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Abstract. We present a simple and efficient approach to plane wave ul-
trasound particle image velocimetry (Echo PIV). Specifically, a carefully
designed bank of local motion-sensitive filters is introduced, together
with a method for non-linear flow parameter estimation based on time-
averaged local flow estimates. The approach is validated and quantita-
tively assessed using both simulated and in-vitro real data, in scenarios
with laminar as well as with turbulent flow.

1 Introduction

We are motivated by the task of estimating the instantaneous velocity of vessel
blood flow using plane wave ultrasound particle image velocimetry (a.k.a. Echo
PIV ) [12, 20, 5]. Ultrasound techniques are used to measure blood flow in clinical
applications. They enable noninvasive measurements that are applied to opaque
flows. Moreover, the use of plane wave ultrasound imaging improves the temporal
resolution of the signal by recording sequential ultrasound images at rates of
more than 1000 frames per second over a large field of view [19].

Echo PIV is a particle image velocimetry technique developed to improve
the in-plane velocity components measurements of the blood flow using clini-
cal ultrasound machines and optical PIV image analysis algorithms [11, 15]. A
schematic representation of Echo PIV is shown by Fig. 1.1.

In the presented work we restrict our attention to estimating the velocity
field of pipe flows as this approximately resembles the flow in blood vessels. The
velocity field of a laminar and steady flow (a.k.a. Poiseuille flow) is given by

u = u(x) =
(
u1(x2), 0

)>
, u1(x2) = vm

(
1−

(x2
R

)2)
, vm ≥ 0, (1.1)

where vm denotes the peak velocity of the flow in a pipe of size R, assumed to
be centered at x2 = 0. Thus, the flow has a parabolic profile, does not depend
on x1, and hence has a single degree of freedom vm.

This smooth and laminar flow occurs at moderate Reynolds numbers. At
larger Reynolds numbers the flow becomes turbulent and exhibits motion insta-
bility. Such flows are unsteady and irregular, yet appear steady and predictable
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Fig. 1.1. Schematic representation of the plane wave ultrasound Echo PIV setup (left).
In a rigid cylindrical tube of inner radius R = L2/2 a liquid flows that is seeded with
small bubbles. A linear transducer array is placed along the tube axis and transmits
a plane wave acoustic pulse into the inhomogeneous field. The same transducer then
records the backscattered acoustic wave that is reflected and scattered by static tube
walls and dynamic bubbles. The transmission and recording step is repeated at a rate
faster than 1000 Hz. This produces images sequences with high temporal resolution
(right) that displays speckle patterns driven by the flow.

after temporal averaging [21]. There are many empirical formulas describing the
velocity profile of turbulent flow in a pipe. In this work we adopt the represen-
tation proposed in [18] in terms of the velocity field

u = u(x) =
(
u1(x2), 0

)>
, u1(x2) = vm

(
1−

( |x2|
R

)N+1)
. (1.2)

For N = 1 we recover the parabolic velocity profile of (1.1) and for N > 1 a
deformed velocity profile is obtained.

A common assumption of experimental fluid dynamics [16] is that the flow has
been seeded with a set of randomly located particles, also called tracer particles,
that follow the flow dynamics. Motion is estimated via the displacement of these
tracer particles. In the present work, we focus on speckle patterns originating
from microbubbles that are driven by laminar or turbulent pipe flow (Fig. 1.1).

Related Work and Contribution. Research on plane wave Echo PIV is
concerned with (i) image reconstruction and (ii) motion estimation. We only
focus on (ii) motion estimation. For recent work on (i) image reconstruction
based on inverse scattering, we refer to [4] and references therein.

We present the design of a spatio-temporal filter bank for local motion extrac-
tion from plane wave Echo PIV image sequences. The motivation is threefold:

1. The high frame rates of plane wave ultrasound imaging lead to displacements
that enable the application of differential motion estimation techniques [2].

2. The flow model (1.2) corresponds to a specific geometry of the spectral sup-
port of the image sequence in the Fourier domain. This motivates a careful
design of a filter bank in order to properly “discretize” the Fourier domain,
while forming a partition of unity to achieve uniform motion sensitivity.

3. While correlation technique for motion estimation prevail in PIV applica-
tions [16], alternative techniques from computer vision have proven to be
useful as well [10]. Our present work constitutes a first step of adapting such
techniques to the specific domain of Echo PIV.
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The design of orientation- and motion-sensitive local filters has a long tradi-
tion in image processing and computer vision [9, 6, 7], in models of early natural
vision [1, 14] and in the wavelet community [13, 17]. Our goal is a proper dis-
cretization of a half-space in the spatio-temporal Fourier domain (only relevant
for real-valued signals) in terms of a collection of motion-sensitive filters whose
spectral supports form a partition of unity. This requirement rules out Gabor
filters in favour of log-Normal filters that behave more conveniently in the spec-
tral domain (cf. [14]), and wavelet filter banks [13] due to the lack of rotational
invariance.

Our filter bank is presented in Section 2. Section 3 summarizes established
techniques for local motion estimation based on the phase-shifts of filter re-
sponses. Experimental results using the filter bank are discussed in Section
4: computer-generated ground-truth sequences illustrate properties of the fil-
ter bank; flow and flow model parameter estimates for real in-vitro data, both
in laminar and in turbulent flow scenarios, validate our approach.

The integration of our local approach into a more advanced non-local varia-
tional scheme is beyond the scope of this paper and will be reported elsewhere.

2 Spatio-Temporal Filter Bank

We detail the design of a bank of spatio-temporal filters. The representation in
spherical coordinates enables to illustrate the radial dependency in 1D and the
two angular dependencies in 2D and 3D, respectively.
Design Criteria. The major aspects are:

– Self-similar parametrization in terms of a sequence of center frequencies,
such that all filters form a partition of unity of the frequency interval [ π16 ,

π
4 ].

Structures that generate lower frequencies are not relevant in our scenario,
and the dependency on the global mean is removed. Frequencies larger than
π
2 are regarded as noise.

– All filters form a partition of unity of both angular ranges. We thereby ignore
an arbitrary half-space due to the symmetry of real signals in the Fourier
domain.

– The coordinate system is oriented so that the second angular dependency en-
ables to control the selectivity with respect to the flow velocities parametrized
by x2 in (1.2), including the peak velocity vm at x2 = 0.

The Log-Normal Filters. The transfer function of the one-dimensional log-
normal filter with center frequency ωi ≥ 0 and width σi ≥ 0 is given by

ĝi(ω) =
1

C(σi)

ωi
ω

exp

[
− 1

2

(
log( ωωi )

σi

)2]
, ω ≥ 0, (2.1)

where C(σi) =
√

2πσi. The norm of each filter is

‖ĝi‖L1(R+) = ωi. (2.2)
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The set of center frequencies and frequency widths

ωi = c(i−1)ω1, σ2
i = log

ωi+1

ωi
= log c, c > 1, i = 1, 2, . . . (2.3)

defines a filter bank {ĝi(ω)}i≥1, given by (2.1) such that ĝi+1(ω) = ω√
ωiωi+1

ĝi(ω).

These parameters are also used below in the case of 2- and 3-dimensional filter
banks.
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Fig. 2.1. left: The log-normal bandpass filter bank with ω1 = π/50 and c = 1.5
defining the parameter values (2.3). center: Summing up the filter responses enables
almost uniform detection of spectral signal support within the interval ω ∈ [ π

16
, π
4

],
cf. (2.4). right: The angular part ĝj(φ) defined by (2.5) also provides a partition of
unity within the interval φ ∈ [0, π].

Fig. 2.1 illustrates this filter bank and also shows that it approximately pro-
vides a partition of unity of the frequency range of interest,∑

i∈[12]

ĝi(ω) ≈ constant, for ω ∈
[ π

16
,
π

4

]
. (2.4)

In particular, very low frequencies and the global mean value of a signal, to which
these filters are applied, are suppressed, as is the high-frequency range ω > π

2
which is likely to be dominated by noise under realistic imaging conditions.
Extension to 2D. The extension of (2.1) to 2D reads

ĝi,j(ω) =
ωi
‖ω‖

ĝi(‖ω‖)ĝj(φ) = (2.5)

=
1

C(σi)C(nφ)

(
ωi
‖ω‖

)2

exp

[
− 1

2

(
log(‖ω‖ωi )

σ

)2]
cos
(φ− φj

2

)2nφ
, (2.6)

with polar coordinates ω = (ω1, ω2) 7→ (‖ω‖, φ) on the right hand side and
parameters: center frequency ωi, frequency width σ, center angle φj , parameter
nφ ∈ N and C(nφ) = 2π

22nφ

(
2nφ
nφ

)
. In comparison to the one-dimensional case

(2.1), this filter consists of a radial and an angular part. This separability is
relevant for implementations of the filter in the spatial domain as convolution
operators. The angular part yields orientation-selective filters whose selectivity
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Fig. 2.2. (a) Two dimensional log-normal filter defined by (2.5) for i = 6, j = 2. (b)
The composed log-normal filter Gi(ω) given by (2.11) illustrates the contribution of
all filters at a single center frequency to the entire angular range. (c) Contours of log-
normal filters illustrate the self-similar design and the partition of unity. (d) Contours
of the composed log-normal filters used as a filter bank for our application.

can be tuned by selecting nφ. In connection with the filter parameters (2.3), we
fixed nφ = 16.

Fig. 2.2 (c) illustrates the filters {ĝi,j(ω)} corresponding to the parameters
(2.3), with additional center angles φj given by

φj = (j − 1)
π

7
, j ∈ {0, 1, . . . , 9}. (2.7)

Extension to 3D. In spherical coordinates ω = (ω1, ω2, ω3) 7→ (‖ω‖, θ, φ), our
three-dimensional version of the log-normal filter reads

ĝi,j,k(ω) =

(
ωi
‖ω‖

)2

ĝi(‖ω‖)ĝj(φ)ĝk(θ) = (2.8)

1

C

(
ωi
‖ω‖

)3

exp

[
− 1

2

(
log(‖ω‖ωi )

σ

)2]
cos
(φ− φj

2

)2nφ
cos
(θ − θk

2

)2nθ
, (2.9)

with the normalizing factor C = C(σ)C(nφ)C(nθ), C(nφ) = C(nθ) and nφ = nθ.
The center values of the additional angular variable are

θk = (k − 1)
π

7
, k = 1, . . . , 8. (2.10)
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(a) (b) (c)

Fig. 2.3. In figure (a) we illustrate the extension of the 2D filter to 3D defined by (2.8)
for the parameters i = 7, j = 1 and k = 5. (b)

∑
j

ĝi,j,k(ω) for fixed i = 7 and k = 5.

(c) Gi(ω) =
∑
j,k

ĝi,j,k(ω) for fixed i = 7 (cf. (2.11)).

Fig. 2.3 illustrates the resulting filters. The proposed filter bank is designed to
”see” the flow in all directions (in view of turbulent flow scenarios) and to be
independent of the orientation angle. For this reason we sum up several filters
along the angular parameters and consider the remaining radial component ωi
as the only filter parameter.
Spatio-Temporal Filter Bank. The filter bank is parametrized by the finite
set of center frequency values ωi and defined by

Ĝi(ω) =
∑
j

ĝi,j(ω) (in 2D) and Ĝi(ω) =
∑
j,k

ĝi,j,k(ω), (in 3D) (2.11)

where ĝi,j(ω) and ĝi,j,k(ω) are given by (2.5) and (2.8), respectively. The param-
eters are listed in (2.3), (2.7), (2.10).

3 Local Flow Estimation

For an image sequence f(x, t), the response function of a filter Gi (2.11) reads

hi(x, t) = (f ∗Gi)(x, t) = F−1(f̂ · Ĝi)(x, t) = ri(x, t)e
iψi(x,t), (3.1)

with the amplitude function ri(x, t) = |hi(x, t)| and the phase function

ψi(x, t) = arg(hi(x, t)) = =(ln(hi(x, t))) ∈ (−π, π]. (3.2)

The basic assumption underlying local motion estimation is that phase functions
ψi(x, t) are approximately conserved under motion, that is

d

dt
ψi = 〈∇ψi(x, t), (ẋ, 1)〉 = 〈∇xψi(x, t), ẋ〉+ ∂tψ(x, t) ≈ 0, ∀(x, t). (3.3)



A Local Spatio-Temporal Approach to Plane Wave Echo PIV 7

As a result, after estimating the partial derivatives of all functions ψi, we estimate
the velocity v = ẋ for any fixed space-time point (x, t) by minimizing the squared
residual error of the latter equation, namely

u(x, t) = arg min
v

∑
i

(〈∇xψi(x, t), v〉+ ∂tψ(x, t))
2
. (3.4)

Estimating the partial derivatives of ψ(x, t). We express the partial deriva-
tives ∇ψ by partial derivatives of a smooth signal h, as follows

h = reiψ, ∇h = (∇r)eiψ + (reiψ)(i∇ψ) = eiψ∇r + ih∇ψ (3.5a)

∇ψ =
1

|h|2
=(h∇h), h∇h = re−iψ∇h = r∇r + i|h|2∇ψ. (3.5b)

We numerically estimate the partial derivatives of ∇h by separable 3D filters
whose frequency response are obtained by an orthogonal expansion of the de-
sired behaviour in the Fourier domain (derivative filter at low frequencies, noise
suppression at high frequencies) using Krawtchouk polynomials [8, 22]. These
filters are similar to derivative-of-Gaussian filters but avoid aliasing artefacts
in the case of filters with small spatial support, that would result from merely
sampling the continuous impulse response.

4 Experimental Results

In Section 4.1 we report synthetic experiments for ‘1D videos’ that validate and
illustrate the filter bank design, followed by 2D pipe flow scenarios in Sections
4.2 and 4.3, including real in-vitro data in laminar and turbulent flow scenarios.

4.1 One-Dimensional Synthetic Ground Truth Videos

We illustrate the filter characteristics for the following 1D scenarios:

(a) Harmonic oscillation of a single particle, x(t) = a sin(ωt), with oscillation
amplitude a > 0 and angular frequency ω > 0.

(b) Elastic collision of two point particles that move with constant velocities.
(c) Flow of multiple particles with velocities

ẋ = v(x) =

{
−αx2, x ≤ 0
αx2, x > 0

, α > 0. (4.1)

Fig. 4.1 and 4.2 illustrate the videos in terms of space-time trajectories of the
particles and their velocities, and the phase functions of the aggregated complex
filter responses (2.11). Due to the smoothness of these functions, velocity esti-
mates are accurate even though moving particles cause sharp intensity changes
in the spatio-temporal domain.
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Fig. 4.1. top row: Space-time trajectories for the 1D videos of Section 4.1. center
row: Ground truth velocities. bottom row: Estimated velocities for the harmonic
oscillator (a), the elastic collision of two particles (b) and for the flow of multiple
particles (c), using the phase functions displayed by Fig. 4.2. These estimates are
accurate except for small regions close to the boundaries in trajectory direction, that
exhibit natural errors caused by overlapping filter supports.

Fig. 4.2. columns:
Phase output ψi due to
(3.2) for center frequen-
cies ωi, i ∈ {5, 7, 9}
given by (2.3). rows:
The 1D-videos of Sec-
tion 4.1. These plots
illustrate that even
for the ‘very sparse’
1D-videos of moving
particles, aggregating
multiple filter responses
due to (2.11) enables to
estimate locally motion
information at every
spatio-temporal point
(x, t). (a) (b) (c)
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Fig. 4.3. (a) Estimates of time-averaged velocity profiles for several peak velocities vm.
The parabolic profile is well reconstructed if vm < 3. For vm ≥ 3, motion-induced tem-
poral frequencies cause aliasing effects (cf. [2, Section 2.2.3]) at the center of the tube,
which could be fixed by spatial subsampling. Fig. (b) and (c) illustrate the accurately
estimated time-averaged velocity fields for vm = 1 and vm = 4, respectively.

4.2 Laminar Pipe Flow: Ground Truth Data

We validated the proposed method in 2D using synthetic image sequences of
uniformly distributed point-particles, driven the laminar pipe flow in (1.1). We
generated a spatial-temporal dataset of size 256×256×256 with peak velocities
vm ∈ {0.5, 1, ..., 4, 4.5} pixels/frame. We estimated the velocity field by minimiz-
ing (3.4) using the 3D filter bank in (2.11). The results are shown in Fig. 4.3.

4.3 Ultrasound Particle Image Velocimetry: In Vitro Data

Fig. 4.4 depicts real in vitro flows for both a laminar and a turbulent scenario,

along with time-averaged local flow estimates û(x(k)) =
(
û1(x(k)), û2(x(k)))

)>
based on (3.4) and parameter estimates vm, N of the flow model (1.2). The in
vitro plane wave ultrasound experiments imaging the flow in a pipe of a fluid
seeded with air bubbles were performed under controlled conditions [20]. The
relevant experimental parameters include: image acquisition rate f = 6.66 kHz,
fluid density ρ = 1038 kg/m3, viscosity µ = 4.1 mPa·s, radius of the pipe R = 5
mm, field of view 21.3×37.8 mm2, image size 288×384 and number of temporal
frames 298. We obtained parameter estimates vm, N by minimizing the objective

f(vm, N) =
∑
k

∥∥û(x(k))−R(ϑ)u(x(k); vm, N)
∥∥2, vm ≥ 0, N ≥ 1, (4.2)

where the rotation matrix R(ϑ) accounts for the tilted pipe (indicated by the
dashed lines in Fig. 4.4) and u(x(k); vm, N) is given by (1.2).

The sum runs over all image points x(k) contained in the interior of the
tube. The minimization problem was solved using the spectral projected gradient
method [3] using the default parameters specified by the authors and with the
non-monotone parameter value M = 2. The initial values for vm and N where
randomly chosen in the intervals (0, 2) and (1, 4), respectively. The program was
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Q [m3/s] Re vm N v(ave) v∗(ave)

laminar flow 15 · 10−6 484 0.356 1.361 0.193 0.295

turbulent flow 80 · 10−6 2579 1.557 3.547 1.081 1.577

Table 1. In vitro ultrasound experiments. Relevant parameters: volume flow
rate Q, measured with a flow-meter, and Reynolds number Re. Estimated parameters
(cf. (1.2)): vm, N ; relation to the average velocity v(ave) = vm(N + 1)/(N + 3); inde-
pendent reference value for the average velocity: v∗(ave) = Q/(πR2). The velocities are
given in pixels/frame.
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Fig. 4.4. In vitro data. top row: laminar steady flow. bottom row: turbulent flow.
left: image sequence. center: time-averaged local flow estimate. right: flow model
estimate. Table 1 reports quantitative results.

stopped after 10 iterations. The estimated velocity fields depicted by Fig. 4.4
and the quantitative results in Table 1 show that our method achieves realistic
estimates. The reference value v∗(ave) is calculated form the volume flow rate Q
that was measured during the experiment.

5 Conclusion

We presented an efficient approach to flow parameter estimation using plane
wave ultrasound image sequences. The method achieves realistic estimates in
laminar and turbulent scenarios. We consider it as a first step towards adapt-
ing techniques from computer vision to Echo PIV, to provide an alternative to
the prevailing correlation methods. Future work will reconsider (i) the image
reconstruction methods that lead to Echo PIV image sequences, (ii) refine our
local spatio-temporal approach based on a more detailed flow representation in
Fourier space, and (iii) integrate both lines of research into a variational model.
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2. Becker, F., Petra, S., Schnörr, C.: Optical Flow. In: Scherzer, O. (ed.) Handbook
of Mathematical Methods in Imaging, pp. 1945–2004. Springer, 2nd edn. (2015)

3. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone Spectral Projected Gra-
dient Methods on Convex Sets. SIAM J. OPTIM 10(4) (2000)

4. Bodnariuc, E., Schiffner, M., Petra, S., Schnörr, C.: Plane Wave Acoustic Super-
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