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A B S T R A C T

We present a new vectorial total variation method that addresses the problem of color consistent image filtering.
Our approach is inspired from the double-opponent cell representation in the human visual cortex. Existing
methods of vectorial total variation regularizers have insufficient (or no) coupling between the color channels
and thus may introduce color artifacts. We address this problem by introducing a novel coupling between the
color channels related to a pullback-metric from the opponent space to the data (RGB color) space. Our energy is
a non-convex, non-smooth higher-order vectorial total variation approach and promotes color consistent image
filtering via a coupling term. For a convex variant, we show well-posedness and existence of a solution in the
space of vectorial bounded variation. For the higher-order scheme we employ a half-quadratic strategy, which
model the non-convex energy terms as the infimum of a sequence of quadratic functions. In experiments, we
elaborate on traditional image restoration applications of inpainting, deblurring and denoising. Regarding the
latter, we consider two noise scenarios i) intensity and chromaticity (the color representation of the double-
opponent space) are corrupted by uniform noise and ii) only the chromaticity is corrupted with noise. In the
latter case, we demonstrate state of the art restoration quality with respect to structure coherence and color
consistency.

1. Introduction

1.1. Motivation

Image filtering is a fundamental operation in image processing ap-
plications. Typically image filtering refers to all type of algorithms that
modify image pixels in a linear or non-linear manner. Common appli-
cations are image denoising (or smoothing) (Åström et al., 2012;
Bredies et al., 2010; Iijima, 1959; Koenderink, 1984; Perona et al.,
1990; Roth and Black, 2005; Tomasi and Manduchi, 1998), active
contours (Kass et al., 1988), image deblurring (Chan and Wong, 1998;
Oliveira et al., 2009), inpainting (Ballester et al., 2001; Chan et al.,
2002) and optical flow (Horn and Schunck, 1981). These applications
have in common that they can be formulated as variational problems
and are thus inherently related.

In a discrete setting, the solution of such functionals (or energies), can
be formulated as maximum a-posteriori (MAP) problems based on
markov random fields (MRF), we refer to Wang et al. (2013) and
Kappes et al. (2015) for such approaches. However, the size of the re-
quired label space makes the optimization problem intractable as there
is one label for each possible state. Due to this drawback, one computes
approximate solutions, e.g., by applying relaxation techniques of the

label space. The advantage of structured energy minimization, such as
the MRFs formulation, is that complex neighborhoods, non-smooth and
non-convex penalty functions are easily modelled.

On the other hand, continuous models do not suffer from large label
spaces, see for example the recently introduced assignment filter
(Åström et al., 2017). However, the corresponding optimization pro-
blem needs to explicitly cope with non-smoothness and non-convexity.
Convex optimization techniques are well established methods that ef-
ficiently find optimal solutions of convex functions. During the past
years, the imaging community has seen a surge of non-convex and often
non-smooth energies, often demonstrating improved results over
convex counterparts. The optimization of non-convex functions is par-
ticularly challenging since straightforward approaches often leads to
locally optimal solution only.

Relaxation of the non-smooth problems often include modification
of the objective function and approximating non-convex penalty terms
via auxiliary variables. Cohen proposed fitting of auxiliary variables
(Cohen, 1996). However, this approach relies on conjugate functions
and if no closed form-solutions are available the relaxation method is
inefficient. Another popular approach in image processing is the half-
quadratic algorithm (HQA) studied by Geman and Yang (1995). The
HQA approximates a non-convex function as the infimum of quadratic
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functions as illustrated in Fig. 1 (a), (b). One may also consider lagged
fix-point formulations (Chan and Mulet, 1999). In this case regularity is
imposed via mollification that yields a differentiable energy. Subse-
quently one needs to prove that there exists a convergent fixed-point
algorithm.

This work builds on the convex total variation (TV) presented in the
seminal work of Rudin et al. (1992). The success story of total variation
(TV) began in 1992 when Rudin et al. (1992) introduced an extension
of Rudin’s PhD thesis (Rudin, 1987). In Rudin’s work it was conjectured
that the ℓ1 norm is more appropriate as a regularizer for image pro-
cessing applications than, e.g., ℓ2 norm. The popularity of TV is mainly
due to its discontinuity preserving properties, i.e., the norm is a strong
prior for avoiding mode mixing and can be interpreted as a the solution
of a MAP problem. The common goal for noise reduction methods is to
preserve characteristic image features, thus TV is a suitable prior as it is
edge preserving. Features of interest vary depending on application
area. However, in general one wishes to preserve structures defining
dominant orientations and discontinuity points, such as edge and cor-
ners, since much of the visual information is contained in contour and
differences of contrast (Ratliff, 1971). Extensions of the initial gray-
scale TV prior for image enhancement to color images faces the pro-
blem to characterize notions of color. The problem of consistent color
image processing is largely unsolved and still no consensus on suitable
characterization of a “color edge”, or a “color boundary” for general
imaging problems has been reached.

This work studies the problem of color image regularization.
Extending the scalar TV to color images is a non-trivial problem. For
example, if a color edge is insufficiently preserved in the smoothing
process, artificial colors may emerge at the smooth transition between
these colors as demonstrated by Fig. 1 (c). The same figure (d) illus-
trates the problem of color shimmering, i.e., insufficient smoothing of
homogeneous regions. To address these problems we examine a color
space representation, commonly used in computer vision applications
and derive a novel color mixing term that penalizes inter-channel dis-
continuities. We investigate a special instance of color space re-
presentation known as the double-opponent color space. The key aspect of
our framework builds on the observation that the Jacobian carries vital
information useful for color boundary detection. Utilizing this in-
formation, we design a TV-based regularizer that describes the color
information in a subspace defined by the hue and saturation of the
original image color space. Via a higher-order non-convex, non-smooth
energy formulation we show improved discontinuity preserving prop-
erties over convex counter-parts with respect to color consistency and
structural coherence. This work extends our early work (Åström, 2016)
with a geometric viewpoint, higher-order differentials, rigorous proofs
and a through experimental evaluation. We remark further that the

presented work is a significant extension of Åström and Schnörr (2016)
which merely introduce a first order convex scheme.

Our approach is motivated based on results from color perception:

• The connection between experienced visual stimuli and current
color space models of the visual cortex is naturally modeled using
tools from differential geometry. Accordingly, we adopt a geometric
viewpoint to explore the relation between color edges and the reg-
ularizer based on the color space geometries. The double-opponent
color space is thought to relate neurophysiological properties of
color experience to single-opponent and double-opponent cells in
the human cortex, see Ebner (2007); Gao et al. (2013); Land (1983);
1986) and references therein. There is recent evidence that a large
concentration of double-opponent cells are located in the region V1,
the primary part of the visual cortex (Conway et al., 2010). Double-
opponent cells are thought to be orientation-selective with respect
to color discrimination and the detection of color boundaries, results
made possible by modern functional magnetic resonance imaging
(fMRI) techniques (Conway et al., 2010). We will use this fact in our
subsequent analysis to motivate the introduction of our model.

When formulating image denoising objective functions one often
adopts different viewpoints. The following two major viewpoints mo-
tivate our work: namely color perception and color model.

• Color perception. As stated, we formulate the problem of color image
denoising from principles of color perception. The discriminate
power of color is one primary feature for object separation and
detection. It is often referred to as a highly important features for
the visual system and is closely related to the problem of accurate
boundary detection (Conway et al., 2010). We present a model that
preserves discontinuities in the color space motivated by a double-
opponent transformation. By preserving color discontinuities we
hypothesize that color borders trigger the activation of these double-
opponent cells and thus yields the experience of crisp color borders
in the image.

• Color model. We denote transportation of the visual (RGB) stimuli to
the double-opponent cells in the visual cortex with a mapping. We
postulate that, if there exists a spatial relation between two stimuli
(e.g., a color difference), then this induces a response in the double-
opponent cells in the form of orientation sensitivity. The motivation
is that double-opponent cells act as color edge detectors, as shown
by neurophysical experiments (again we refer to Ebner (2007);
Gao et al. (2013); Land (1983); 1986)). Thus, we conclude that there
exist a color transition function (or gradient) in the double-opponent
space. To obtain the mapping we observe that the stimuli in the

Fig. 1. Figure (a) shows several instances of the non-convex
ℓp-norm for different p values and (b) shows example HQA
approximation for =p 0.5. Figures (c) and (d) illustrates
common color image denoising artifacts.
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opponent space, induced by a linear opponent transformation, in
fact gives rise to a pullback metric on the RGB-space where the
spatial interaction between the double-opponent cells are modeled
by the gradient-operator.

1.2. Organization

In Section 2 we sketch the framework of total variation and make
the difference between our view-point to established literature in the
field. Already here, we must emphasize that much research in color
image processing is merely a multi-dimensional extension of the ori-
ginal total variation for gray-scale images. The differences between our
approach and related VTV methods are also detailed in Section 2. In
Section 3 we review color space models often adopted in the image
processing literature. In the same section we also introduce the double-
opponent transformation. Section 4 serves to derive the connection
between the observation (RGB) space and the double-opponent re-
presentation, we also derive results on the encoded information in the
metric decomposition and relate these facts to colorfulness. The general
variational problem is defined in Section 5. In the same section we
formulate the corresponding HQA formulation and prove that the HQA
is a particular instance of a majorize-minimize algorithm for the general
problem. For the particular instance corresponding to the non-relaxed,
first order VTV with a convex dataterm, we rigorously show convexity
of the overall problem, that a solution exists and is unique in
Section 5.3. Section 6 describes the numerical scheme and Section 7
presents the numerical evaluation with applications in image denoising,
inpainting and deblurring. Section 8 concludes the paper.

Next we review total variation methods and present current gen-
eralizations to color image processing before we introduce our frame-
work.

2. Further related work

In addition to TV, closest to our work is the seminal work of
Sapiro and Ringach (1996) who first observed that the metric tensor
eigendecomposition can be used to describe directional change and
magnitude of color images. In this work we extend this reasoning and
show that there exists a natural color space representation which leads
to a corresponding interpretation of the Sapiro and Ringach approach.
Unlike the Beltrami flow (Kimmel et al., 2000) and (Sapiro and
Ringach, 1996), we exploit the inverse rate of change of the metric
tensor’s eigenvalues. This gives us a transformation from the double-
opponent space back to the observation space of the image data. We
thus obtain an explicit information about the image chromaticity, and
by extension, the color edge information. The detection of edges is a
well investigated field of study for gray-scale images and methods in-
clude, e.g., the canny edge detector (Canny, 1986), gradient filters and
the structure tensor (Bigun and Granlund, 1987; Förstner and Gülch,
1987). These methods work well for monochromatic images (such as
gray-scale images) but the extension to multi-dimensional data such as
color image data is still an open problem. One of the first extension of
the structure tensor to multi-valued images was proposed by
Zenzo (1986), but later it was reported that channel-by-channel de-
noising is sufficient in the framework of partial differential equations,
e.g., Weickert (1999). Coupling of the color channels were investigated
in Tschumperlé and Deriche (2003) and decorrelation approaches to
denoising have also been considered see, e.g., Åström et al. (2012).
Explicitly modeling the structure of cyclic data, such as defined in
specific color spaces, Bergmann and Weinmann (2016) presents a
second order TV-type approach to denoising color images.

For a gray-scale image !→u: Ω defined on a domain !⊂Ω ,2 the
total variation measure is given by

!∫= ⎧⎨⎩ ∈ ≤ ⎫⎬⎭∞TV u u φ dx φ φ( ) sup div( ) : (Ω, ), 1cΩ
1 2C

(1)

A function u∈ L1(Ω) belongs to the space of functions of bounded
variation BV(Ω) if= + < ∞u u TV u( ) .BV L(Ω) (Ω)1 (2)

TV(u) given by (1) is a support function in the sense of convex analysis.
Thus, combining TV(u) with another (or more) convex functionals en-
ables to apply a wide range of convex programming techniques. An
early basic example is Chambolle (2004). Further common strategies
include the primal-dual algorithm (Chambolle and Pock, 2011) and the
Split-Bregman approach (Goldstein and Osher, 2009).

Next, we review generalizations of scalar TV to vector-valued and
color images.

2.1. Color and vector-valued TV

Let !→u: Ω ,d = … ⊤u x u x u x( ) ( ( ), , ( )) ,d1 denote a vector-valued
image. Color images are represented by the three color components red,
green and blue, i.e., =d 3. In this section we review some extensions of
total variation to vector-valued and color images categorized in three
main tracks: channel-by-channel, spectral approaches and decorrelation
approaches. We briefly mention PDE-based models.

Channel-by-channel. The straightforward extension of TV to
vector-valued color image regularization is to apply (1) channel-by-
channel. However, as this naive approach neglects any channel-by-
channel correlation one of the first extensions was to penalize color
edges across channels as suggested by Blomgren and Chan (1998). They
raised several important aspects highlighting the fact that the extension
to color is a non-trivial task. First, they argued that the vector-valued
TV should not penalize intensity edges, as there can be a shift in color
but not in intensity. Secondly, they advocate that the corresponding TV-
regularizer should be rotationally invariant in the image space, al-
though this is disputed in Ono and Yamada (2014). Blomgren and
Chan (1998) propose∑= =TV u TV u( ) ( ) ,BC i

M
i1

2
(3)

with the TV term under the sum given by (1). However, applying this
model to the problem of color image denoising has been shown to
produce significant color smearing artifacts due to insufficient pre-
servation of color edges. The reason of this effect is that the model fails
to comprehend that the red, green and blue color components are in
fact highly correlated. Thus, due to lacking any coupling between the
color channels, the model produces suboptimal results w.r.t. to color
consistency (Goldluecke et al., 2012).

Bresson and Chan (2008) considered a vector-valued extension of
the scalar dual TV formulation. Based on work by Chambolle (2004)
and Fornasier and March (2007), Bresson and Chan (2008) presented a
coherent framework for vectorial total variation with a study of well-
posedness. While their formulation generalizes Chambolle’s dual of
Blomgrens TV semi-norm (3), results still exhibit color smearing.

We refer to Duran et al. (2016) for an additional discussion on
discrete vectorial total variation models. We remark that this underlines
the complex nature of color image processing and researchers con-
tinued to propose alternative total variation color filtering models, as
we will discuss below.

Spectral approaches. One of the first vectorial TV (VTV) schemes
that explicitly take color information into account, was introduced by
Sapiro and Ringach (1996). In an intensity image an edge is localized by
changes in the image intensity. The novelty introduced by Sapiro and
Ringach (1996) is that they exploited the metric imposed by the first
fundamental form on the image domain, which couples the RGB-
channel’s derivatives, to indicate the presence of color edges. The re-
sulting functional is given by
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∫= −+ −TV u λ λ dx( ) ,S Ω (4)

where > ≥+ −λ λ 0 are the eigenvalues of the metric tensor.
Goldluecke and Cremers (2010) propose a vectorial total variation

method based on the largest singular value (hence on the spectral
norm) of the derivative matrix Du,∫=TV u σ Du dx( ) ( ) .J Ω 1 (5)

TVJ is closely related to TVS with the difference that TVJ sets all singular
values (except) the largest to zero. Although TVJ improves the signal-to
noise ratio, the visual appearance for the denoised results contains
considerable color shimmering visible in homogeneous regions. Thus,
despite a coupling between the color channels, the approach still may
produce color artifacts.

Decorrelation transforms. Regularization via decorrelation trans-
forms was suggested in e.g., Chan et al. (2001). A more recent approach
to incorporating color into a total variation formulation was introduced
by Ono and Yamada (2014). They propose a discrete norm in-
corporating a weight w between the intensity and chromaticity in the
decorrelation transform O (see also (8),(9) below)

⎜ ⎟= = + ⎛⎝ ⎞⎠J u D Ou w D o D o
D o( )VTV

w
3 1 1 1 1

1 2

1 3
1 (6)

where = ∑x xi i1
2 . D1 is the derivative matrix for one channel and=D Diag D D D( , , )3 1 1 1 the three channel derivative matrix. The constant

w∈ (0, 1) determines the weighting between the intensity and the
chromaticity of the color space. A smaller w will penalize the chro-
maticity. This formulation, however, does not take into account that the
subspace defined by (o2, o3) is not decorrelated but actually consists of
the components hue and saturation. The framework does not respect
the non-uniformity of the opponent space. As a consequence, direct
regularizing on the chromaticity via an Euclidean distance metric vio-
lates the non-Euclidean structure of this opponent space. Furthermore,
it is easy to construct scenarios where the image saturation changes
independently of the hue, thus further motivating why they should be
decomposed into hue and saturation (Munsell, 1905).

PDE-based models. There are many PDE-based models for
color image filtering. We confine ourselves to referring to
Åström et al. (2012); Tschumperlé and Deriche (2003); Weickert (1999)
and to discussing the work of Chambolle (1994) who proposed a partial
differential equation (PDE)-based anisotropic diffusion model. This
model aims to solve the problem of color constancy (referring to the
work by Hurlbert and Poggio (1998)). Although Chambolle (1994) did
not present an energy-based total variation approach, his treatment of
the color channels and their smoothing along the image gradient di-
rection is relevant to our subsequent analysis. Chambolle (1994) pro-
poses a PDE with directional diffusivity ξ defined as

⊥ − ∇ + − ∇ + − ∇ =ξ u u u u u u u u u(( ) ( ) ( ) ) 0,2 3 1 3 1 2 1 2 3 (7)

reducing smoothing perpendicular to the gradients. The coupling be-
tween color channels is explicit: the difference of the intensity level of
two color components affects the directional smoothing of the third
channel. In practice, ξ is used in the heat equation to inhibit smoothing
close to color edges. However, as noted by Sapiro and Ringach (1996),
if two channels are equiluminant and if the third channel has an edge,
this edge will remain unaffected by the filter.

Although these ideas were presented more than two decades ago,
they did not attract much attention in the image processing community.
We will see that our perceptual model is related to (7) in that our ap-
proach penalizes the pair-wise differences between the image deriva-
tives, not the pair-wise intensity differences. In Section 4 we derive a
color descriptor which couples the color channels in a natural way
derived from the geometry of the double-opponent color transform. We
will show that a color channel coupling similar to that of
Chambolle (1994), in combination with related ideas to the geometric
framework of Sapiro and Ringach (1996), results in a natural descrip-
tion of the image colorfulness.

3. Color

Color perception is a well studied area and researchers continue to
propose color models. To use the “correct” color model is application
dependent and a non-trivial problem. In this work we focus on the
application of denoising. Next we briefly introduce established princi-
ples of color space design and recall some terminology.

3.1. Terminology

Some of the earliest works on color theory date back to the work by
Newton (1671). In modern sciences, Albert Munsell is often accredited
the notion color dimensions hue, value and saturation (Munsell, 1905).
Fig. 2 illustrates the dimensions where hue is an angular component,
value the intensity and saturation a radial component. For consistent
use of the color terminology see The Commission Internationale de
l’Eclairage (International Commission on Illumination, CIE) (CIE, 1987)
and (Sharma, 2002). For further in-depth information on color image
processing and the structure of color we refer to Sharma (2002). When
we write intensity, we mean lightness, implying the monochromatic
component black and its brightness, or simply, the image gray-scale
component. When we write saturation we refer to the magnitude of the
color vector orthogonal to the intensity, and hue refers to an angle
ranging from 0 to 360° as illustrated in Fig. 2. During the last decades
several color systems have been proposed to represent color, each
considering different constraint sets. The next section reviews some of
the more frequently referred color space representations.

3.2. Color space design

It is important to note when dealing with color theory that color is a
subjective experience. In fact, one often thinks of color as wavelength of
light. This is a misconception, however, since color is a result of neural
processing in the human brain (Shevell, 2003, Ch. 4). This alludes to the
difficulty of obtaining a quantitative and accurate description of color.
Next, we list three major points that require consideration when de-
termining suitable color space representations.

• Color reproduction. Color reproduction is the problem of re-
producing color independent of display system. The Munsell system
(Munsell, 1905), was the first standardization for color metrics
widely accepted and later adopted by CIE in 1931. The re-
commendations set forth by CIE still continue to influence today’s
color research (Sharma, 2002). Due to the subjective nature of color
perception many color models have been proposed, however,

Fig. 2. An isoluminant disc of the doule-opponent color space. Hue is an angular com-
ponent describing the primary colors red, green, blue, and the opponent colors yellow,
magenta and cyan and the corresponding colors transitions. Saturation describes the
strength of the corresponding hue, and value gives the intensity with which the color is
perceived. In the case of scalar valued (gray-scale images) the saturation is null and thus
the hue plays no role. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

F. Åström, C. Schnörr



appropriate color space representation seems so far to be application
dependent and no consensus has been reached. Due to the emerging
technology of Internet and the large variety of imaging display
systems and hardware limitations, a standardized RGB color space
called sRGB was proposed for consistent image rendering over a
wide range of devices (sRGB, 2003). Even up to present time, sRGB
is a widely used color space on the world wide web. Also CIELAB is
used for color reproduction due to its perceptual uniform structure
and is mentioned next.

• Perceptual uniformity. The CIELAB color space was developed for
perceptual uniformity. Color and perceptual uniformity, for image
processing applications, implies that a perturbation in, e.g., hue,
may influence a reference color to a different degree and may induce
color artifacts for certain colors, but not for others. Perceptually, this
is known to as the just-noticeable-difference and can be visualized
via MacAdam ellipses (MacAdam, 1942). In reality it has been
shown that the CIELAB is almost perceptually uniform, see
Sharma (2002) and references therein. This motivates the use of
non-Euclidean metrics, even in supposedly perceptually uniform
cases, to determine the distance between colors. Due to the strong
emphasis on perceptual uniformity the CIELAB color space is less
suitable for rigorous mathematical treatment due to numerous dis-
continuities it its definition.

• Hardware limitations. Many color spaces were introduced as a
consequence of technical and hardware limitations. Such a color
space was the HSV (Hue, Saturation, Value) color space developed
in the 1970 for applications related to color display systems
(Joblove and Greenberg, 1978). The YCbCr/YPbPr color spaces
were proposed for analog and digital television transmission, re-
spectively. Furthermore, the YCbCr/YPbPr signal representation
include non-linear mappings and chroma bandlimiting function to
enable efficient transmission of the image signal (Poynton, 2003).
One can also argue that the previously mentioned sRGB is part of
this category. Due to the strong adaptation to efficient engineering
requirements, color spaces in this category have not been subject to
extensive research in the context of color image processing.

Next we present the double-opponent color space.

3.3. Double-opponent color representation

Recall that the most commonly used color space is the RGB color
space. It consists of three components, r, g and b which are the Red,
Green and Blue components. These components are uniformly spaced in
[0, 255] (or [0, 1]) depending on the chosen quantization. The r, g, b
components are highly correlated, and thus image processing algo-
rithms without explicit color adaptation introduce artificial colors and
color smearing. To address this problem, a decorrelation transform is
usually applied, converting the color space into the three components of
intensity, saturation and hue1.

The mapping from the decorrelated double-opponent space in the
visual cortex to a physical stimuli is denoted via a function

! !→−ψ :1 3 3 defined by (10) below. We denote by, !→u: Ω ,3 the
physical stimuli containing red, green and blue spectra. Furthermore,
denote by the linear mapping

! !→ = ↦ = =⊤ ⊤O u r g b Ou o o o o: , ( , , ) ( , , ) ,3 3 1 2 3 (8)

the transformation from the RGB color space to the double-opponent
space where the matrix O is defined as (see Ebner (2007);
Gao et al. (2013); Land (1983, 1986); Lenz and
Latorre Carmona (2010)),

= ⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛⎝⎜ −− ⎞⎠⎟O
1/ 3 0 0

0 1/ 6 0
0 0 1/ 2

1 1 1
1 1 2
1 1 0

.
(9)

We note that this linear mapping has full rank. The matrix O actually
describes a rotation and scaling of the RGB coordinate system. The
opponent component o1 is nothing else than the gray-scale value, o2 is
the subtraction of yellow (mixing red and green equals yellow) from
blue and the last component o3 is the subtraction of green from red, i.e.,
o2 and o3 consists of the opponent colors in the RGB color space and will
henceforth be denotes as the chromaticity of a color.

The non-linear mapping to the hue (h), saturation (s) and intensity
(L) representation of the decorrelated double-opponent space is given
by

! !→ ↦ = ⊤ψ o c L h s: , ( , , )3 3 (10)

where

⎜ ⎟⎜ ⎟= = ⎛⎝ ⎞⎠ = ⎛⎝ ⎞⎠L o h o
o

s o
o, arctan , ,1

2

3

2
3 (11)

Let ! !→φ: 3 3 denote the composition of the linear opponent trans-
form (9) and the mapping (o1, o2, o3)⊤↦(L, h, s)⊤ just discussed above,
then we define→ =φ u φ u ψ Ou: ( ): ( ). (12)

In the next section we compute the metric tensor associated with the
mapping φ and investigates its encoded information.

4. Geometry of the double-opponent space

In this section we derive a color representation that allows for an
intuitive interpretation of the double-opponent color space as compo-
nents of the RGB-space. Subsequently we give an exposition on the
information that this representation encodes.

4.1. Double-opponent metric tensor

Strictly speaking, in this work, we regard the RGB-space as a linear
Riemannian manifold M equipped with the metric (13), which is an
inner product on the tangent space TuM that smoothly varies with∈u M . Since every tangent space TuM can be identified with ,M
however, it makes sense to regard the Riemannian metric (13) as inner
product defined on the space itself. We refer, e.g., to Jost (2005) for
background and further details.

Let = =⊤ ⊤u u u u r g b( , , ) ( , , )1 2 3 . The Euclidean inner product ⟨ · , · ⟩
on the Lhs-space induces via φ the pullback metric on the RGB-space
given by = =u u Dφ u u Dφ u u u G u u, : ( ) , ( ) , ( ) ,u1 2 1 2 1 2 (13a)

= =⊤ =G u Dφ u Dφ u g u( ) : ( ( )) ( ) ( ( ))ij i j, 1,2,3 (13b)

where the Jacobian Dφ and the corresponding metric tensor G are
computed as

"⎜ ⎟= ⎛⎝ ⎞⎠
⊤

Dφ u
f

α
α f

β( ) 1
3

, 3 , 1 ,
(14a)

⎜ ⎟= ⎛⎝ + + ⎞⎠⊤ ⊤G u I
f

αα
f

ββ( ) 1
3

9 1 ,4 2 (14b)

with= = = − − −⊤ ⊤α α u α α α b g r b g r( ): ( , , ) ( , , ) ,1 2 3 (15a)

= = = + − + − + −⊤ ⊤β β u β β β b g r b r g r g b( ): ( , , ) ( 2 , 2 , 2 ) ,1 2 3

(15b)
1 The transformation to these components is not equivalent with the HSV color space.

Although, the interpretation of the components are similar.
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= = = − − + − +f f u α b bg br g gr r( ): 2( ).2 2 2 2 2 2 (15c)

To capture the image color variations we decompose the metric
tensor G into its eigenvalue decomposition and obtain the eigenvalues

⎜ ⎟= + ⎛⎝ ⎞⎠I Diag
f

Λ 1
3

0, 3 , 12 (16)

which have the associated non-normalized eigenvectors " α β, , given in
(15). Furthermore, one easily verifies the relations

"⊥ ⊥ × = = =α β u α α β f u β f β α, , , , , 3 .2 2 2 2 (17)

where × denotes the cross product and ⊥ indicates that the compo-
nents are orthogonal.

In the next section we study the information encoded in the ei-
genvalues (16), in particular f2 will be subject for this analysis

= = = ⎛⎝⎜
− −− −− − ⎞⎠⎟⪰⊤γ f u Pu P,

2 1 1
1 2 1
1 1 2

0.2

(18)

where P is a symmetric and positive semi-definite matrix.
Sapiro and Ringach (1996) also exploited the first fundamental form

but in Euclidean space and concluded that the tensor’s eigenvalues
capture the color edge information. Here we instead use the principal
directional change obtained from the eigendecomposition of the
double-opponent metric tensor. And our focus is on γ of (18). Similarly
to Sapiro and Ringach (1996), the interpretation is that a large eigen-
value of the tensor will indicate the presence of image color. Next, we
justify and elaborate this statement in the next section while in-
vestigating the information encoded in γ.

4.2. Encoded information

This section investigates the information encoded in the metric
tensor, decomposed into an eigensystem as in the previous section. The
derived γ describes the colorfulness of an image, and in the next section
we formulate an energy model that explicitly preserve discontinuities in
γ. We identify the following relation= = − + − + −

= = ⎛⎝⎜
− −− ⎞⎠⎟

⊤
⊤

γ u u Pu b r r g g b

u C C

( ) ( ) ( ) ( )

,
1 1 0
0 1 1
1 0 1

.

2 2 2

1

2

1
(19)

Note that = ⊤P C C1 1 (cmp. (18)) and that =γ s3 2. The coefficients of
C1u have previously appeared in Chambolle (1994) by Chambolle and
in Felsberg et al. (2015), however in the context of visual feature de-
scriptors.

Proposition 4.1. The function, γ in (19), has the
properties "+ =γ u c γ u(P1) ( ) ( ) and =γ cu c γ u(P2) ( ) ( ),2 where c is a
constant.

Proof. The result follows immediately from (19). □

The above result yields the following interpretation of the γ-func-
tion: a) (P1) shows that γ is invariant to intensity shifts. b) (P2) shows
that γ has a quadratic dependency on intensity changes. c) It follows
from a) that γ depends on color changes. d) It follows from b) that γ
depends on color shifts. Under constant intensity, γ captures change of
color as illustrated by Fig. 3 (a), (b). In this figure we show equilu-
minant discs at constant intensity along with the corresponding re-
sponse of γ. It is clearly visible that γ describes the intrinsic color
structure of the color space as there is a stronger response for highly
saturated colors. In the lower half of the intensity range we pre-
dominantly detect the primary colors red, green and blue. As the in-
tensity increases, γ shows primary responses from yellow, cyan and
magenta. The intensity axis is located in the center of these discs and, as
expected, we do not obtain a value of colorfulness. We give some

examples of γ-responses from natural images in Fig. 4.
The geometric interpretation of γ is illustrated as an example via the

r–g-component. The other two color difference terms follow with si-
milar reasoning. We know that the color yellow, y, is composed as a
sum of red and green, i.e., = +y r g, and written in vector form we
have − = − ⊤r g (1, 1, 0) and = + = ⊤y r g (1, 1, 0) . We see that yellow
is perpendicular to the difference −r g, i.e., ⊥ − =y r g( ) 0. This is il-
lustrated in Fig. 3 (c). Analogous argument hold for the other terms of
γ, i.e., −b r is orthogonal to magenta, and −g b orthogonal to cyan. In
this way γ covers the RGB space. Moreover, as γ describes the color
structure, preserving its edge information prevents color distortion in
the filtering process. Based on this analysis, we are now prepared to
introduce the general variational formulation.

5. General variational formulation

Let != ∈⊤ ⊤ ⊤ ⊤u u u u[ , , ] (Ω)R G B
N3 represent a color image on the do-

main Ω with stacked color channels. N is the number of pixels in one
image channel. Also, let !∈g N3 be the corresponding noisy data.
We define the discrete image gradient for one channel as

!= ⎡⎣⎢ ⎤⎦⎥ ∈ ×D D
D ,x

y
N N1 2 !∈ ×D D,x y N N and subscript denotes the forward

finite difference operator in x and y directions, respectively.
Furthermore, we let #∈ +i s.t. !∈ ×Ii i i denotes the identity matrix. In
this notation, the three channel derivative matrix for a color image is

!= ⊗ ∈ ×D D I N N(1) 1 3 6 3 where ⊗ is the Kronecker product and

! !→D u: N N(1) 3 6 (20)

is the derivative matrix for the three channels.

5.1. Energy

Channel-by-channel filtering of the RGB space is prone to introduce
color artifacts (Blomgren and Chan, 1998; Bresson and Chan, 2008). On
the other hand, purely decorrelating the color channels without con-
sidering the geometry is also sub-optimal, see results in, e.g., Ono and
Yamada (2014); Sapiro and Ringach (1996). We propose a two-com-
ponent regularizer: one component performs channel-by-channel fil-
tering penalizing all intra-channel content and one component which
explicitly targets the color information. The color specific prior defines
a natural inter-channel coupling from the geometry of the double-op-
ponent space, realized through

!∈ = ⊗×C C C I,N N N3 3 1 (21)

where C1 corresponds to (19).
For #∈M let m∈ {1, .., M}, then we define !∈ +α β, M and

!∈p q, (0, 2),M such that α, β, p, q are vectors with components in-
dexed by subscript, e.g., αm. We let s∈ (0, 2) and by x p

p we mean

∑= =x x .p
p

i

N

i p

1

3

(22)

The energy we introduce and study in this work is defined as the non-
convex optimization problem

⎧
⎨⎪⎩⎪

= −
+ ∑ +

⎫
⎬⎪⎭⎪= ( )

E u Ku g

D u D Cu
min

( )
,

u

s s
s

m
M α

p
m p

p β
q

m
q
q

1

1
( ) ( )m

m m
m m

m m
m

(23)

where D(m) is the m-order derivative matrix. When =m 1 we have a
first-order energy and if =m 2, we have a second-order energy and so
forth. To be explicit, we give the derivative matrix for the first and
second order cases

⎜ ⎟= ⎛⎝ ⎞⎠D D
D

x

y
(1)

(24a)
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and

= ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟D

D
D
D
D

xx

xy

yx

yy

(2)

(24b)

where subscript denotes the derivative in x and y-directions, respec-
tively. The operator !∈ ×K N N3 3 in (23) is the identity matrix in the case
of denoising or a blurring matrix in the case of deconvolution. Since the
product Cu is now the pair-wise mixture of color channels, it means that
DCu is the pair-wise mixture of the channel gradients, i.e., DCu pena-
lizes color opponent gradients in y, c and m, and Du penalizes the pri-
mary colors r, g and b. With m>1 we have a natural definition of
higher-order total variation. Although C is a constant matrix, it is non-
trivial to minimize E due to its inherent non-convexity when either of p,
q, s∈ (0, 1). For this reason, we adopt a half-quadratic formulation
presented next.

5.2. Half-quadratic formulation

Alternatives to the HQA (Geman and Yang, 1995) include, e.g.,
fitting of auxiliary variables (Cohen, 1996) which, however for prac-
tical applications, relies on the efficient evaluation of a conjugate
function. One may also consider lagged fix-point formulations
(Chan and Mulet, 1999), in this case one would impose regularity to
obtain a differentiable energy and prove that there exists a convergent
fixed-point algorithm. Instead, the HQA algorithm is particularly suited
to optimize E since we obtain a computationally very efficient scheme.
Furthermore, identifying that the HQA can be written as an instance of
a majorize-minimize scheme we also show that the HQA convergences
to a stationary point corresponding to a minimum. We make use of the
following result to optimize our energy

Lemma 5.1. (HQA p-norm (Chan and Liang, 2014)) Let p∈ (0, 2)
and !∈ ∖t ( {0}), then

= ⎧⎨⎩ + ⎫⎬⎭>t vt
ξv

min 1p
v γ0

2
(25)

where = −γ ,p
p2 = − − −ξ ,

p p
2

(2 )

p
p p

2/(2 )
/(2 ) and the minimum is obtained at

= −v p t*
2

.p 2
(26)

The energy E in (23) is not differentiable and not convex. To apply
the HQA, we make use of the mollified energy Eε and set= ∑ + = ∑=x x x( ɛ)η

η
i
M

i η
i
M

i
η

,ɛ 1 ɛ and 0< η<2. Now, the energy
Eε(u) is differentiable but not convex, therefore the direct optimization
problem=+u E umin ( )k

u
1 ɛ (27)

may result in a locally optimal solution. The HQA optimization problem
takes the form

∑
∑

⎜ ⎟⎧⎨⎩ = ⎛⎝ − + ⎞⎠
+ ⎡

⎣⎢⎢
⎛⎝⎜ + ⎞⎠⎟

+ ⎛⎝⎜ + ⎞⎠⎟
⎤
⎦⎥⎥

⎫⎬⎭

= >

= >

>

E u
s

z K u g
ξ z

α
p

v D u
ξ v

β
q

w D Cu
ξ w

min ( ) 1 min 1

min 1

min 1

u i

N

z
i i i

s i
α

m

M
m

m v
i m i

m

p i m
α

m

m w
i m i

m

q i m
α

ɛ
1

3

0 ɛ
2

1 0
,

( )
ɛ
2

,

0
,

( )
ɛ
2

,

s

m
m

pm

m
m

qm
(28a)

= > … > > … > > u v w z: min ( , , , )
u v v w w z, 0, , 0, 0, , 0, 0m m1 1

L
(28b)

Fig. 3. (a) Color discs with corresponding response of γ, (19),
in (b). The largest magnitude (red color) is obtained at the
primary colors (red, green and blue) and the opponent colors
(yellow, cyan and magenta). As expected, the response on the
intensity axis (center of discs) is 0 (black). (c) Interpretation
of the vector −r g as an orthogonal component to yellow.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Fig. 4. Detected color structure in real
images extracted by γ. In these examples,
primary colors such as red, green and blue
and the opponent color yellow are well
characterized. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)
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now convex separately in u and in z, v, w, respectively. We use subscript
“i” to denote the i’th row (or component) of a matrix (or vector). By
using Lemma 5.1 we formulate an alternating minimization strategy
where the update equations for the auxiliary variables are given by

= −+ −z s Ku g
2

k k s1
ɛ

2
(29a)

= ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ = …+ + −

−
⊤

v w

p D u
q D Qu

m M( , ) 2

2

, 1, ,m
k

m
k

m m k p

m m k q
1 1

( )
ɛ

2

( )
ɛ

2

m

m

(29b)

and the norm is taken component-wise. The update equation for the
convex subproblem +uk 1 is obtained by minimizing∑

∑ ⎜ ⎟

= −
+ ⎛⎝ + ⎞⎠

+ = +

= + +
u

s
z K u g

α
p

v D u β
q

w D Cu

arg min 1k
u i

N

i
k

i

m

M
m

m
i m
k

i
m m

m
i m
k

i
m

1

1

3
1

ɛ
2

1
,

1 ( )
ɛ
2

,
1 ( )

ɛ
2

(30)

Convergence analysis. The main idea of the following convergence
result is to express the HQA as an instance of the majorize-minimize
(MMA) algorithm (Chan and Mulet, 1999). Once we establish the link
between the HQA and the MMA we can show convergence of our al-
gorithm.

Assume there exists a function Φ such that=E u umin ( ) minΦ( )
u u

ɛ (31)

and to show that the HQA formulation is of the MMA-type we consider
the optimization problem=+u u uarg min ( , ).k

u
k1 F (32)

If there exists a function Φ such that F satisfies

!≥ ∀ ∈u u u u( , ) Φ( ), fork nF (33a)

= =u u u u u( , ) Φ( ), fork kF (33b)

∇ = ∇ =u u u u u( , ) Φ( ), foru k kF (33c)

With L from (28b) and taking into account that + + +v w z, ,k k k1 1 1

depend on uk, we define:= + + +u u u v w z( , ): ( , , , )k k k k1 1 1F L (34)

and have the following result

Proposition 5.2 (MMA). The optimization problem (30), stemming from
the HQA, is an instance of MMA withF defined as in (34).

Proof. We adopt a the solution strategy introduced in Chan and
Liang (2014). The first step is to start by substitute (29) into (34) and
get expression (35).

∑
∑ ⎜ ⎟

⎜ ⎟

= ⎛⎝ − − + − − ⎞⎠
+ ⎡⎣⎢ ⎛⎝ + − ⎞⎠
+ ⎛⎝ + − ⎞⎠⎤⎦⎥

=
−

=
−

−

u u
s

s K u g K u g s K u g

α
p

p D u D u p D u

β
q

q D Cu D Cu q D Cu

( , ) 1
2

(2 )
2

2
(2 )

2

2
(2 )

2

k

i

N

i k
i

s

i i i k
i

s

m

M
m

m

m
i

m k
p

i
m m

i
m k p

m

m

m
i

m k
q

i
m m

i
m k q

1

3

ɛ

2

ɛ

2

ɛ

1

( )

ɛ

2
( )

ɛ
2 ( )

ɛ

( )

ɛ

2
( )

ɛ
2 ( )

ɛ

m

m
m

F

(35)

Then we set =u u u( , )k kF which results in∑ ∑= − + +
= = =u u K u g α D u β D Cu

u

( , ) 1
2

( )

Φ( )

k k

i

N

i k
i

s

m

M

m i
m k p

m i
m k q

k
1

3

ɛ
1

( )
ɛ

( )
ɛ

m mF

(36)

where Φwas defined in (31) and establishes condition (33b). In order to
show condition (33a), i.e., thatF forms an upper envelope of Φ(u) we
identify that (35) can be expressed with Young’s inequality. Then under
the condition + =a b1/ 1/ 1 we have that

+ ≥g
a

h
b

gh.
a b

(37)

We set = −ξ u K u g( ) i i ɛ

= −
g ξ u ξ u( ) ( )k ss s( 2)

2 (38a)

= −
h ξ u( )k s s(2 )

2 (38b)

and let =a ,s
2 = −b ,s

2
2 which verifies the inequality

− − + − − ≥ −
= …

−s K u g K u g s K u g K u g

i N

2
(2 )

2
,

1, , 3

i k
i

s

i i i k
i

s

i i
s

ɛ

2

ɛ

2

ɛ
ɛ

(39)

With an analogous reasoning of the remainder of (35) components we
have that ≥u u u( , ) Φ( ),kF i.e., condition (33a) is fulfilled. Finally, one
easily verifies that ∇ = ∇u u u( , ) Φ( )u kF at =u u ,k thus (33c) holds.
This shows that u u( , )kF is a majorizing function of (28). □

Theorem 5.3 (Convergence). Given a sequence {uk} generated by HQA,
then (i) Φ(uk), (36), is monotonically decreasing and convergent and
(ii) − =+u ulim 0k k 1

2
2 as k→∞.

Proof. The first and second order derivatives of F are∑ ∑∇ = − +
+= + ⊤ = + ⊤

+ ⊤
u u

s
z K K u g α

p
v D D u

β
q

w D Q D Qu

( , ) 1 ( ) 2 ( )

2 ( )

u k

i

N

i
k

i i i
m

M
m

m
i m
k m

i i
m

m

m
i m
k

i
m

i
m

1

3
1

1
,

1 ( ) ( )

,
1 ( ) ( )

F

(40)

and ∑ ∑∇ = +
+ = + ⊤ = + ⊤

+ ⊤
u u

s
z K K α

p
v D D

β
q

w D Q D Q

( , ) 1 2 ( )

2 ( )

u
k

i

N

i
k

i i
m

M
m

m
i m
k m m

m

m
i m
k m m

2

1

3
1

1
,

1 ( ) ( )

,
1 ( ) ( )

F

(41)

where the latter matrix is positive semidefinite independently of u.
Thus, F is convex in u. Moreover, by (32) and (33),≤ ≤ =+ +u u u u u uΦ( ) ( , ) ( , ) Φ( ).k k k k k k1 1F F (42)

From this it is immediate that− =→∞ +u ulimΦ( ) Φ( ) 0
k

k k 1
(43)

as Φ is bounded from below by 0. To show the convergence of uk, we
consider the Taylor expansion of u u( , )kF at +uk 1

= + − ∇ −+ + +u u u u u u u u u u( , ) ( , ) 1
2

( ) ( , )( )k k k k k k1 1 2 1F F F
(44)

where the first-order term on the right-hand side vanishes due to the
optimality condition of (32). Note that higher-order differentials∇ >n, 2u

n( )F vanish. Minimizing the right-hand side with respect to u
and then setting =u u ,k we obtain

≥ + −+ +u u u u ξ u u( , ) ( , )
2

k k k k k k1 1
2
2

F F (45)

where ξ is positive and is the minimum eigenvalue of ∇u
2F .

Consequently,

− ≥ − ≥+ +u u u u ξ u u( , ) ( , )
2

0,k k k k k k1 1
2
2

F F (46)
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with the left-hand side converging to 0 due to (42) and (43). □

Based on the identification with a MMA, we have shown con-
vergence and existence of a solution for the corresponding HQA.
Although, this result is significant, we required a mollifier, a constant
offset ε in the denominator. This parameter regularizes the energy and
thus introduces smoothness, albeight being small, it yields a smoother
solution than desired. In the numerical evaluation we implement the
above energy with an iterative Split-Bregman scheme and we obtain
stable updates for ε as small as −10 ,20 which we also used in the nu-
merical evaluation. Next, we study the natural selection of first order
derivative ( =m 1), quadratic data term ( =s 2) and corresponding
vectorial total variation regularization ( =p q, 1) with the same channel
coupling matrix as in the HQA. In this case we do not require a mol-
lification and we show that the corresponding minimizer resides in the
space of vectorial bounded variation and is unique.

5.3. First-Order VTV

As a special instance of the general variational formulation (23) we
study the existence of a solution of a non-mollified vectorial total var-
iation term. Consequently we are not required to use the HQA. In this
section we will also use a continuous formulation which is more effi-
cient for this purpose, as such, we use the coupling matrix !∈ ×C1 3 3

defined in (19).
In the following, let be the vectorial gradient of a color image in the

generalized sense as discussed in connection with eq. (1). Then we define
!= ∈ ×p p p p C( , , ) (Ω; )c1 2 3

1 2 3 with = ⊤p p p pDiv( ) (div( ), div( ), div( ))1 2 3 .

Definition 5.1 (Double-opponent VTV). The double opponent
regularizer is defined as∫= ∇J u C u( ) :OPP Ω 1 (47a)

∫= ⎧⎨⎩ ⎫⎬⎭≤∞ C u p dx: sup , Div( )
p 1 Ω 1

(47b)

where =∞p p p pmax{ , , }1 2 3 .

Next, we show that the regularizer JOPP is convex, invariant to ro-
tation and intensity shift of the color space.

Theorem 5.4 (Invariance and convexity). JOPP is rotationally and intensity
invariant, 1-homogeneous and convex.

Proof. Rotational invariance follows from the isotropy of the feasible
set of the dual variable p, that is= ≤ ⇒ ≤∞ ∞ ∞p p p p Rp Rp Rp( , , ) 1 ( , , ) 1,1 2 3 1 2 3 for any
orthogonal matrix R. As a consequence of property (P1) and (P2) of
Prop. 4.1, JOPP is invariant to intensity shifts, and the relation=J cu cJ u( ) ( )OPP OPP is immediate, for any positive constant c>0.
Finally, convexity follows from the definition of JOPP as pointwise
supremum of affine functions. □

The non-mollified first-order energy of (23), with a convex data-
term, is defined as

∑⎧⎨⎩ = − + + ⎫⎬⎭=E u µ Ku g α u βJ umin ( )
2

TV( ) ( )
u L

i
i OPP(Ω)

2

1

3

2
(48)

where μ, α, β>0.Existence of solution.Next we show that the varia-
tional approach (48) is well posed.

Lemma 5.5 (Bounded variation). Let !∈u BV (Ω; )3

then !∈C u BV (Ω; )1 3 .

Proof. Transposing the matrix C1 in the integrand of (47b) shows that
JOPP(u) is the support function of u with respect to the image of the unit
ball {p: ‖p‖∞≤ 1} under the linear mapping ∘⊤C Div1 . The claim then
follows from the assumption !∈u BV (Ω; )3 . □

As a consequence, the objective function E(u) (48) is well defined.
We next show that there is a unique color image u minimizing E(u).

Theorem 5.6 (Uniqueness and existence of solution). Let !∈ ∞g L (Ω, )3

and !∈u BV (Ω, )3 . Then there exists a unique minimizer u* of E(u) given
by (48).

Proof. We adapt and sketch a standard proof pattern from
Attouch et al. (2014). Due to !∈ ∞g L (Ω, ),M we may assume that all
admissible u are uniformly bounded in the sense that≤ = ∀ ∈∞u x g i x( ) , 1, 2, 3, Ωi i L (Ω) . Let #∈u( )n n be a minimizing
sequence with respect to E(u). Then, after passing to a subsequence

#∈u( ) ,n kk there exists a !∈u BV* (Ω; )3 with →u u*nk strongly in
!L (Ω; ),loc

1 3 ∇ → ∇u u( ) *i n ik in an appropriate weak sense, and→J u J u( ) ( *)opp n oppk in view of Lemma 5.5. It follows from Fatou’s
lemma and the lower-semicontinuity of E(u) that u* minimizes E(u),
whereas uniqueness of u* is a consequence of the strict convexity of E
(u) due to the data term of (48). □

Next, we derive an efficient numerical scheme which optimizes our
proposed energies.

6. Implementation and optimization

We briefly comment on convex programming techniques that are
relevant to our approach. Then we detail our implementation of a
specific technique embedded into the half-quadratic regularization
approach.

6.1. TV and convex programming

There exists numerous methods to minimize the total variation
semi-norm. A very popular approach is the primal-dual iteration from
Chambolle and Pock (2011); Chan et al. (1999). Related algorithms
include the Split Bregman method (Goldstein and Osher, 2009), aug-
mented Lagrangian methods (Wu and Tai, 2010) and the alternating
direction method of multipliers (ADMM) (Wahlberg et al., 2012). The
Split-Bregman technique has been shown to be equivalent to ADMM in
the case of a linear constraint set (Esser, 2009). Further connections
between these methods are discussed in (Wu and Tai, 2010).

An evaluation of these algorithms in connection with our approach
is beyond the scope of this paper. We adopted the Split-Bregman al-
gorithm (Goldstein and Osher, 2009) as an established technique and
incorporated it as subroutine of our half-quadratic regularization ap-
proach, without claiming that this is the best possible choice.

6.2. Optimization via Split-Bregman and HQA

With the notation introduced in Section 5 above, and with the dis-
cretized channel matrix C∈ R3N× 3N (see (21)) we write the discretized
form of (23) as the optimization problem

∑− + +=
µ Ku g α d β emin
2

( )
u d e m

M

m p
p

m q
q

, , 2
2

1 (49a)

= =d D u e D Cus.t. , .m m m m( ) ( ) (49b)

Let =v v Hv: ,H
2 be a weighted Euclidean norm and= …⊤ ⊤ ⊤d d d( , , ) ,m1 = …⊤ ⊤ ⊤e e e( , , )m1 . Let

= …⊤ ⊤ ⊤D D D(vec( ) , , vec( ) )m(1) ( ) (50)

(cf. (24)) and set

⎜ ⎟ ⎜ ⎟=⎛⎝ ⎞⎠ − ⎛⎝ ⎞⎠ −B u b d e d
e

D
DC u b( , , , ): .

(51)

Applying the Split Bregman approach yields the iteration
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2

1
2
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q
q

H

1 1 1
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2

2
(52a)

⎜ ⎟ ⎜ ⎟= + ⎛⎝ ⎞⎠ − ⎛⎝ ⎞⎠+ + ++b b D
DC u d

e
.k k k k

k
1 1 1

1 (52b)

In the cases of =p 1 and/or =q 1 we apply the shrinkage operator
to minimize d, e, respectively. When p, q are in the non-convex range (0,
1), we use the HQA in Lemma 5.1 and obtain the point-wise quadratic
update step

= + ++ + + + +d e v d w e B u b d e( , ) min 1
2

( , , , ) ,k k
d e

k k k k
H

1 1
,

1 2 1 2 1 2
(53a)

= ⎛⎝ ⎞⎠+ + − −v w p d q e( , )
2

,
2

,k k k
p

k q1 1

ɛ

2

ɛ
2

(53b)

which is strictly convex in both d and e. Since (53) is defined point-wise,
we get the optimality condition,

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ + ⎛⎝ ⎞⎠⎛⎝⎜⎛⎝ ⎞⎠ − ⎛⎝ ⎞⎠ − ⎞⎠⎟ =++v d
w e

α
β

d
e

D
DC u b2 0

0 0
k

k
k1

1
(54)

and the closed-form update-expression

⎜ ⎟⎜ ⎟⎛⎝ ⎞⎠ = ⎛⎝ + ++ + ⎞⎠++
+

+d
e

Du b v α
DCu b w β
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1

1
1 1

2 1
(55)

The optimization problem w.r.t. u is solved iteratively by

= − ++u µ Ku g B u b d emin
2

1
2

( , , , ) .k
u

k k k
H

1
2
2 2

(56)

In (56), we set = ⊤ ⊤ ⊤b b b[ , ]1 2 for notational convenience and compute− − − − − − −=⊤ + ⊤ + ⊤ +µK Ku g αD d Du b β DC e DCu b( ) ( ) ( ) ( )
0

k k k k k k k1 1
1

1
2

(57)

which gives the update step+ + = + −+ −⊤ ⊤ ⊤ + ⊤ ⊤
⊤µK K αD D β DC DC u µK g αD d b

β DC e b
( ( ) ( )) ( )

( ) ( ).

k k k

k k

1
1

2 (58)

Our experiments confirm the observation of Goldstein and Osher (2009)
that only computing an approximate solution accelerates the overall
iterative scheme without compromising convergence. Consequently, we
merely apply few conjugate gradient iterative steps to compute +uk 1.
This is computationally cheap since all matrices involved are sparse.

Finally, we iterate the steps (58), (53b), (55) and (52b) until we
satisfy the stopping criterion− <+ +u u u Nσ/ 0.9 3 /255 ,k k k1

2
2 1

2
2 2 2 (59)

where σ is the noise level standard deviation. This numerical scheme
gives stable updates even when ε is very small. In the experimental
evaluation we fixed = −ɛ 10 20.

7. Applications

We apply our approach to color image denoising, inpainting and
deblurring. All images were normalized to the range [0, 1] given in an
8-bit representation. In addition to a qualitative evaluation we include
the measures peak signal-to-noise ratio (PSNR), the structural similarity
index (SSIM) (Wang et al., 2004) and the CIEDE 2000 which is a
measure of color consistency (Sharma et al., 2005). We consider two
denoising scenarios. One synthetic case where the image data consist of
piecewise affine regions. The other scenario concerns the denoising of
natural images.

7.1. Synthetic image, convergence rate

The synthetic image is isoluminant and therefore presents a parti-
cular challenge due to the absence of gray-scale edges. Fig. 5 shows the
empirical convergence rate of our approach for first ( =m 1) and second
( =m 2) order VTV for the noisy image corrupted by normally dis-
tributed noise on the r, g and b components with standard deviation 10
in Fig. 6. For each parameter setting the second order VTV shows im-
proved PSNR values which correlates with the visual impression of the
final result images in Fig. 6 (c) and (d), respectively.

7.2. Denoising of natural images

The aim of this section is to illustrate differences between com-
monly benchmarked algorithms. With this in mind we evaluate the
performance of the proposed energy and optimize each method with

Fig. 5. Empirical convergence (a) of the image data in Fig. 6.
The numerical scheme is implemented as presented in
Section 6 and the trend of the corresponding PSNR curves are
shown in (b). The regularization parameters were set as=µ 80, = =α β 21 1 for first order VTV. In the second order
case we additionally set = =α β 12 2 .

Fig. 6. Synthetic isoluminant test image (a) which con-
sists of affine regions that compose slanting planes in the
color space, transitioning from blue to green. (b) shows
the noisy data. (c) and (d) depict the first and second
order VTV when =p 0.6. This image illustrates that there
is (i) no introduction of artificial colors and (ii) quality of
reconstruction is more smooth in the second order VTV
compared to the first order VTV due to the higher order
constraints on jump-transitions in the image data. Yet the
second order VTV shows good edge preservation. The

empirical convergence and PSNR values are shown in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Visual comparison for the evaluated
methods and corresponding error values.
The result of our OVTV produces the most
accurate result, only marginally beaten by
BM3D in terms of color accuracy. Yet, the
visual quality of OVTV is more clear and
does not suffer from desaturated colors as in
DVTV.

Fig. 8. Example result images from the evaluation dataset for standard deviation 60 of Gaussian noise. In this image the OPP1
1 performs shows better performance than the non-convex

counter-parts. (PSNR/SSIM/CIEDE).

Fig. 9. Example result images from the evaluation dataset for standard deviation 60 of noise. OPP p
2 performs well in images with pice-wise affine regions as indicated by the high SSIM

value, although with respect to color consistency OPP1
1 shows better result. (PSNR/SSIM/CIEDE).
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Fig. 10. Qualitative comparison between
OPP. From top row to bottom row the noise
levels the images are corrupted with noise of
standard deviation 20, 40, 60 and 80. For
higher noise-levels the second-order OPP p

2

shows improved SSIM, in particular for
noise level 80 shows less oversmoothing of
the background image structure. Although,
it contains more color shimmering reflected
in the higher CIEDE value. For lower noise
levels, the first-order methods seem prefer-
able. (PSNR/SSIM/CIEDE).

Table 1
Error measures and standard deviation for the first and second-order OPP for varying p-values. These values were obtained in the optimization of the 100 images in the natural image
denoising evaluation. Table 2 shows the best obtained results in this evaluation scenario.

OPPp
1 OPP p

2

PSNR/p 0.3 0.6 0.9 0.3 0.6 0.9

20 32.4 ± 2.3 32.9 ± 2.0 33.0 ± 1.7 29.6 ± 3.4 30.0 ± 3.2 31.1 ± 2.7
40 27.5 ± 2.5 28.1 ± 2.4 28.4 ± 1.9 28.0 ± 2.4 28.0 ± 2.2 28.2 ± 1.9
60 24.5 ± 2.3 25.3 ± 2.0 25.5 ± 2.1 25.6 ± 1.9 25.6 ± 1.8 25.4 ± 1.9
80 22.7 ± 2.2 23.3 ± 2.1 23.4 ± 1.8 23.3 ± 1.9 23.3 ± 1.8 23.2 ± 1.9
SSIM

20 0.90 ± 0.05 0.91 ± 0.05 0.91 ± 0.04 0.82 ± 0.09 0.84 ± 0.07 0.88 ± 0.05
40 0.79 ± 0.08 0.81 ± 0.08 0.83 ± 0.07 0.80 ± 0.08 0.81 ± 0.07 0.82 ± 0.06
60 0.69 ± 0.11 0.74 ± 0.09 0.75 ± 0.09 0.75 ± 0.08 0.75 ± 0.08 0.75 ± 0.08
80 0.63 ± 0.13 0.68 ± 0.11 0.69 ± 0.09 0.68 ± 0.10 0.69 ± 0.09 0.69 ± 0.09
CIEDE

20 2.99 ± 2.64 2.97 ± 2.63 3.04 ± 2.64 3.42 ± 2.66 3.34 ± 2.63 3.23 ± 2.62
40 4.51 ± 2.54 4.40 ± 2.53 4.46 ± 2.55 4.61 ± 2.51 4.69 ± 2.52 4.73 ± 2.55
60 5.84 ± 2.48 5.64 ± 2.42 5.68 ± 2.42 5.86 ± 2.41 5.93 ± 2.43 5.95 ± 2.44
80 6.90 ± 2.31 6.81 ± 2.28 6.91 ± 2.28 7.09 ± 2.30 7.13 ± 2.31 7.14 ± 2.32
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respect to its parameters and noise levels. The following methods and
parameter ranges are included in the evaluation and we refer to the
respective works for further details:

• Decorrelated VTV (Ono and Yamada, 2014) (DVTV): Search space
for optimal parameter configuration is τ∈ {0.95, 1, 1.05}, w∈ {0.3,
0.4, 0.5, 0.6, 0.7}.

• Primal-dual VTV (Bresson and Chan, 2008) (PDVTV): The regular-
ization parameter was optimized for 5 uniformly sampled values in
the range −10 3–0.2.

• Total generalized variation (Bredies et al., 2010) (TGV): Applied
component-wise and only included for comparison. The regular-
ization parameter was uniformly sampled with 5 values in the range−10 3 and 0.25.

• Color BM3D (Dabov et al., 2007) (BM3D): The standard deviation of
the additive Gaussian noise was given as input.

We evaluate our double-opponent (OPP) formulation, see (23) for
the case of a first (OPP p

1 ) and second order energy OPP p
2 . We restrict=q p and let p∈ {0.3, 0.6, 0.9}. The following parameter setup was

used:

• (OPP p
1 ): First-order scheme optimized with μ∈ {10, 20, 30, 40, 80,

100} and fixed = =α β 21 1 .

• (OPP p
2 ): Second-order scheme optimized with μ∈ {10, 20, 30, 40,

80, 100} and = =α β 21 1 and = =α β 12 2 .

• (OPP1
1): Optimized parameter space of μ are 5 uniformly sampled

values from 1/255 to 30/255, =α 1 and β was uniformly sampled in
from 5 values in the range 1/255 to 5/255.

The experimental evaluation use 100 color images from the MSRA
Salient Object Database (Liu et al., 2011). The image data were nor-
malized to the range [0, 1] from a 8-bit representation.

We are interested in consistent color image processing, that is we are
specifically tackling the color image filtering problem. Accordingly, in
addition to corrupting all image components by noise, we also consider
the case that the color of the image is corrupted by additive Gaussian
noise, not the intensity channel. Until now this denoising setup has not
been benchmarked and poses an interesting task, i.e., the recovery of
color information. Rather than corrupting all image data with additive

Table 2
Error measures for the evaluated methods for chromaticity noise. The best values are marked in bold. Although BM3D shows good color consistency, the proposed regularization strategy
outperforms all competing variational methods w.r.t. structural and color consistency.

=σ 20 OPP p
1 OPP p

2 OPP1
1 PDVTV (Bresson and

Chan, 2008)
DVTV (Ono and
Yamada, 2014)

TGV (Bredies et al.,
2010)

BM3D (Dabov et al.,
2007)

BM3DS (Dabov et al.,
2007)

PSNR 32.9 ± 1.88 30.6 ± 2.84 32.0 ± 2.10 29.8 ± 2.04 27.0 ± 0.99 27.3 ± 2.74 32.9 ± 2.00 32.6 ± 1.19
SSIM 0.91 ± 0.04 0.86 ± 0.06 0.89 ± 0.05 0.85 ± 0.05 0.79 ± 0.08 0.78 ± 0.08 0.90 ± 0.05 0.87 ± 0.05
CIEDE 3.42 ± 2.71 3.11 ± 2.68 2.86 ± 2.68 4.75 ± 2.91 4.57 ± 2.48 5.44 ± 4.15 2.78 ± 2.66 3.63 ± 2.64=σ 40

PSNR 28.2 ± 2.14 28.4 ± 2.24 28.4 ± 1.93 25.9 ± 2.16 22.8 ± 2.17 25.4 ± 2.58 28.0 ± 2.61 27.5 ± 1.75
SSIM 0.81 ± 0.07 0.82 ± 0.07 0.82 ± 0.07 0.73 ± 0.08 0.60 ± 0.14 0.71 ± 0.09 0.79 ± 0.09 0.74 ± 0.07
CIEDE 4.88 ± 2.71 4.82 ± 2.58 5.16 ± 2.83 6.78 ± 3.06 7.12 ± 2.50 6.68 ± 3.60 4.31 ± 2.57 5.61 ± 2.60=σ 60

PSNR 25.2 ± 2.23 25.7 ± 2.05 25.9 ± 1.84 23.5 ± 1.66 21.9 ± 2.21 23.6 ± 2.05 25.2 ± 2.58 25.1 ± 2.07
SSIM 0.73 ± 0.10 0.76 ± 0.08 0.76 ± 0.09 0.60 ± 0.05 0.57 ± 0.16 0.65 ± 0.10 0.71 ± 0.12 0.68 ± 0.09
CIEDE 6.45 ± 3.28 6.56 ± 2.82 6.06 ± 2.57 9.22 ± 2.76 7.73 ± 2.52 8.21 ± 3.17 5.32 ± 2.46 6.23 ± 2.46=σ 80

PSNR 23.2 ± 1.97 23.4 ± 1.98 23.5 ± 1.82 20.9 ± 1.01 21.0 ± 2.04 21.9 ± 2.00 23.2 ± 2.37 23.2 ± 2.11
SSIM 0.68 ± 0.11 0.70 ± 0.10 0.70 ± 0.09 0.45 ± 0.06 0.55 ± 0.16 0.60 ± 0.11 0.66 ± 0.14 0.64 ± 0.12
CIEDE 7.22 ± 2.76 8.02 ± 2.95 7.92 ± 2.78 12.75 ± 2.40 8.31 ± 2.39 9.58 ± 3.46 6.39 ± 2.34 7.01 ± 2.29

Table 3
Error measures for the evaluated methods when the image’s intensity and chromaticity components are corrupted by Gaussian noise. The values marked in bold show the best performing
algorithm. BM3D shows the highest performance in each error measure and noise level, however considering the other competing variational methods our framework shows highly
competitive results.

=σ 20 OPP p
1 OPP p

2 OPP1
1 PDVTV (Bresson and

Chan, 2008)
DVTV (Ono and
Yamada, 2014)

TGV (Bredies et al.,
2010)

BM3D (Dabov et al.,
2007)

BM3DS (Dabov et al.,
2007)

PSNR 30.6 ± 2.05 30.3 ± 2.55 30.4 ± 1.97 28.9 ± 2.34 30.4 ± 2.00 27.0 ± 3.11 32.2 ± 2.36 30.9 ± 1.86
SSIM 0.88 ± 0.03 0.86 ± 0.04 0.88 ± 0.03 0.83 ± 0.04 0.88 ± 0.03 0.77 ± 0.08 0.91 ± 0.03 0.86 ± 0.03
CIEDE 3.19 ± 2.68 3.18 ± 2.67 3.18 ± 2.67 4.57 ± 2.95 3.18 ± 2.68 5.00 ± 3.78 2.78 ± 2.70 3.88 ± 2.63=σ 40

PSNR 26.9 ± 2.33 27.4 ± 2.25 27.1 ± 2.35 25.6 ± 2.36 27.0 ± 2.02 25.1 ± 2.43 28.2 ± 2.48 26.5 ± 1.67
SSIM 0.77 ± 0.07 0.79 ± 0.06 0.78 ± 0.07 0.69 ± 0.07 0.78 ± 0.06 0.70 ± 0.09 0.81 ± 0.06 0.69 ± 0.05
CIEDE 4.44 ± 2.73 4.57 ± 2.73 4.56 ± 2.65 6.78 ± 3.04 4.35 ± 2.61 6.45 ± 3.06 4.32 ± 2.65 6.39 ± 2.56=σ 60

PSNR 25.0 ± 2.41 25.5 ± 2.33 25.2 ± 2.15 21.8 ± 0.93 25.0 ± 1.85 23.6 ± 2.50 26.7 ± 2.71 25.2 ± 1.84
SSIM 0.70 ± 0.09 0.72 ± 0.08 0.69 ± 0.06 0.44 ± 0.07 0.71 ± 0.08 0.63 ± 0.10 0.75 ± 0.08 0.63 ± 0.04
CIEDE 5.37 ± 2.77 5.46 ± 2.76 5.77 ± 2.64 11.25 ± 2.58 5.33 ± 2.53 7.78 ± 3.43 4.65 ± 2.68 7.09 ± 2.56=σ 80

PSNR 23.9 ± 2.25 24.2 ± 2.31 22.5 ± 1.21 17.3 ± 0.32 23.5 ± 1.76 22.6 ± 2.32 25.4 ± 2.67 23.7 ± 1.71
SSIM 0.65 ± 0.10 0.67 ± 0.10 0.50 ± 0.05 0.26 ± 0.08 0.65 ± 0.10 0.56 ± 0.10 0.70 ± 0.10 0.53 ± 0.04
CIEDE 5.86 ± 2.77 6.24 ± 2.90 8.14 ± 2.47 16.95 ± 2.30 6.19 ± 2.49 9.21 ± 3.38 5.35 ± 2.69 8.54 ± 2.56
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noise, we corrupt the components (o2 and o3) with standard deviations
20, 40, 60 or 80 of Gaussian noise and ignore the intensity channel. This
color recovery scenario is of interest in, e.g., low-light conditions which
can significantly reduce the image quality output of digital cameras
(Bovik, 2005, Ch. 4.5) or in connection to typical JPEG compression
where artifacts are frequently introduced due to different treatment of
intensity and chrominance (Sharma, 2002, Ch. 8.6).

After transforming from the (now noisy) opponent representation to
the RGB space, one can show that the r,g,b components retain a
Gaussian noise distribution as the following calculation illustrates. Let=σ i, 1, 2, 3i

2 denote the standard deviation of zero mean Gaussian
noise, then the opponent components, now seen as random variables,
are normally distributed, i.e., ∼o σ(0, )i i

2N . Transformation from the
double-opponent space to the RGB color space is done via

= = ⎛
⎝⎜⎜ −−

⎞
⎠⎟⎟

− −u O o O,
1/ 3 1/ 6 1/ 2
1/ 3 1/ 6 1/ 2
1/ 3 2/ 6 0

.1 1

(60)

Assuming normally distributed opponent components ∼o (0, Σ ),oN= σ σΣ Diag(0, , ),o 2 2 we obtain ∼u (0, Σ )uN with

= − −O OΣ Σ .u o T1 (61)

Excluding the inter-channel correlation between the r,g,b components
in (61) the noise transformation is given by

⎜ ⎟∼ ⎛⎝ ⎞⎠u σ σ σ0, 2
3

Diag( , , ) .2 2 2N
(62)

Therefore, we also evaluate BM3D with a scaled standard deviation.
We denote this approach as

• Scaled-BM3D (BM3DS): Color BM3D with 2/3 of the noise stan-
dard deviation.

Next we present and discuss the results obtained with OPP and the
compared methods. We present the color component denoising scenario
first followed by the results for denoising all image components.

7.2.1. Results, chromaticity noise.
Table 2 shows the average PSNR, SSIM and CIEDE error measures

for each method and noise level. Three methods stand out: OPP ,p
1 OPP1

1

and BM3D. For lower noise-levels the non-convex first-order method
OPP p

1 shows highest PSNR and SSIM values. While OPP1
1 performs

marginally better than OPP p
1 for noise levels larger than standard de-

viation 60 of noise, BM3D has the best CIEDE accuracy for all noise
levels. Comparing only energy based methods (i.e., not BM3D/BM3DS)
it is clear that all OPP-based methods show improved accuracy for
PSNR, SSIM and CIEDE in all cases. In all cases OPP p

2 shows worse
accuracy than OPP p

1 (except SSIM at noise level 60) due to the extra
smoothness constraints imposed by the higher-order derivative. OPP p

2 is
more suitable for images with piecewise affine regions, such as illu-
strated in the synthetic example, Section 7.1.

The principal difference between OPP1
1 and PDVTV is that the ad-

ditional color mixing regularization term is included in the former, thus
illustrating the success of the mixing term in OPP. With respect to error
measures we see an improvement in each case for OPP1

1. Comparing the
second order OPP p

2 with the result of TGV the error value differences
are smaller, however OPP still shows improved results.

The visual quality, comparing all methods for the (high) noise level
60, is seen in Fig. 7. All methods suffer from color shimmering in
homogeneous regions, although, the shimmering is less obvious for
BM3D, which also shows the best color consistency. Although, the

Fig. 11. The inpainting task is to restore the missing data samples
in the upper left input image. Final results for vectorial formula-
tions are seen on the second row for =p 0.8. All approaches
produces convincing results without introducing disturbing color
artifacts or oversmoothing.
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result of BM3D is heavily oversmoothed, seen in the detailed panel and
the trees in the background. All versions of the proposed OPP show
higher PSNR and SSIM, although in these examples, there is color
shimmering. DVTV shows the worst performance and shows strong
structural oversmoothing of the trees in the background and there is
strong evidence of color smearing. We remark that DVTV is designed for
the color transform used in this work, however the method is funda-
mentally different from ours: DVTV considers the intensity and the
color information as orthogonal and independent, and also regularize
these separately, however, for the color image data, this is not the case
in practice and the method fails as this assumption is violated.

Fig. 10 shows the output for the OPP methods for different noise
levels. At the lowest noise-level the result images appear crisp and do
not contain disturbing color artifacts at color edges. Color shimmering
artifacts are naturally more pronounced as the noise level increases, due
to imprecise parameter settings. Hand-tuning regularization parameters
to separate image structure from noise increase clarity and suppress
color shimmering, however, accurate determination of these para-
meters is subject to further study.

To additionally illustrate the recovery of noisy images using OPP,
Figs. 8 and 9 show two challenging restoration scenarios where the
images have been corrupted with standard deviation 60 of Gaussian
noise. Fig. 8 is an image with vivid colors and many details, visually
each methods performs well. OPP1

1 appear most crisp and produces the
most smooth background whereas OPP p

1,2 both preserve the flower well.
Fig. 9 shows similar characteristics as the previous example, although
in this case OPP p

2 shows a larger degree of color shimmering than OPP p
1

and OPP1
1. Each methods do compensate for the image noise well and

preserves facial-features and the stamp’s text.
Table 1 shows the average error for the used p-values in the eva-

luation of the 100 natural images. There is an indication towards better

performance for PSNR and SSIM for p in the range 0.6–0.9 whereas
CIEDE suggests smaller p-values for the first order scheme. Error values
for the second order scheme is in general worse than the first order, this
is due to the additional smoothness introduced by the higher-order
derivatives. However, as seen in the synthetic result in Section 7.1, the
second-order scheme performs very well when the image data is mostly
affine.

7.2.2. Results, intensity and chromaticity noise.
It is also interesting to evaluate the proposed methods for the noise

scenario when corrupting all image components with uniform noise.
Table 3 shows the result for this scenario and it is clear that BM3D
outperforms all compared methods in this general denoising task.
However, comparing the proposed approach to the (more) similar
variational methods PDVTV, DVTV and TGV our framework shows
highly competitive results across all error measures and noise levels,
illustrating the method as a viable alternative to existing methods for
variational-based color image processing.

7.3. Image inpainting, image deblurring

Inpainting refers to the task of restoring missing image data. Fig. 11
illustrates the result for the non-convex OPP for the task of inpainting.
This is a supervised inpainting task, consequently we define the op-
erator K in our objective function to describe the region of interested to
be inpainted, i.e., the missing data samples. Both versions of OPP per-
form well visually and quantitatively compared to VTV where we
eliminated the influence of the color penalty term (47).

The second example is the task of restoring image data which has
been corrupted by motion blur – a common problem in hand-held
imaging devices. In this non-blind deblurring problem we restore the

Fig. 12. Example of image sharpening with known motion blur.
This example shows that both our first and second order VTV
formulations produce high-quality results without introducing
disturbing color artifacts, oversmoothing homogeneous regions or
over sharpening artifacts. (PSNR/SSIM/CIEDE).
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input image, blurred with a motion kernel of 9 pixel shift at and angle
of 10° counter-clockwise. The final restoration results for the different
methods is seen in Fig. 12. Qualitatively all approaches compensate for
the blur and produce similar results in this example image, however the
first order scheme OPP0.8

1 shows better error values. Eliminating the
color term, as in the previous inpainting example, the result looks vi-
sually similar, however, OPP0.8

1 shows improved error metrics, whereas
OPP0.8

2 shows worse PSNR but retains the color better than VTV.

8. Discussion and conclusion

We have shown that the double-opponent theory can significantly
improve the performance of vectorial total variation-based methods.
Motivated by recent and classical results in color theory, we let the
inverse mapping from the opponent-space to the data space serve as a
basis of our vectorial formulation. We showed that the inverse mapping
encodes image colorfulness. We believe that as the field of perceptual
psychophysics continue to evolve we will see further advances in color
adaptive algorithms which are inspired by biology. The study presented
in this work is a first step towards such models. We formulated a gen-
eral energy that can model arbitrary higher-order derivatives, where all
involved regularization terms can be convex, non-convex or a mixture.
Automatic parameter selection for optimal restoration performance
remains an open problem. We discretized and decomposed our for-
mulation using the iterative Split Bregman scheme, and we demon-
strated competitive performance compared to standard vectorial total
variation methods and state of the art denoising algorithms evaluated
using commonly used error measures in the image restoration com-
munity.
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