
Multi-view Monocular Depth and Uncertainty
Prediction with Deep SfM in Dynamic Environments?

Christian Homeyer1,2[0000−0002−0953−5162], Oliver Lange1[0000−0001−7461−6869], and
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Abstract. 3D reconstruction of depth and motion from monocular video in dy-
namic environments is a highly ill-posed problem due to scale ambiguities when
projecting to the 2D image domain. In this work, we investigate the performance
of the current State-of-the-Art (SotA) deep multi-view systems in such environ-
ments. We find that current supervised methods work surprisingly well despite
not modelling individual object motions, but make systematic errors due to a lack
of dense ground truth data. To detect such errors during usage, we extend the cost
volume based Deep Video to Depth (DeepV2D) framework [70] with a learned
uncertainty. Our Deep Video to certain Depth (DeepV2cD) model allows i) to
perform en par or better with current SotA and ii) achieve a better uncertainty
measure than the naive Shannon entropy. Our experiments show that a simple
filter strategy based on the uncertainty can significantly reduce systematic errors.
This results in cleaner reconstructions both on static and dynamic parts of the
scene.

Keywords: Deep learning · Structure-from-Motion · Uncertainty prediction ·
Depth prediction · Visual odometry · Monocular video · Supervised learning.

1 Introduction

Reconstruction of scene geometry and camera motion is an important task for au-
tonomous driving and related downstream tasks, e.g. collision avoidance and path plan-
ning. In particular, reconstruction from monocular videos has become an important re-
search direction, due to the possibility of low-cost realizations in concrete autonomous
systems.

Traditional non-learning algorithms [77] either fail to resolve the inherent ambi-
guities resulting from moving objects or do not scale well for dense predictions [3].
Deep learning based systems can resolve these shortcomings, but their accuracy is de-
pendent on architecture and learning strategy. Depth reconstruction from a single im-
age [17,48,44,42,18] is an even more challenging problem, as no motion cues can act
as input. Single-view networks may not generalize well from one dataset to another
[48,14] or need to be trained on massive datasets [59,58]. Using a true multi-view learn-
ing approach [72,69,70,75,23] turned out to be favorable in terms of performance. An
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Fig. 1: Based on an image sequence, we predict camera pose graph, depth and uncer-
tainty. Warm colors indicate high uncertainty. The uncertainty prediction helps to iden-
tify falsely reconstructed regions, which typically occur due to missing lidar supervi-
sion.

unsupervised learning strategy can leverage large-scale datasets without gathering ex-
pensive depth groundtruth. While unsupervised learning in this area has seen impres-
sive progress [19,21,22,24,75,23], accurate depth on dynamic objects cannot be learned
when objects move colinear to the camera, since the photometric loss cannot resolve
the underlying ambiguity [84]. Supervised training can leverage a signal for these cases,
which is why we base our work on a supervised multi-view framework.

Recent developments have shown, that modeling scene geometry explicitly inside
the architecture [70,69,23] leads to better reconstruction results than loosely coupling
neural networks with a common training loss. Inside this paradigm, learned features
are aligned temporally and spatially based on scene geometry and camera motion. Our
evaluation in Section 5 indicates, that depth prediction works surprisingly well for dy-
namic objects, even though a static scene is assumed during this explicit modelling.
However, we demonstrate quantitatively and qualitatively that reconstructions of dy-
namic objects are systematically worse than the static scene on real world autonomous
driving data, e.g. the KITTI dataset. Our findings show, that the root cause is mostly
a lack of supervision from the lidar ground truth. Lidar density is significantly lower
on moving objects than on the rest of the scene and is missing completely near depth
discontinuities or on transparent surfaces, e.g. windows.

We extend the supervised DeepV2D framework [70] by learning an additional uncer-
tainty and show how this can identify gross outliers in these regions. An overview of
our DeepV2cD framework can be seen in Figure 1: based on a sequence of images we
compute a) a camera pose graph b) the key frame depth and c) an uncertainty estimate.
Because the depth network utilizes a cost volume based architecture, this extension
comes with no additional overhead. In fact, any cost volume based approach main-
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tains a probability volume, such that an uncertainty measure can be readily computed
[47,86]. However, our experiments indicate, that by adding a separate uncertainty head
to our network and learning a measure, we achieve superior performance compared to
the Shannon entropy as done in related work [78,47,41]. Training this uncertainty head
requires an additional loss term, which we adapt from [86]. Our training strategy results
in slightly better final accuracy and has the benefit of an uncertainty.

An alternative approach to dealing with missing groundtruth in real data, is the use
of synthetic data. Advances in datasets [52,15,51,7] allow training with a dense and
accurate ground truth before finetuning unsupervised on sparse real data [83]. As a final
contribution we show, that the Deepv2D networks generalize well to the real world
even when only trained on virtual data. The domain gap can be further reduced by
finetuning with a semi-supervised loss on the real data without the need for expensive
depth ground truth. We make a comparison of current unsupervised, weakly supervised
and supervised SotA on the KITTI and Cityscapes dataset.

2 Related work

Reconstruction from monocular image sequences has a large body of literature. We refer
interested readers to an in-depth survey with focus on dynamic scenes [63], that is be-
yond the scope of this paper. We distinguish between traditional methods and learning
based systems. Learned methods can be distinguished into loosely coupled individual
networks with single-view depth prediction and true multi-view systems. Finally, we
give an overview of methods for uncertainty prediction for this problem.

Traditional. Early work in SfM worked only on a small collection of images [49].
Traditionally, the problem is solved by finding correspondences with hand-crafted fea-
tures, then solving for motion and structure. Today, several mature full pipelines exist
[77,67,65], that improved considerably w.r.t scalability, robustness and accuracy com-
pared to early systems. The reconstruction of monocular images is only possible to
a common relative scale, due to a missing absolute scale. Traditional SfM relies on a
static scene assumption. By filtering out dynamic points as outliers, they do not perform
a full scene reconstruction. Several non-learning approaches target these shortcomings:
Avidan et al. [4,66,3] coined the term trajectory triangulation by extending the epipo-
lar constraint to the general case of a moving point with a specific trajectory. Park et al.
[2,55,56] show how it is possible to decompose motions into a linear combination of ba-
sis trajectories using the Discrete Cosine Transform (DCT). However, these approaches
only perform sparse reconstruction and require knowing the dynamic/static assignment
to be known in advance. Another line of work relies on the piecewise-planar assumption
and dense reconstruction based on optical flow [60,37,38]. Still, especially colinearly
moving objects cannot be distinguished from observed background and result in wrong
reconstructions [84].

Learning geometry and motion. Early work on learning reconstructions used e.g. Markov
Random Fields (MRF’s) [64,46] or non-linear classifiers [40]. With the advances of
deep neural networks, the single-view reconstruction problem can be effectively ap-
proached with Convolutional Neural Networks (CNN’s) [17,48,44,42,18,32]. Camera
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poses can also be inferred by deep neural networks. [33,30] learn camera poses from
single images, while [74,82,10] learn from image pairs. By learning the poses from
whole sequences [12], [74], [79], a more accurate camera trajectory can be estimated.
An important trend is the development of self-supervised learning objectives for learn-
ing both geometry and motion [19,21,89,80,22,29,24], which alleviates the need of
expensive 3D ground truth data. In this context, dynamic objects were adressed with
semantics [8,43,35] or general motion parametrizations and object masks [73,45,61].
However, self-supervised training cannot fully resolve the inherent ambiguities in dy-
namic scenes. Furthermore, they rely on single-view reconstruction networks, which
may not generalize well from one dataset to another [48,14] or create the need for mas-
sive datasets [59]. Ranftl et al. [58] apply the transformer architecture to supervised
single-view depth prediction and achieve SotA results within this setting, but the accu-
racy is still behind multi-view approaches on our target datasets. Another line of work
focuses on improving temporal depth consistency in dynamic scenes by finetuning ex-
isting single-view networks [36,87]. While they improve the accuracy considerably,
they rely on a complicated processing pipeline and use an offline camera pose estima-
tion. Other works learn geometry from multi-view information based on cost volumes
[81,47,16,68,5], but assume known camera poses and no object motion. Wimbauer et
al. [76] leverage a cost volume in a semi-supervised approach. They learn a motion
mask for dynamic objects and use stereo supervision in these areas.

Combinations with traditional SfM. One of the first deep SfM systems was published
by [72]. Since then, a series of frameworks combine multi-view image information for
inferring camera motion and scene geometry [88,11,69,70,23,75]. While most works
rely on generic network architectures, few combine learning with a traditional geo-
metric optimization [70,69,11]. We base our model on DeepV2D [70], which couples
supervised training of depth based on a cost volume architecture with a geometric pose
graph optimization. These choices allow the networks to exhibit a strong cross-dataset
generalization, which can be seen from the results in [70] and our experiments. Re-
cent work Manydepth focuses on training unsupervised multi-view cost volumes [75],
but unsupervised training results in larger errors on moving objects due to the before-
mentioned problems. Recent work DRO [23] has focused on creating a fully recurrent
architecture both for structure and motion estimation. While DRO collapses the cost
volume in order to achieve a lightweight architecture, we exploit the uncertainty in-
formation that is maintained inside the volume. We focus on depth prediction, but our
approach can also be leveraged in downstream tasks, e.g. scene flow estimation [6] or
mapping/fusion [47,88,41].

Uncertainty estimation. Uncertainty can be distinguished into aleatoric and epistemic
uncertainty [31]. While epistemic uncertainty is the uncertainty over model parameters,
aleatoric uncertainty is over the model outputs. Several uncertainty estimation strategies
exist for regression problems: 1. Learn parameters of probability distribution as output
[31,78,6]. 2. Maintain a full discrete probability volume [34,70,47,86,41] 3. Bayesian
neural network with distributions over model parameters 4. Dropout variational infer-
ence [31]. Another related work is [57], which investigates various uncertainty tech-
niques for unsupervised single-image depth prediction. Our approach falls in the second
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category and learns an aleatoric uncertainty. The idea of using cost volumes for depth
reconstruction originates from stereo disparity estimation [34,9,86,85]. The uncertainty
was not yet investigated and exploited with more recent deep SfM-frameworks in the
multi-view setting. We realize, that using the Shannon entropy naively [47,78] within
our framework does not result in optimal uncertainty estimates. We instead follow a
similar strategy as [86], and introduce an uncertainty head into the network.
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Fig. 2: Depth network of DeepV2cD. Based on {It}t=n+1
t=1 and current estimated camera

poses{gt}t=n+1
t=1 the network builds a cost volume with learned features for each frame.

3D hourglasses regularize the cost volume and output intermediate volumes. We train a
separate uncertainty head to learn an uncertainty σ for the depth estimate.

3 Approach

3.1 Problem Statement

Given an ordered sequence of images {It}2n+1
t=1 from a calibrated camera with intrinsics

K, compute the set of extrinsic camera parameters {gt}2n+1
t=1 and scene depth Zn+1.

This can be considered as windowed bundle adjustment problem. For ease of notation,
we use simply Z to denote the key frame depth.

3.2 Notation

Based on a pinhole camera model, projection and backprojection are defined as:

π (X) =
[
fx

X
Z + cx, fy

Y
Z + cy

]
(1)

π−1 (x, Z) =
[
Z u−cx

fx
, Z

v−cy
fy

, Z, 1
]T

(2)

with camera coordinates x = [u, v, 1], 3D coordinates X = [X, Y, Z, 1]
T and cam-

era intrinsics [fx, fy, cx, cy]. The camera motion is modelled using the rigid body



6 C. Homeyer et al.

motion gij ∈ SE3. Given two views i and j, the relative coordinate transformation is
defined as:

xj = π
(
gijX

i
)
= π

(
gjg
−1
i π−1

(
xi, Z

))
(3)

= Ψ
(
gij , xi, Z

)
,

where Ψ is the reprojection operator that transforms a pixel coordinate from camera i
into camera j. Given an element of the Lie group g, the logarithm map ξ = log g ∈ se3
maps to the Lie algebra. Vice versa the exponential map is defined as g = eξ ∈ SE3.

3.3 Networks

This section introduces the DeepV2cD framework. After restating the base networks
[70], we introduce our uncertainty head and the explored learning strategies.

Motion Network. We use the motion network from [70]. We briefly summarize the ar-
chitecture and idea in the following. The motion network predicts a set of camera poses
{gt}2n+1

t=1 based on Z and {It}2n+1
t=1 . It is a recurrent network that instead of regressing

a final pose set, outputs a sequence of l sets [{g}1, {g}2, . . . , {g}l]. The camera poses
{gt}n+1

t=1 act as state variables, that determine the alignment of learned features and are
updated based on an internal geometric pose graph optimization. Relative camera poses
between frames are initialized based on a generic network [89]. A feature encoder pro-
duces dense features F i ∈ RH

4 ×
W
4 ×32 for each image Ii. Based on the current state

{gt,i}2n+1
t=1 and input scene geometry Z features are aligned in a canonical coordinate

frame and concatenated. A 2D hourglass network [54] estimates a pairwise residual op-
tical flow R and confidence map W, depending on the variable state across recurrences.
We observe, that the motion network learns to ignore regions in the image, that violate
the static scene assumption via the confidence W. It only keeps regions with good op-
tical flow for pose optimization. Given a state {gt}2n+1

t=1 , Z, W and R, an update ξ can
be computed via Gauss-Newton optimization [70].

Depth Network. We extend the depth architecture with an additional prediction head
and restate the core principles in the following. An overview of the depth network can be
seen in Figure 2. The network design is conceptually similar to PSMNet [9], but gives
only two instead of three intermediate predictions due to memory constraints in our
setting. This network predicts a dense depth map Z based on {It}2n+1

t=1 and {gt}2n+1
t=1 .

The motion of dynamic objects is not given as input to the network.
For each image Ii ∈ RH×W×3, a 2D hourglass encoder [54] learns features F i ∈

RH
4 ×

W
4 ×L with feature dimension L = 32. The 2D features for each time frame i are

reprojected based on the static scene geometry and camera motion defined by (Z, gij)
and aligned in a canonical coordinate frame j, that is the keyframe. Given the correct
depth Z∗ and camera motions g∗ij , the features should be matched well as long as the
scene is static. A cost volume C is constructed by backprojecting 2D features into the
key frame over a discrete 1D depth interval with Z̃ = [z1, z2, . . . , zD]. The depth range
in the scene is discretized intoD−1 bins. When reprojecting features into this common
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reference frame based on Ψ , they are bilinearly interpolated with the sampler Φ (·) [28].
For each point xik in frame i and depth zd ∈ Z̃:

Cjkd = Φ
[
Ψij
(
xik, zd

)]
(4)

= Φ
[
π
(
gjg
−1
i π−1

(
xik, zd

))]
∈ R

H
4 ×

W
4 ×D×L .

We use a discretization of D = 32 bins, ranging to 80m in practice due to memory con-
straints. The reprojection operator Ψij : i 7→ j, is only dependent on camera motion and
scene geometry. All non-keyframe features are concatenated with the backprojected
keyframe features to form a final pairwise cost volume Cij ∈ RH

4 ×
H
4 ×D×2L. After-

wards feature matching is learned with a series of 3D convolutions on the volume for
each pair. The information across all pairs of images is globally aggregated in a pool-
ing layer, so that a single cost volume C ∈ RH

4 ×
W
4 ×D×L remains. The cost volume

is then processed by a series of 3D hourglass modules [54], which make up most of
the networks parameters. This step is commonly referred to as cost volume regulariza-
tion in the stereo literature [34,9] and we believe it is crucial to achieve good perfor-
mance in dynamic environments since up to this point the learned features have been
matched solely on a static scene assumption. Each hourglass outputs an intermediate
regularized cost volume that is run through a depth head to give a final depth estimate
Zi ∈ RH

4 ×
W
4 ×1.

The depth head produces a probability volume by a series of 1× 1× 1 convolutions
and a softmax operator over the depth dimension. The prediction is estimated using the
differentiable argmax function [34], thus giving the expected depth of the probability
distribution. All predictions are upsampled to final resolutionH×W with naive bilinear
upsampling. The design is similar to the stereo network PSMNet [9], but only gives two
intermediate predictions instead of three in PSMNet due to memory constraints in the
multi-view setting.

Similar to related work [78,41,47], we can estimate an uncertainty based on the
maintained probability volume. Given the probability distribution P over Z̃, we can
compute the Shannon entropy:

H =

D∑
d=1

P (zd) logP (zd) (5)

as a measure of uncertainty [78]. However, due to the limited discrete depth hypothesis
space and the soft-argmax operation, the network does not necessarily learn to estimate
uni-modal distributions since an infinite number of distributions can produce the same
expected depth value. The entropy is not necessarily a good measure of uncertainty.
Instead of taking the entropy naively, we learn a confidence f ∈ [0, 1]

M×N×1 with
a separate network head similar to [86]. This head performs a series of 3 × 3 × 3
convolutions on the regularized cost volume to check for hard-to-match pixels; we use
4 convolution layers. The uncertainty σ is then defined as the linearly scaled σ = s ·
(1− f)+ ε, which avoids numerical issues; we set s = 2 and ε = 0.25 empirically. For
training the uncertainty head we adopt the regularization loss from [86] and define an
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unimodal groundtruth distribution:

P ∗ (zd) = softmax

(
−|zd − Z

∗|
σ

)
(6)

over all values in the depth hypothesis space zd and with the estimated uncertainty σ
from the uncertainty head. The sharpness of the peak is dependent on the uncertainty
predicted by the network.

Iterative inference by coupling motion and depth. As the two networks are functions
partially dependent on the output of each other, it is alternated between them during
inference. They converge to a final optimum after few iterations as shown in [70]. At
the start of the inference, the depth is initialized to a constant depth map for all of our
experiments, thus requiring no warm start.

D
at

a Ground truth depth Ground truth depth

Predicted depth

O
ur

s Abs. rel. error Predicted depth Abs. rel. error

[2
3]

sp
vd

[2
3]

se
lf
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Fig. 3: Qualitative results on dense KITTI 2015 training split for 5-frame predictions.
Self-supervised training struggles with objects moving colinear to the camera. While
supervised frameworks do not suffer from this, they have error patterns due to sparse
lidar groundtruth (e.g. cars and windows). Moving objects are usually not fully covered.

4 Training

We tightly follow the training protocol of [70]. Each network outputs a sequence of pre-
dictions, resulting in Zi and {g}i. Since the model output is a sequence ofm predictions
the final loss is defined as the weighted sum:

L =

m∑
s=1

γm−sLs (7)

with γ = 0.5.
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4.1 Losses

We experiment with a supervised and semi-supervised setting and compare to related
work:

Lspvd = λ1L1 + λ2Lsmooth + λ3Lfocal + λ4Lflow (8)

Lsemi = λ̂1Ld, photo + λ̂2Lsmooth + λ̂3Lm, photo + λ̂4Lse3

Supervised. As is common, depth is supervised with an l1 loss:

L1 (Z, Z
∗) =

1

HW

∑
k

|Z (xk)− Z∗ (xk) | (9)

The camera pose graph is supervised by a reprojection error, based on the induced
optical flow from the camera motion:

Lflow (G,G∗) =
1

HW

∑
k

||Ψ (G, xk, Z (xk))− Ψ (G∗, xk, Z (xk)) ||1 .

Since the ground truth is sparse on real data, an additional smoothness loss is used when
no ground truth is defined. The binary mask M denotes missing ground truth:

Lsmooth =
1

HW

∑
k

M (xk)� |∂xZ (xk) + ∂yZ (xk) | . (10)

It is common practice in monocular depth prediction to use edge-aware smoothing,
mainly popular in unsupervised learning [21,23]:

Lsmooth =
1

HW

∑
k

M � |∂xZ|e−|∂xI| + |∂yZ|e−|∂yI| . (11)

This assumes, that edges in the depth map are usually a subset of the image edges, thus
sharing a spatial location. Since the loss can be readily used for supervised learning as
well, we use it for both our semi-supervised and DeepV2cD experiments.

In order to train our uncertainty, we use a depth focal loss [86]:

Lfocal =
1

HW

∑
k

D∑
d=1

(1− P ∗ (xk))−δ · (−P (xk) · logP ∗ (xk)) ,

with hyperparameter δ; we set δ = 2. Depth supervision on real data is costly to obtain,
but camera poses are often readily available. We consider a semi-supervised setting, be-
cause it can help to resolve the scale ambiguity that arises with photometric information
only. We use a weighted geodesic distance on the camera poses similar to [33,50] for
supervising camera pose estimation and average this over the pose graph:

Lse3 (G∗,G) = d (T∗,T) + β · d (R∗,R) (12)

with β = 1.0.
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Self-supervised. Self-supervised learning uses the image data for creating a training
signal. Based on the estimated depth Z and a relative pose g, a warped image I′ can
be constructed with Ψ from the input image I for each key-reference image pair. The
similarity is measured by a weighted sum of structural similarity index (SSIM) and L1
loss [21,22,24]:

Lphoto
(
Ii, I′i

)
= α

1− SSIM
(
Ii, I′i

)
2

+ (1− α) ||Ii − I′i||1 . (13)

We adopt the minimum fusion strategy from [22] for fusing the photometric losses
across view pairs. Similar to the supervised case, we can enforce edge-aware smooth-
ness for the depth predictions, but with M being all in-view pixels.

Weighting. We adopt hyperparameters for balancing the original loss terms from [70]
and determine others empirically. For our results, we set λ = [1.0, 0.02, 0.002, 1.0] and
λ̂ = [10.0, 0.02, 10.0, 1.0].

4.2 Implementation details

We extend on the published code of Teed et al. [70], but upgrade their implementation
to Tensorflow 2 [1]. All components from the network are trained from scratch with
RMSProp [71] if not stated otherwise. We use standard color and flip augmentation
similar to [70,23] and small random camera pose perturbation as [70]. Our input and
output resolution is 192 × 1088, which is reasonable for the limited lidar coverage.
We use n = 5 frames as input as this turns out to be enough temporal information to
achieve optimal performance, see [70].

Training can be divided into two stages: 1. the motion module is trained alone with
interpolated groundtruth depth as input. 2. the motion network gets a cached depth pre-
diction with increasing likelihood from the previous epoch as input instead of the depth
groundtruth and the depth network takes the predicted camera poses. Both networks are
trained jointly on the combined loss and therefore depend on each other already during
training. We train for approx. [5, 15] epochs with batch sizes [12, 3] for the respective
stages like the baseline from [70] if not stated otherwise. During inference we run 5
iterations of the networks compared to 8 in the reference implementation, because we
found that this already matches the reported performance.

5 Experiments

We test DeepV2cD and our own Tensorflow 2 DeepV2D implementation on multiple
automotive datasets that include dynamic objects. Our primary focus lies on the depth
prediction performance and we include both multi-view and single-view comparisons.
As common in deep monocular multi-view SfM we report results for the ground truth
scale aligned depth [72,69,70]. We compare with current SotA multi-view frameworks
and report results for their publicly available models.
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5.1 Datasets

KITTI. The KITTI dataset [20] contains image and lidar sequences from a moving
car and is widely established for evaluating depth estimation. We follow the Eigen
train/test split and evaluation protocol [17] with the official ground truth maps. The
original dataset has only sparse depth ground truth and misses moving object labels.
To adress these shortcomings, the KITTI 2015 dataset was published [53] with dense
ground truth and labels for 200 frames. We evaluate on the KITTI 2015 training split
to show the performance gap between the static scene and dynamic objects. During
evaluation we also use the Eigen crop as on KITTI 2012.

Virtual KITTI 2. Virtual KITTI [7] is a synthetic dataset, consisting of several driving
sequences from the real KITTI dataset imitated with the unity engine. It contains diverse
weather and lighting conditions and moving objects. Even though it does not cover as
many driving scenes as the original real data, we use it to investigate the zero-shot gen-
eralization performance of our backbone network DeepV2D and improved performance
for our supervised DeepV2cD model. We generated our own 95/5 train/test split in sim-
ilar fashion to the Eigen split. We noticed, that some frames have misaligned ground
planes and objects that appear/vanish in the middle of the scene. By removing such
frames and ones with no camera motion, we achieve a split of approx. 14.3k and 754
train/test frames. We train for [9, 20] epochs and we train sequentially when combining
multiple datasets. We believe, that with a better domain adaption strategy [25] results
can be improved further than sequential training on the multiple datasets.

Cityscapes. The Cityscapes dataset [13] is an autonomous driving dataset collected
from various cities in Germany. The dataset contains many moving object classes, such
as cars and pedestrians. It is mainly used for object detection, but also contains 1500
frames with Semi-Global Matching (SGM) [26] depth ground truth. We evaluate on this
dataset to test zero-shot generalization performance and follow the evaluation protocol
of [8,75].

5.2 Accuracy of multi-view networks

Table 1 shows the current SotA for monocular depth prediction on the KITTI Eigen
split. It can be seen that DeepV2D and DeepV2cD achieve the best reconstruction
accuracy in the 5-view setting on the KITTI Eigen split. All multi-view frameworks
achieve better results than single-view ones. While DRO [23] and Manydepth [75] are
significantly faster than DeepV2D and DeepV2cD, they are less accurate in a 5-view
setting. Depending on the training, not all multi-view models achieve higher accuracy
with more views added compared to the 2-view setting. Our cost volume regulariza-
tion and uncertainty strategy gives better results than the DeepV2D baseline [70] while
needing fewer inference iterations.

All supervised multi-view frameworks except DeepV2cD can be trained with self-
supervision as well. We did not manage to train DeepV2D in this setting. However,
we can show, that it achieves good performance by simply training on the small Vir-
tual KITTI (VK) dataset. Current unsupervised multi-view approaches perform best
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Table 1: Results on KITTI Eigen split with improved ground truth. Multi-view frame-
works have higher accuracy than single-view. We achieve the best results when regular-
izing the cost volume of our backbone network and training with more data.
Method Views Supervised W ×H Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑

MonoDepth [22] 1 7 1024× 320 0.091 0.531 3.742 0.135 0.916 0.984
Kuznietsov et al. [39] 1 3 621× 187 0.089 0.478 3.610 0.138 0.906 0.98
Packnet-SfM [24] 1 (3) 640× 192 0.078 0.420 3.485 0.121 0.931 0.986
DORN [18] 1 3 513× 385 0.069 0.300 2.857 0.112 0.945 0.988

BANet [69] 5 3 - 0.083 - 3.640 0.134 - -
Manydpepth [75] 2 7 1024× 320 0.055 0.313 3.035 0.094 0.958 0.990
Manydpepth [75] 5 7 1024× 320 0.055 0.312 3.034 0.094 0.958 0.991
DRO [23] 2 7 960× 320 0.057 0.342 3.201 0.123 0.952 0.989
DRO [23] 5 7 960× 320 0.064 0.381 3.262 0.120 0.951 0.988
DRO [23] 2 3 960× 320 0.046 0.210 2.674 0.083 0.969 0.993
DRO [23] 5 3 960× 320 0.047 0.212 2.711 0.084 0.968 0.994
DeepV2D (ours) (VK) 5 7 1088× 192 0.060 0.423 3.302 0.110 0.950 0.984
DeepV2D (ours) (VK + K) 5 (3) 1088× 192 0.058 0.669 3.246 0.100 0.960 0.985
DeepV2D [70] 2 3 1088× 192 0.064 0.350 2.946 0.120 0.946 0.982
DeepV2D [70] 5 3 1088× 192 0.037 0.174 2.005 0.074 0.977 0.993
DeepV2cD (ours) 5 3 1088× 192 0.037 0.167 1.984 0.073 0.978 0.994
DeepV2cD* (ours) (K + VK) 5 3 1088× 192 0.035 0.158 1.877 0.071 0.980 0.994

when trained on the target dataset. The gap can be further closed after finetuning semi-
supervised (3) without expensive depth ground truth for just 5 epochs. Manydepth uti-
lizes a test-time refinement, which we did not experiment with for DRO and DeepV2D.

Table 2: Results on KITTI 2015 train split. Metrics are slightly worse for all frameworks
compared to the KITTI 2012 Eigen split.

Method Supervised ARE Dyn. ↓ ARE Static ↓ ARE All ↓ δ < 1.25 ↑

DRO [23] 7 449.1 0.081 0.276 0.795
Manydpepth 7 0.177 0.0641 0.090 0.914
DRO [23] 3 0.069 0.050 0.056 0.953
DeepV2D (ours) 3 0.152 0.042 0.071 0.959
DeepV2cD* (ours) 3 0.127 0.039 0.062 0.965

Table 2 shows results on the KITTI 2015 training split to emphasize the difference
between static and dynamic scene. In Figure 3, we show some qualitative examples.
DeepV2cD achieves the best reconstruction of the static scene. All frameworks per-
form systematically worse on moving objects. Unsupervised training cannot resolve
the inherent ambiguity resulting from the independent object motion and thus results in
gross errors when not taking care of regularization. Manydepth resolves this problem
partially by regularizing their network with a single-view teacher network compared to
the self-supervised DRO during training. We observe, that even though no supervised
framework addresses the object motion directly in their reprojection operator, the recon-
struction works in most cases. We believe, that this is due to cost volume regularization
in DeepV2D and DeepV2cD and the temporal information of the recurrent network in
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Table 3: Zero shot cross-dataset generalization of multi-view frameworks. We evaluate
models trained on KITTI (K) on Cityscapes (CS).
Method Supervised Dataset Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Manydpepth [75] 7 CS 0.114 1.193 6.223 0.170 0.875 0.967 0.989

DRO [23] 7 K→ CS 0.328 7.348 11.656 0.597 0.548 0.747 0.822
DRO [23] 3 K→ CS 0.157 2.228 10.306 0.299 0.777 0.900 0.948
Manydpepth [75] 7 K→ CS 0.162 1.697 8.230 0.229 0.764 0.935 0.979
DeepV2D 3 K→ CS 0.109 1.479 6.7633 0.1842 0.876 0.952 0.978
DeepV2cD* 3 K + VK→ CS 0.104 1.325 6.7328 0.1792 0.883 0.955 0.979

DeepV2cD* filtered 80% 3 K + VK→ CS 0.070 0.559 4.188 0.124 0.930 0.975 0.989

Depth prediction Abs. rel. error Uncertainty

Fig. 4: Qualitative results on three samples of KITTI 2015 training split. Warm col-
ors indicate high error and uncertainty. DeepV2cD makes errors in areas of occlusion,
missing ground truth, reflective surfaces or thin structures. The uncertainty head learns
to predict these areas reliably with no overhead. Most problematic for reconstruction of
dynamic objects is missing lidar supervision, noticable by the cut off roofs and holes at
windows. DeepV2cD reconstructs these regions as part of the background. The uncer-
tainty is strongest in these areas and in the back of the scene at far depths.

DRO. Since we could not observe these errors on virtual data, we believe that these
errors are due to missing supervision with the sparse lidar. While the systematic model
errors of DeepV2cD and DRO on the dynamic parts look qualitatively similar, DRO has
a significantly lower gap to the static reconstruction. We observe, that DeepV2cD some-
times does not reconstruct the car shapes as well and produces more gross outliers. A
possible explanation for this is the longer training time of DRO compared to DeepV2cD
(50 epochs compared to 15) and the pre-trained ImageNet [62] weights. Pretraining on
Virtual KITTI does not resolve this issue completely.

Table 3 shows the zero-shot cross-dataset generalization performance of current
SotA multi-view frameworks. DeepV2D and DeepV2cD can generalize well to other
datasets. We generalize best from KITTI to Cityscapes and outperform unsupervised
single-view networks trained on the target. This could be explained with the explicit
geometric pose graph optimization for motion estimation and the cost volume. The
learned uncertainty transfers well to Cityscapes. When keeping 80% of the pixels, we
effectively reach 50% the error of other frameworks in this setting.
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(a) DeepV2D on KITTI 2012 Eigen test split
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(b) DeepV2cD* on KITTI 2012 Eigen test split
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(c) DeepV2D on KITTI 2015 train split
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(d) DeepV2cD* on KITTI 2015 train split

Fig. 5: Sparsification plots on KITTI 2012 and 2015: We sort the pixels in ascending
order of uncertainty. The x-axis represents the percentage of pixels, that are included
in the evaluation and the y-axis represents the absolute relative error (ARE). An oracle
acts as upper bound for identifying errors. We also include a random selection baseline
for the Eigen split. We can distinguish between errors on moving objects and static
background on KITTI 2015. We include supervised DRO [23] for comparison. While
the Shannon entropy is already useful for filtering, the learned uncertainty correlates
better with the actual error. By rejecting few percent of the pixels, we can reliably filter
out gross outliers and achieve SotA performance. The filtered predictions of DeepV2cD
converge to similar reconstruction performance for both static and dynamic parts of the
scene.

5.3 Uncertainty

The previous experiments have shown, that with an uncertainty head and an improved
regularization strategy DeepV2cD achieves SotA depth prediction accuracy on 5-frame
videos on KITTI. In Figure 4, we show qualitative examples of our learned uncertainty
on the KITTI dataset. It correlates with hard to match pixels, occlusions, reflective
surfaces and areas of missing ground truth. In general it is higher at far away pixels
in the scene. Since the uncertainty head can be run in parallel to the depth prediction
head, this does not come with an additional computational overhead.
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In the next experiments, we investigate the quality of the learned uncertainty for
identifying errors made by the model. This implicates, that sorting the pixels by un-
certainty results in the same ordering as when we sort by errors. We use sparsification
plots [27,86,78] and compare the learned uncertainty with three baselines: 1. Shan-
non entropy 2. Random filtering 3. Oracle. Furthermore, we compare DeepV2cD to
the inherent uncertainty of DeepV2D. Figure 5 shows, that DeepV2cD can learn a re-
liable aleatoric uncertainty while achieving SotA accuracy. We beat all baselines and
can achieve cleaner reconstructions after filtering with no significant overhead. When
throwing away 20% of the pixels, the avg. abs. rel. error is below 2.5%. Related work
DRO [23] achieves SotA accuracy by collapsing the cost volume, but cannot detect
the model errors inherent to the sparse supervision. We argue that this property is very
useful for downstream tasks, such as map building or scene flow estimation [6].

6 Conclusion

In this paper, we investigated the performance of deep SfM frameworks on several
autonomous driving datasets. We show improved results for a cost volume based archi-
tecture due to better loss supervision and an additional uncertainty head. Our results
indicate, that supervised models make errors on real datasets mainly due to a lack of
supervision and that they are able to learn more accurate depths when provided with
high quality dense data on virtual datasets. Missing supervision can be compensated by
considering the aleatoric uncertainty. Instead of taking the Shannon entropy inside the
cost volume, a learned uncertainty showed better performance at identifying outliers.
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35. Klingner, M., Termöhlen, J.A., Mikolajczyk, J., Fingscheidt, T.: Self-supervised monocular
depth estimation: Solving the dynamic object problem by semantic guidance. In: European
Conference on Computer Vision. pp. 582–600. Springer (2020) 4

36. Kopf, J., Rong, X., Huang, J.B.: Robust consistent video depth estimation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1611–1621
(2021) 4

37. Kumar, S., Dai, Y., Li, H.: Monocular dense 3d reconstruction of a complex dynamic scene
from two perspective frames. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 4649–4657 (2017) 3

38. Kumar, S., Dai, Y., Li, H.: Superpixel soup: Monocular dense 3d reconstruction of a complex
dynamic scene. IEEE transactions on pattern analysis and machine intelligence (2019) 3

39. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth
map prediction. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 6647–6655 (2017) 12

40. Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 89–96 (2014) 3

41. Laidlow, T., Czarnowski, J., Nicastro, A., Clark, R., Leutenegger, S.: Towards the proba-
bilistic fusion of learned priors into standard pipelines for 3d reconstruction. In: 2020 IEEE



18 C. Homeyer et al.

International Conference on Robotics and Automation (ICRA). pp. 7373–7379. IEEE (2020)
3, 4, 7

42. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction
with fully convolutional residual networks. In: 2016 Fourth international conference on 3D
vision (3DV). pp. 239–248. IEEE (2016) 1, 3

43. Lee, S., Im, S., Lin, S., Kweon, I.S.: Instance-wise depth and motion learning from monoc-
ular videos. arXiv preprint arXiv:1912.09351 (2019) 4

44. Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal estimation
from monocular images using regression on deep features and hierarchical crfs. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. pp. 1119–1127
(2015) 1, 3

45. Li, H., Gordon, A., Zhao, H., Casser, V., Angelova, A.: Unsupervised monocular depth learn-
ing in dynamic scenes. arXiv preprint arXiv:2010.16404 (2020) 4

46. Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
pp. 1253–1260. IEEE (2010) 3

47. Liu, C., Gu, J., Kim, K., Narasimhan, S.G., Kautz, J.: Neural rgb (r) d sensing: Depth and
uncertainty from a video camera. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10986–10995 (2019) 3, 4, 5, 7

48. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep
convolutional neural fields. IEEE transactions on pattern analysis and machine intelligence
38(10), 2024–2039 (2015) 1, 3, 4

49. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projec-
tions. Nature 293(5828), 133–135 (1981) 3

50. Mahendran, S., Ali, H., Vidal, R.: 3d pose regression using convolutional neural networks.
In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp.
2174–2182 (2017) 9

51. Mayer, N., Ilg, E., Fischer, P., Hazirbas, C., Cremers, D., Dosovitskiy, A., Brox, T.: What
makes good synthetic training data for learning disparity and optical flow estimation? Inter-
national Journal of Computer Vision 126(9), 942–960 (2018) 3

52. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
4040–4048 (2016) 3

53. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 3061–3070 (2015) 11

54. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In:
European conference on computer vision. pp. 483–499. Springer (2016) 6, 7

55. Park, H.S., Shiratori, T., Matthews, I., Sheikh, Y.: 3d reconstruction of a moving point from a
series of 2d projections. In: European conference on computer vision. pp. 158–171. Springer
(2010) 3

56. Park, H.S., Shiratori, T., Matthews, I., Sheikh, Y.: 3d trajectory reconstruction under perspec-
tive projection. International Journal of Computer Vision 115(2), 115–135 (2015) 3

57. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocu-
lar depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3227–3237 (2020) 4

58. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. pp. 12179–12188
(2021) 1, 4



Learned Monocular Depth and Uncertainty from Dynamic Videos 19

59. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocu-
lar depth estimation: Mixing datasets for zero-shot cross-dataset transfer. arXiv preprint
arXiv:1907.01341 (2019) 1, 4

60. Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation in complex
dynamic scenes. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4058–4066 (2016) 3

61. Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M.J.: Competitive
collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12240–12249 (2019) 4

62. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Interna-
tional journal of computer vision 115(3), 211–252 (2015) 13

63. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual slam and structure from motion in dy-
namic environments: A survey. ACM Computing Surveys (CSUR) 51(2), 1–36 (2018) 3

64. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single still im-
age. IEEE transactions on pattern analysis and machine intelligence 31(5), 824–840 (2008)
3

65. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 4104–4113 (2016) 3

66. Shashua, A., Avidan, S., Werman, M.: Trajectory triangulation over conic section. In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision. vol. 1, pp.
330–336. IEEE (1999) 3

67. Snavely, K.N.: Scene reconstruction and visualization from internet photo collections. Uni-
versity of Washington Washington, DC (2008) 3

68. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: Real-time coherent 3d recon-
struction from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 15598–15607 (2021) 4

69. Tang, C., Tan, P.: Ba-net: Dense bundle adjustment network. arXiv preprint
arXiv:1806.04807 (2018) 1, 2, 4, 10, 12

70. Teed, Z., Deng, J.: Deepv2d: Video to depth with differentiable structure from motion. arXiv
preprint arXiv:1812.04605 (2018) 1, 2, 4, 6, 8, 10, 11, 12

71. Tieleman, T., Hinton, G., et al.: Lecture 6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural networks for machine learning 4(2), 26–31
(2012) 10

72. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T.: Demon:
Depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. pp. 5038–5047 (2017) 1, 4, 10

73. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Sfm-net:
Learning of structure and motion from video. arXiv preprint arXiv:1704.07804 (2017) 4

74. Wang, S., Clark, R., Wen, H., Trigoni, N.: Deepvo: Towards end-to-end visual odometry
with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA). pp. 2043–2050. IEEE (2017) 4

75. Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal oppor-
tunist: Self-supervised multi-frame monocular depth. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 1164–1174 (2021) 1, 2, 4, 8, 11,
12, 13

76. Wimbauer, F., Yang, N., von Stumberg, L., Zeller, N., Cremers, D.: Monorec: Semi-
supervised dense reconstruction in dynamic environments from a single moving camera.
arXiv preprint arXiv:2011.11814 (2020) 4



20 C. Homeyer et al.

77. Wu, C., et al.: Visualsfm: A visual structure from motion system (2011) 1, 3
78. Yang, G., Hu, P., Ramanan, D.: Inferring distributions over depth from a single image. In:

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp.
6090–6096. IEEE (2019) 3, 4, 5, 7, 15

79. Yang, N., Stumberg, L.v., Wang, R., Cremers, D.: D3vo: Deep depth, deep pose and deep
uncertainty for monocular visual odometry. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1281–1292 (2020) 4

80. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: Every pixel counts: Unsupervised ge-
ometry learning with holistic 3d motion understanding. In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. pp. 0–0 (2018) 4

81. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: Mvsnet: Depth inference for unstructured multi-
view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV). pp.
767–783 (2018) 4

82. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and camera
pose. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1983–1992 (2018) 4

83. Yoon, J.S., Kim, K., Gallo, O., Park, H.S., Kautz, J.: Novel view synthesis of dynamic scenes
with globally coherent depths from a monocular camera. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5336–5345 (2020) 3

84. Yuan, C., Medioni, G., Kang, J., Cohen, I.: Detecting motion regions in the presence of a
strong parallax from a moving camera by multiview geometric constraints. IEEE transactions
on pattern analysis and machine intelligence 29(9), 1627–1641 (2007) 2, 3

85. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: Ga-net: Guided aggregation net for end-to-
end stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 185–194 (2019) 5

86. Zhang, Y., Chen, Y., Bai, X., Yu, S., Yu, K., Li, Z., Yang, K.: Adaptive unimodal cost volume
filtering for deep stereo matching. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 12926–12934 (2020) 3, 4, 5, 7, 9, 15

87. Zhang, Z., Cole, F., Tucker, R., Freeman, W.T., Dekel, T.: Consistent depth of moving objects
in video. ACM Transactions on Graphics (TOG) 40(4), 1–12 (2021) 4

88. Zhou, H., Ummenhofer, B., Brox, T.: Deeptam: Deep tracking and mapping. In: Proceedings
of the European conference on computer vision (ECCV). pp. 822–838 (2018) 4

89. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-
motion from video. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1851–1858 (2017) 4, 6


