponential function ev used, e.g., in (6.1);
– the mapping expp : TpS → S defined by Eq. (3.8a).

The abbreviations “l.h.s.” and “r.h.s.” mean left-hand
side and right-hand side of some equation, respectively. We
abbreviate with respect to by “wrt.”

7 Appendix 2: Proofs and Further Details

7.1 Proofs of Section 2

Proof (of Lemma 1) Let p ∈ S and v ∈ TpS . We have

Dψ(p) = Diag(p)−1/2 (7.1)

and
〈
ψ(p), Dψ(p)[v]〉 = 〈2√p, v√

p 〉 = 2〈1, v〉 = 0, that

is, Dψ(p)[v] ∈ Tψ(p)N . Furthermore,

〈
Dψ(p)[u], Dψ(p)[v]〉 = 〈

u/
√
p, v/

√
p〉 (2.1)= 〈u, v〉p,

(7.2)

i.e., the Riemannian metric is preserved and hence also
the length L(s) of curves s(t) ∈ N , t ∈ [a, b]: Put
γ (t) = ψ−1

(
s(t)

) = 1
4 s

2(t) ∈ S , t ∈ [a, b]. Then
γ̇ (t) = 1

2 s(t)ṡ(t) = 1
2ψ

(
γ (t)

)
ṡ(t) = √

γ (t)ṡ(t) and

L(s) =
∫ b

a
‖ṡ(t)‖dt =

∫ b

a

〈
γ̇ (t)√
γ (t)

,
γ̇ (t)√
γ (t)

〉1/2
dt (7.3a)

(2.1)=
∫ b

a
‖γ̇ (t)‖γ (t)dt = L(γ ). (7.3b)

�

Proof (of Prop. 1) Setting g : N → R, q �→ g(s)
:= f

(
ψ−1(s)

)
with s = ψ(p) = 2

√
p from (2.3), we have

∇N g(s) =
(
I − s

‖s‖
s�

‖s‖
)

∇g(s), (7.4)

because the 2-sphere N = 2Sn−1 is an embedded sub-
manifold, and hence the Riemannian gradient equals the
orthogonal projection of the Euclidean gradient onto the tan-
gent space. Pulling back the vector field ∇N g by ψ using

∇g(s) = ∇ f
(
ψ−1(s)

) = ∇ f
(1
4
s2

)
= 1

2
s
(∇ f (p)

)
, (7.5)
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we get with (7.1), (7.4) and ‖s‖ = 2 and hence
s/‖s‖ = 1

2ψ(p) = √
p

∇ fS (p) = (
Dψ(p)

)−1(∇N g(ψ(p))
)

(7.6a)

= Diag(
√
p)

((
I − √

p
√
p�)√

p
(∇ f (p)

))

(7.6b)

= p
(∇ f (p)

) − 〈p,∇ f (p)〉p, (7.6c)

which equals (2.6). We finally check that ∇ fS (p) satisfies
(2.5) (withS in place ofM ). Using (2.1), we have

〈∇ fS (p), v〉p =
〈√

p
(∇ f (p)

) − 〈p,∇ f (p)〉√p,
v√
p

〉

(7.7a)

= 〈∇ f (p), v〉 − 〈p,∇ f (p)〉〈1, v〉 (7.7b)

(2.2)= 〈∇ f (p), v〉, ∀v ∈ TpS . (7.7c)

�
Proof (of Prop. 2) The geodesic on the 2-sphere emanating
at s(0) ∈ N in direction w = ṡ(0) ∈ Ts(0)N is given by

s(t) = s(0) cos
(‖w‖

2
t
)

+ 2
w

‖w‖ sin
(‖w‖

2
t
)
. (7.8)

Setting s(0) = ψ(p) and w = Dψ(p)[v] = v/
√
p, the

geodesic emanating at p = γv(0) in direction v is given
by ψ−1

(
s(t)

)
due to Lemma 1, which results in (2.7a) after

elementary computations. �

7.2 Proofs of Section 3 and Further Details

Proof (of Prop. 3) We have p = expp(0) and

d

dt
expp(ut) = 〈p, eut 〉peutu − peut 〈p, eutu〉

〈p, eut 〉2 (7.9a)

= p(t)u − 〈p(t), u〉p(t), (7.9b)

which confirms (3.10), is equal to (3.9) at t = 0 and hence
yields the first expression of (3.11). The second expression
of (3.11) follows from a Taylor expansion of (2.7a)

γv(t) ≈ p+vt + 1

4

(
v2p −‖vp‖2 p

)
t2, vp = v√

p
. (7.10)

�
Proof (of Lemma 4) By construction, S(W ) ∈ W , that is,
Si (W ) ∈ S , i ∈ [m]. Consequently,

0 ≤ J (W ) =
∑

i∈[m]
〈Si (W ),Wi 〉 ≤

∑

i∈[m]
‖Si (W )‖‖Wi‖ < m.

(7.11)

The upper bound corresponds to matrices W
∗ ∈ W and

S(W
∗
) where for each i ∈ [m], both W

∗
i and Si (W

∗
) equal

the same unit vector eki for some ki ∈ [m]. �
Proof (Explicit form of (3.27)) The matrices T i j (W ) =

∂
∂Wi j

S(W ) are implicitly given through the optimality condi-
tion (2.9) that each vector Sk(W ), k ∈ [m], defined by (3.13)
has to satisfy

Sk(W ) = meanS {Lr (Wr )}r∈ ˜NE (k) (7.12a)

⇔ 0 =
∑

r∈ ˜NE (k)

Exp−1
Sk (W )

(
Lr (Wr )

)
. (7.12b)

Writing

φ
(
Sk(W ), Lr (Wr )

) := Exp−1
Sk (W )

(
Lr (Wr )

)
, (7.13)

while temporarily dropping belowW as argument to simplify
the notation, and using the indicator function δP = 1 if the
predicate P = true and δP = 0 otherwise, we differentiate
the optimality condition on the r.h.s. of (7.12),

0 = ∂

∂Wi j

∑

r∈ ˜NE (k)

φ
(
Sk(W ), Lr (Wr )

)
(7.14a)

=
∑

r∈ ˜NE (k)

(
DSkφ(Sk, Lr )

[ ∂

∂Wi j
Sk(W )

]
(7.14b)

+ δi=r DLr φ(Sk, Lr )
[ ∂

∂Wr j
Lr (Wr )

])
(7.14c)

=
( ∑

r∈ ˜NE (k)

DSkφ(Sk, Lr )
)( ∂

∂Wi j
Sk(W )

)
(7.14d)

+ δi∈ ˜NE (k)DLi φ(Sk, Li )
( ∂

∂Wi j
Li (Wi )

)
(7.14e)

=: Hk(W )
( ∂

∂Wi j
Sk(W )

)
+ hk,i j (W ). (7.14f)

Since the vectors φ(Sk, Lr ) given by (7.13) are the nega-
tive Riemannian gradients of the (locally) strictly convex
objectives (2.8) defining the means Sk [21, Thm. 4.6.1], the
regularity of thematrices Hk(W ) follows.Thus, using (7.14f)
and defining the matrices

T i j (W ) ∈ R
m×n, T i j

kl (W ) := ∂

∂Skl(W )
Wi j ,

i, k ∈ [m], j, l ∈ [n], (7.15)

results in (3.27). The explicit form of this expression results
from computing and inserting into (7.14f) the corresponding
Jacobians Dpφ(p, q) and Dqφ(p, q) of

φ(p, q) = Exp−1
p (q) (7.16a)
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= dS (p, q)√
1 − 〈√p,

√
q〉2

(√
pq − 〈√p,

√
q〉p),

(7.16b)

and

∂

∂Wi j
Li (Wi ) = e−Ui j

〈Wi , e−Ui 〉
(
e j − Li (Wi )

)
. (7.16c)

The term (7.16b) results frommapping back the correspond-
ing vector from the 2-sphere N ,

Exp−1
p (q) = −(

Dψ(p)
)−1

(1
2
∇N d2N

(
ψ(p), ψ(q)

))
,

(7.17)

where ψ is the sphere map (2.3) and dN is the geodesic
distance on N . The term (7.16c) results from directly eval-
uating (3.12). �
Proof (of Lemma 5) We first compute exp−1

p . Suppose

q = expp(u) = peu

〈p, eu〉 , p, q ∈ S , u ∈ R
n . (7.18)

Then

log(q) = log(p) + u − log(〈p, eu〉)1, (7.19a)

log(〈p, eu〉) = 1

n
〈1, log(p) − log(q)〉, (7.19b)

and

u = exp−1
p (q) =

(
I − 1

n
11�

) (
log(q) − log(p)

)
. (7.20)

Thus, in view of (3.9), we approximate

Exp−1
p (q) ≈ v

= (
Diag(p) − pp�)

u (7.21a)

=
(
Diag(p) − 1

n
p1� − pp� + 1

n
p1�

)
log

( q
p

)

(7.21b)

= (
Diag(p) − pp�)

log
( q
p

)
. (7.21c)

Applying this to the point set P , i.e., setting

vi = (
Diag(p) − pp�)

log
pi

p
, i ∈ [N ], (7.22)

step (3) of (3.31) yields

v := 1

N

∑

i∈[N ]
vi = 1

N

(
Diag(p) − pp�)

( ∑

i∈[N ]
log(pi ) − N log(p)

)
(7.23a)

= (
Diag(p) − pp�)

log

(
1

p

( ∏

i∈[N ]
pi

) 1
N
)

(7.23b)

= (
Diag(p) − pp�)

log
(meang(P)

p

)
(7.23c)

=: (
Diag(p) − pp�)

u. (7.23d)

Finally, approximating step (4) of (3.31) results in view of
Prop. 3 in the update of p

expp(u) = peu

〈p, eu〉 = meang(P)

〈1,meang(P)〉 . (7.24)

�
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