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Abstract. We introduce a novel motion estimation approach for Echo
PIV for the laminar and steady flow model. We mathematically formalize
the motion estimation problem as a parametrization of a dictionary of
particle trajectories by the physical flow parameter. We iteratively refine
this unknown parameter by subsequent sparse approximations. We show
smoothness of the adaptive flow dictionary that is a key for a provably
convergent numerical scheme. We validate our approach on real data and
show accurate velocity estimation when compared to the state-of-the-art
cross-correlation method.

1 Introduction

Ultrasound techniques are widely used to measure blood flow in clinical appli-
cations. They enable noninvasive measurements that can be applied to opaque
flows. Echo PIV [8, 11] is a velocimetry technique that applies optical PIV anal-
ysis algorithms to sequential ultrasound images and has been developed to im-
prove blood flow analysis using clinical ultrasound machines. Echo PIV involves
two steps: an imaging step and a motion estimation step. While the imaging step
is rapidly evolving [15, 14, 13], the motion estimation step has been adopted from
traditional laser-based imaging [2] and employs cross-correlation techniques pre-
vailing in different fields of experimental fluid dynamics [12, 1]. These techniques
have been optimized during the last decade and are widely used by research
groups and also as commercial software packages by industry3. However, they
do not take advantage of physical motion properties of the underlying flow in or-
der to effectively regularize flow velocimetry under adverse imaging conditions,
as in the case of Echo PIV. Highly accurate motion estimation is of pivotal
importance, because subsequent steps of flow analysis, like wall shear stress
measurements, rely on flow derivatives.

In this paper, we adopt and elaborate a radically different approach [3] for
the motion estimation step in Echo PIV. The approach is based on the Poiseuille
model for flows in a pipe which yields a one-dimensional parametrization of phys-
ically plausible flows. While this model could be refined [16] and even more steps

3 See, e.g. http://www.lavision.de/en/products/davis.php
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towards the incompressible Navier-Stokes flow model on corresponding bounded
domains could be made [7], such additional degrees of freedom quickly turn out
to be detrimental for accurate flow estimation under adverse imaging conditions.
A second key property exploited by [3] concerns the sparsity of microbubbles that
are used to seed and to image real flows, as this enables to apply established
techniques for sparse estimation and optimization.

Fig. 1.1. A schematic representation of the Echo PIV setup (left), adapted from [11].
In a rigid cylindrical tube of inner radius R = Lz/2 flows a liquid seeded with mi-
crobubbles contrast agents. A linear transducer array is placed along the tube axis,
above an observation area of size Lx×Lz, and emits a sound pulse into inhomogeneous
medium. The same transducer records the back scattered RF (radio frequency) signal.
After the signal processing steps, which consists of the Hilbert transform, envelope de-
tection and log-compression, a 2D image is obtained, also knows as B-mode image. A
sequence of images (right) is recorded at a fixed frame rate ∆t−1. In the state-of-the-art
method, particle image velocimetry (PIV) analysis, the velocity field is estimated by
cross-correlating consecutive pairs of B-mode images.

Contribution. Our new approach significantly simplifies the approach from
[3] and is computationally less expensive. We mathematically formalize the
parametrization of a high-dimensional dictionary of particle trajectories by the
physical flow parameter. This is exemplified by two corresponding mappings
that are continuous and continuously differentiable, respectively. Such proper-
ties are key to provably convergent numerical optimization, but are missing in [3].
Different established optimization techniques can then be reliably applied, de-
pending on the degree of smoothness of the mapping. Unlike in [3], our approach
is validated on in vitro measurements of real data, at the limit of standard PIV
methods corresponding to low micro-bubble seeding and high flow velocities.

Overall, our approach consistently integrates a basic physical flow model
and an adaptively generated trajectory dictionary into a sparse reconstruction
framework. This results in a global spatio-temporal velocimetry technique that
extracts information from the entire given video sequence and therefore is highly
accurate and robust. It thus provides a viable alternative to the established
(semi-) local cross-correlation techniques.

Organization. In Section 2 we give an overview of the proposed method.
In Section 3 we describe and characterize in detail the dependency of the flow
trajectory matrix on the flow model parameter. Section 4 is devoted to the
optimization approach. The method is validated on real data in Section 5. We
conclude in Section 6.
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2 Proposed Approach

In Fig. 1.1 we briefly sketch the basic Echo PIV set-up and refer to [11, 3] for
further details.

Image 1 Image 2 Image 3 Image Nt
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Nt Lz

Image 1 Image 2 Image 3 Image Nt
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Nt Lz

Fig. 2.1. Each column in the dictionary A(vm) describes a possible trajectory for a
single particle seen in Nt consecutive images concatenated along the tube axis (top
left, adapted from [3]). The input data f is given by all Nt images, which usually
contain several particles (top right, adapted from [3]). The Poiseuille flow model (3.1)
leads to straight line particle trajectories. This can be also observed in the real data
example (bottom) with Nt = 20 images. The problem is to sparsely match particles to
trajectories in A(v∗m) parametrized by the unknown maximal velocity v∗m based on the
input data f .

Let f denote the input data, which is a sequence of Nt consecutive images at
subsequent time steps merged together as shown in Fig. 2.1. We assume that f
is well-approximated by a sparse superposition of trajectory atoms from a flow
dictionary A(v∗m), introduced in Section 3. Hence

f ≈ A(v∗m)u(v∗m), (2.1)

where u(v∗m) is an indicator vector selecting active trajectories in A(v∗m). If we
would know the maximal velocity v∗m of the flow profile, then we could trace
particles along trajectories by determining the indicator vector u(v∗m) via a sparse
reconstruction

u(v∗m) = arg min
u∈[0,1]N

‖A(v∗m)u− f‖22 + λ‖u‖1, (2.2)

provided A(v∗m) is nearly an isometry on the class of sparse signals [5]. However
v∗m is unknown and has to be determined from the input data f . Our ansatz is
to include the estimation of the unknown parameter v∗m in the reconstruction
step. To this end we denote the non-negative parameter vm by v ∈ R+ and we
consider the function

g(v) = min
u∈[0,1]N

‖A(v)u− f‖22 + λ‖u‖1, (2.3)
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which will be minimized in order to decrease the “distance” of the input data
f to our unknown parametric linear model A(v)u(v). In other words, we are
estimating the unknown parameter v∗m by adapting a trajectory dictionary to
our image sequence. A convergent numerical scheme for minizing g is developed
in Section 4.

3 Flow Dictionary

3.1 Poiseuille flow model

The laminar and steady flow in a straight cylindrical tube of radius R is governed
by the following equations of motion:{

x(t) = x(t′) + (t− t′) vm α(z)

z(t) = z(t′) = const.
(3.1)

where z ∈ [0, 2R], α(z) = 1 − (R − z)2/R2 and t, t′ ≥ 0. The non-negative
parameter vm is the maximal flow velocity - the velocity of particles moving
along the tube axis. Subsequently we will omit index m and denote vm by v.

3.2 Trajectory Matrix A(v)

We further detail the construction of the space-time trajectory dictionary A(v),
which depends on the maximal flow velocity introduced in (3.1). Let Ω :=
[0, Lx] × [0, Lz] ⊂ R2 denote a fixed field of view in the x/z-plane, see Fig.
1.1. We uniformly discretize Ω into NxNz rectangular cells

Ωi,j := [(i− 1)∆x, i∆x]× [(j − 1)∆z, j ∆z], i ∈ [Nx], j ∈ [Nz] (3.2)

of size ∆x∆z with ∆x = Lx/Nx, ∆z = Lz/Nz. Using the continuous B-spline
basis function of degree one, ψ : R → R, or the continuously differentiable B-
spline basis function of degree two, ϕ : R→ R, given by

ψ(t) :=


2 t, 0 ≤ t < 1

2
,

2− 2 t, 1
2
≤ t ≤ 1,

0, otherwise,

(3.3)

ϕ(t) :=


9
2
t2, 0 ≤ t < 1

3
,

− 3
2
(1− 6t+ 6t2), 1

3
≤ t < 2

3
,

9
2
(1− 2t+ t2), 2

3
≤ t ≤ 1,

0, otherwise,

(3.4)

we define for every (xi, zj) = ((i− 1/2)∆x, (j − 1/2)∆z) where (i, j) ∈ {0, . . . , Nx+
1} × {0, . . . , Nz + 1} the cell-centered 2-dimensional basis functions

ψi,j : R2 → R, (x, z) 7→ ψi,j(x, z) := ψ
(x− xi

2∆x
+

1

2

)
ψ
(z − zj

2∆z
+

1

2

)
, (3.5)

ϕi,j : R2 → R, (x, z) 7→ ϕi,j(x, z) := ϕ
(x− xi

3∆x
+

1

2

)
ϕ
(z − zj

3∆z
+

1

2

)
, (3.6)
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Fig. 3.1. (a) Partition of unity of the domain [0, 5] using the functions (3.4). (b) Two
unit-mass Dirac measures located at x1 and x2, respectively, indicated by the two black
lines. The corresponding coefficients ϕi(x1) and ϕi(x2), for i ∈ {0, . . . , 6} are indicated
by the blue and yellow points, respectively, located at the cell centroids i − 1/2. (c)
The two functions δ̂x1(x), δ̂x2(x) resulting from the basis expansion are used for the
representation and matching of real particles. Black lines indicate the centroid position
which exactly recover x1 and x2.

which form a partition of unity of Ω. Fig. 3.1a illustrates this construction for
quadratic function (3.4) in 1D-domain [0, Lx] with Lx = Nx = 5 and ∆x = 1.
Note that Nx+2 basis functions are required and, accordingly, (Nx+2)(Nz +2)
basis functions in the 2D case.

The following discussion is developed for the quadratic functions (3.6), and
can be easily extended to piecewise linear functions (3.5) by substituting ϕi,j
with ψi,j .

A point particle located at (x0, z0) ∈ Ω in a 2D-fluid is mathematically repre-
sent as a Dirac measure δ(x0, z0) with unit mass. The discretized representation
is given by the coefficients

ci,j =

∫
R2

δ(x0 − x′, z0 − z′)ϕi,j(x′, z′)dx′dz′ = ϕi,j(x0, z0), (3.7)

with i ∈ {0, . . . , Nx + 1}, j ∈ {0, . . . , Nz + 1} and the corresponding function

δ(x0, z0) ≈ δ̂(x0,z0)(x, z) =

Nx+1∑
i=0

Nz+1∑
j=0

ϕi,j(x0, z0)ϕi,j(x, z). (3.8)

Figs. 3.1b and 3.1c illustrate in the 1D scenario of Fig. 3.1a the coefficients
and the functions corresponding to two point particles. Note that the mass of
δ̂(x0,z0)(x, y) is no longer concentrated at (x0, z0) but “smeared over”

supp
(
δ̂(x0,z0)(x, z)

)
=

⋃
i−1≤i′≤i+1
j−1≤j′≤j+1

Ωi′,j′ if (x0, z0) ∈ Ωi,j , (3.9)

that is over the cell containing the location (x0, z0) of the point particle and all
adjacent cells. Yet, the representation is still exact in that the point particle can
be recovered in terms of its location, which is given by the centroid(

x0
z0

)
=

∫
R2

(
x
z

)
δ̂(x0,z0)(x, z)dxdz. (3.10)
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This larger, but still focused, support of functions representing point particles
is a favorable property for matching observed point particles in image sequences
of experimental fluids.

Regarding the latter matching task, we set up a dictionary of discretized
particle trajectories, based on the flow model (3.1). Specifically, we consider
a sequence of Nt frames imaging the flow within the region Ω at time tk =
(k − 1)∆t, k ∈ [Nt]. The dictionary is composed of all particle trajectories that
meet the center positions (xi, zj) = ((i− 1/2)∆x, (j − 1/2)∆z) ∈ Ωi,j of all
cells given by (3.2). Let us look at a single such trajectory, shown in Fig. 3.2,

traced by the particle δ̂(xi,zj ,tk)(x, z, t) that meets the location (xi, zj) at time
point tk, k ∈ [Nt]. Due to the flow model (3.1), it moves at each tl, l ∈ [Nt] to
the space-time points

Ti,j,k :=
{(
xi + (tl − tk)vmα(zj), zj , tl

)
: l ∈ [Nt]

}
. (3.11)

The union of all such sampled trajectories defines the set of space-time positions

T :=
⋃

i∈[Nx],j∈[Nz ],k∈[Nt]

Ti,j,k. (3.12)

Let xil = xi+(tl−tk)vmα(zj), then each space-time position (xil, zj , tl) ∈ Ti,j,k ⊂
T corresponds to a particle δ(xil, zj , tl), which for the purpose of numerical
matching is approximated by

δ̂(xil,zj ,tl)(x, z, t) =

Nx+1∑
i′=0

Nz+1∑
j′=0

ϕi′,j′(xil, zj , tl)ϕi′,j′(x, z), (3.13)

according to (3.8). Note that in the present context of space-time trajectories, it
is convenient to index the coefficients ϕi′,j′(xik, zj , tl) also by time, even though
only spatial discretization is performed and hence the basis functions (3.6) do
not depend on time.

The final step concerns the definition of a matrix A which collects the co-
efficients ϕi′,j′(xil, zj , tl) corresponding to all functions (3.13) indexed by T of
(3.12). We first define the auxiliary function

ind: (i, j, k) 7→ (k−1)NxNz+(j−1)Nx+i, i ∈ [Nx], j ∈ [Nz], k ∈ [Nt] (3.14)

which indexes the collection of Nt cell-discretized domains Ω corresponding to
the frames of a given image sequence. We now define the matrix

Aind(i′,j′,l),ind(i,j,k) := ϕi′,j′(xil, zj , tl) (3.15)

based on (3.13). In a similar way, we define the matrix A for piecewise linear
functions (3.5), that is,

Aind(i′,j′,l),ind(i,j,k) := ψi′,j′(xil, zj , tl). (3.16)

In words, each column of A corresponds to the coefficients of the particle ap-
proximations (3.13) at locations given by Ti,j,k of (3.11). We refer to Fig. 3.2 for
an illustration.
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Fig. 3.2. Particle trajectory intersecting the region Ω at consecutive time steps and
the “smeared over” support of functions representing point particles via (left) piecewise
linear (3.5) or (right) quadratic (3.6) B-spline basis functions. The figures also illustrate
the sparse nature of the matrix A(v).

Lemma 1. Let v ∈ R+ be a non-negative variable representing the flow param-
eter vm in (3.1). Then (3.15)/ (3.16) defines a mapping

v 7→ A(v) ∈ RN×N+ , N = NxNzNt, (3.17)

which is continuously differentiable/continuous.

Proof. Each entry of A defined by (3.15)/(3.16) is given by a C1-function/ C-
function of the form (3.6)/(3.5), which in turn is given by (3.4)/(3.3). By (3.11),
the first argument of the right-hand side of (3.15)/(3.16) linearly depends on v,
and so does the first factor of (3.6)/(3.5).

4 Optimization

4.1 Parametric Optimization

We recast (2.3) as a parametric optimization problem and consider

(Pv) min
u∈RN

J(u, v) s.t. u ∈ F (v), (4.1)

where J(u, v) : RN×R→ R, J(u, v) := ‖A(v)u−f‖22+λ‖u‖1 and F (v) := [0, 1]N

is the constant feasible set and thus independent of v. Then g from (2.3) is the
optimal value function of (4.1), given by g(v) = min

u∈F (v)
J(u, v). We denote by

S(v) = arg min
u∈F (v)

J(u, v) the optimal solution set and investigate continuity of

v 7→ g(v) and the associated set valued mapping v ⇒ S(v). Continuity of g
is a minimal requirement for reliable numerical optimization. The constraints
and the regularization make the minimization of J(u, ·) non-smooth, unless the
minimum would be an interior point. But this cannot be expected to hold since
constraints will be active and the minimizer will lie on the boundary.

Theorem 1. [4, Prop. 4.4] Let v0 ∈ R be an arbitrary point in the parameter
space. Suppose that
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(i) the function (u, v) 7→ J(u, v) is continuous on RN × R,
(ii) the multifunction v ⇒ F (v) is closed,

(iii) there exist an α ∈ R and a compact set K ⊂ RN such that for every v in
a neighborhood of v0, the level set

levα J(·, v) := {u ∈ F (v) : J(u, v) ≤ α} (4.2)

is nonempty and contained in K,
(iv) for any neighborhood Vu of the set S(v0) there exists a neighborhood Vv of

v0 such that Vu ∩ F (v) 6= ∅ for all v ∈ Vv.

Then the optimal value function g(v) is continuous at v = v0, and the multi-
function v ⇒ S(v) is upper semi-continuous at v0.

Corollary 1. The optimal value function g from (2.3) is continuous on R.

Proof. We apply Thm. 1. (i) holds since J is continuous in both arguments
in view of the definition of J and the continuity of v 7→ A(v) by Lemma 1.
(ii),(iv) hold automatically since the feasible set F (v) = [0, 1]N is constant and
closed. Finally (iii) holds since for any v ∈ R the solution set S(v) is nonempty
in view of the compactness of the feasible set and continuity of J(·, v). Hence
∀α ≥ g(v) ∈ R we have ∅ 6= S(v) ⊂ levα J(·, v) ⊂ [0, 1]N =: K. ut

4.2 Optimizing the Value Function

A straightforward way of approximating the minimizer of g from (2.3) in a range
of interest a ≤ v ≤ b would be to evaluate the function at a fine grid of points
in [a, b] and choose the one corresponding to the lowest value, compare Fig. 5.1.
However, this is a slow and computationally expensive method.

In [9] Mifflin and Strodiot proposed a rapidly converging five-point algorithm
closely related to the well-known bisection method [10, Chap. 3] for continuous
univariate functions, which uses function evaluations, but no derivatives. The
method uses function values at five points, denoted and ordered such that

v̂− < v− < v0 < v+ < v̂+, (4.3)

to construct quadratic and polyhedral approximations to the function and then
choose a point among the minimizers of the approximating functions via rules
that do not require additional function evaluations. This property is signifi-
cant since every evaluation of g requires the solution of the `1-regularized box-
contrained least-squares problem (2.2). For further details we refer to the original
paper [9]. Results are reported in Section 5.

5 Experiments

We applied our method to two challenging in vitro datasets with different flow
velocities that follow the Poiseuille flow model assumptions, Sect. 3.1. The first
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one corresponds to a slow flow, depicted by very noisy B-mode images, henceforth
called data set (a). The second data set (b) corresponds to a very fast flow at
the limit of Poiseuille flow assumptions. For each data set we merge Nt = 10
consecutive images (corresponding to the tube interior) to represent the vector
f . In Table 1 we summarize relevant parameters corresponding to both data sets
and refer for an illustration to Fig. 1.1.
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Fig. 5.1. Velocity estimation via parametric optimization for data sets (a), l.h.s., and
(b), r.h.s. The top row plots the parametric function g(v) defined via the trajectory
matrix A(v) and the corresponding sparse reconstruction. For the data set (a) we
set λ = 0 and for date set (b) we set λ = 0.1 The coefficients of A(v) are defined by
either piecewise linear (3.16) or quadratic (3.15) B-spline basis functions. The maximal
flow velocity v∗m is attained at the minimum of g(v). The bottom row illustrates the
performance of the five-point algorithm [9] applied to the two data sets using matrix
A(v) given by (3.16). The five points v̂− < v− < v0 < v+ < v̂+ are shown at each
iteration step k with pointed (for v0), dashed (for v−, v+) and continuous (for v̂−, v̂+)
lines. In both cases they accurately converge to v∗m, which is shown in red.

To estimate the maximal velocity v∗m we perform univariate minimization of
v 7→ g(v) as described in Section 4.2. The more involved step is the evaluation of
g. This requires the evaluation of the sparse trajectory matrix A(v) of size N×N ,
N = NxNz Nt, but also requires solving the constrained convex optimization
problem in (2.3) for certain v values. These evaluations are performed using CVX
[6]. The number of function evaluations is kept low by using the fast converging
five-point algorithm [9]. The convergence of this algorithm is illustrated in Fig.
5.1 along with the graph of g. We refer for results and discussions to Fig. 5.1,
Fig. 5.2 and Table 1.
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data set data set data set data set
(a) (b) (a) (b)

Lz = 2R 0.5 cm 0.5 cm Cross Correlation, Fig. 5.2 12.76 73.83

Lx 4 cm 4 cm Ours, heuristic, L. B-spline, Fig. 5.1 13.90 77.00

∆t 1/128 s 1/128 s Ours, heuristic, Q. B-spline, Fig. 5.1 13.90 77.50

Nt 10 10 Ours, exact, L. B-spline, Fig. 5.1 13.73 77.00

Nx ×Nz 64× 331 64× 231 Ours, exact, Q. B-spline 13.72 77.49

Table 1. The columns on the left show the data set parameters used in the experiments.
The columns on the right right present the results for maximal velocity v∗m (in cm/s)
estimated by the proposed approach and compared to the heuristic for minimizing g
on a fine grid (lines 2 & 3) and the cross-correlation results which has been validated
against flow meter estimates in previous studies [11].

 

 
Cross−correlation
Our method

 

 
Cross−correlation
Our method

Fig. 5.2. Illustration of the velocity field estimated via the cross-correlation method
(blue arrows) and our approach (red) for the data set (b). Both methods perform
similarly. For numbers we refer to Table 1. The right image shows a zoom-in of the
result on the left and highlights the poor resolution and noisy nature of B-mode images.

6 Conclusion

We have formulated, analyzed and tested on real data the velocity estimation
problem in Echo PIV for laminar and steady flows as a parametric sparse recon-
struction problem. The sparsifying dictionary consists of space-time trajectories
of individual particles, which is adaptively updated during the iterative process
and robustly refines the unknown velocity information. We obtain a convergent
numerical scheme based on a carefully designed flow dictionary. The comparison
with cross-correlation results, demonstrates the robustness of our approach. In
addition, our method is completely transparent and not a black-box depending
on many fine-tuned parameters. Further work will concentrate on defining the
trajectory dictionary using the more general pulsatile blood flow model [16].
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