
A Variational Perspective on
the Assignment Flow

Fabrizio Savarino and Christoph Schnörr
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Abstract. The image labeling problem can be described as assigning
to each pixel a single element from a finite set of predefined labels. Re-
cently, a smooth geometric approach for inferring such label assignments
was proposed by following the Riemannian gradient flow of a given ob-
jective function on the so-called assignment manifold. Due to the spe-
cific Riemannian structure, this results in a coupled replicator dynamic
incorporating local spatial geometric averages of lifted data-dependent
distances. However, in this framework an approximation of the flow is
necessary in order to arrive at explicit formulas. We propose an alterna-
tive variational model, where lifting and averaging are decoupled in the
objective function so as to stay closer to established approaches and at
the same time preserve the main ingredients of the original approach: the
overall smooth geometric setting and regularization through geometric
local averages. As a consequence the resulting flow is explicitly given,
without the need for any approximation. Furthermore, there exists an
interesting connection to graphical models.

Keywords: image labeling, assignment manifold, assignment flow, geo-
metric optimization, Riemannian gradient flow, replicator equation, mul-
tiplicative updates

1 Introduction

Overview, Motivation. Let G = (V, E) be a graph representing a certain
spatial structure and denote by f : V → F some given data on that graph with
values in a feature space F . A labeling of f on V with predefined labels L =
{l1, . . . , ln} is a map A : V → L assigning to every vertex i ∈ V a label Ai ∈ L.
By identifying the nodes V with the numbers {1, . . . ,m}, for m := |V|, a labeling
A corresponds to a vector A ∈ Lm. In the case of image labeling, the graph G
might be a grid graph embedded into the image domain Ω ⊂ R2 and f represents
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some observed raw image data F = [0, 1]3 or some features extracted from
the image by standard methods. Depending on the domain of application, one
is usually interested in finding an optimal labeling with respect to a quality
measure, called objective function. In general the task of computing globally
optimal labels results in an NP-hard problem and therefore several relaxations
are used to arrive at a computationally feasible formulation [7].

In [2] a new smooth geometric approach was suggested, which is modeled on
the manifold of row-stochastic matrices with full support, called the assignment
manifold and denoted byW ⊂ Rm×n (for details see Section 2). By choosing the
Fisher-Rao (information) metric,W is turned into a Riemannian manifold. Their
basic idea is to encode labelings as points on the assignment manifold, exploit
the Riemannian setting for constructing an objective function E : W → R using
Riemannian means and optimizing it by following the Riemannian gradient flow.
After a simplifying assumption and approximating the Riemannian mean to first
order by the geometric mean, they arrive at the following dynamical system,
called assignment flow

Ẇ (t) = ΠW (t)S(W (t)) (1.1)

where S consists of certain geometric means and ΠW is a linear map (see Sec-
tion 2).

While the overall geometric model constitutes an interesting new approach
to the labeling problem and performs very well, there are some mathematical
points to address: The relation to classical approaches with objective function
E = Edata + Ereg has not been worked out, where Edata is a data dependent
and Ereg a regularization term. It can be shown, that there exists no potential of
the vector field (1.1) in the Fisher-Rao geometry, which implies that the flow is
not variational. Furthermore, the above mentioned simplifying assumption and
approximation are unavoidable, since otherwise there is no closed form solution
for the Riemannian mean.
Contribution. We propose a variational model where the lifting and averaging
is decoupled in a way similar to more classical approaches of the form E =
Edata+Ereg mentioned above. In this alternative model we are able to completely
avoid the need for any approximation and simplifying assumptions, while still
exploiting the Riemannian structure of the setting. Additionally, there is an
interesting connection to graphical models, a well established formulation of
image labeling.

2 Preliminaries

Basic Notation. We assume G = (V, E) is an undirected graph. If two nodes
i and j are connected by an undirected edge ij ∈ E then we call i and j adja-
cent and denote this relation by i ∼ j. The neighborhood of node i is the set
N (i) := {j ∈ V : i ∼ j}. The number of nodes will be denoted by m := |V| and
the number of labels by n := |L|. We use the abbreviation [k] = {1, 2, . . . , k} for
k ∈ N and identify [m] with V as well as [n] with L. For a matrix M ∈ Rm×n

we denote the i-th row of M as Mi. For any two vectors x ∈ Rn and y ∈ Rn>0,
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we denote the componentwise product and division by xy = (x1y1, . . . , xnyn)>

and x
y = (x1

y1
, . . . , xnyn )> respectively. If g : R → R is a scalar function, then g(x)

denotes the componentwise application of g, i.e. ex = (ex1 , . . . , exn)>. The stan-
dard basis of Rn is denoted by {e1, . . . , en} and the standard inner product on
Rn and Rm×n respectively by 〈·, ·〉. We set 1n = (1, 1, . . . , 1)> ∈ Rn.

The Assignment Manifold. We briefly introduce the necessary geometric
setting of the assignment manifold from [2]. Let ∆n = {p ∈ Rn : pi ≥ 0 for i =
1, . . . , n , 〈p, 1〉 = 1} denote the probability simplex and c := 1

n1n the barycenter.
The relative interior of ∆n is given by

S := rint(∆n) = {p ∈ ∆n : pi > 0 for i = 1, . . . , n} (2.1)

and is a smooth manifold of dimension n − 1 with a global chart and an n − 1
dimensional constant tangent space

TpS = {v ∈ Rn : 〈v,1〉 = 0} =: T ⊂ Rn for all p ∈ S. (2.2)

The orthogonal projection of Rn to T with respect to the standard inner product
is given by

PT [x] :=
(
I − 1

n11>
)
x (2.3)

The lifting map exp: TS = S × T → S is defined as

(p, u) 7→ expp(u) :=
peu

〈p, eu〉
. (2.4)

The map expp : T → S is a diffeomorphism for every p ∈ S with inverse
exp−1p (q) = PT log( qp ) and since T ⊂ Rn is a linear space, it can be used as a chart
for S. The lifting map can also be viewed as expp : Rn → S with expp ◦PT = expp,
however, this is not an invertible map anymore.

The Fisher-Rao metric endows S with a Riemannian structure given by

gp : T × T → R, gp(u, v) = 〈u,Diag( 1
p )v〉, (2.5)

for p ∈ S and u, v ∈ T . Denote by 2Sn−1 ⊂ Rn the sphere of radius 2 with
Riemannian metric induced by the Euclidean inner product of Rn. There is an
isomorphism, called sphere map ψ : S → 2Sn−1 ∩Rn>0, given by p 7→ 2

√
p (cf. [2,

Sec. 2.1]). Due to the form of ψ, the geometry can be continuously extended to
∆n. As a consequence, the Riemannian distance between p, q ∈ S is given by

dS(p, q) = 2 arccos(〈√p,√q〉) ≤ π. (2.6)

There is also an explicit formula for the exponential map of the Riemannian
manifold Expp and its inverse (cf. [2, Prop 2 and eq. (7.16b)]), where the latter
is given by

Exp−1p (q) =
dS(p, q)√

1− 〈√p,√q〉2
(√
pq − 〈√p,√q〉p

)
. (2.7)
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For a scalar valued function f : S → R, the Riemannian gradient (cf. [1]) at
p ∈ S is the vector ∇Sf(p) ∈ T uniquely characterized via the differential of f
by Df(p)[v] = gp(∇Sf(p), v) for all v ∈ T . Define the replicator operator as

Πp : Rn → T x 7→ Πp[x] :=
(

Diag(p)− pp>
)
x for p ∈ S. (2.8)

An elementary calculation shows that Πp ◦ PT = Πp. Viewed as a linear map
Πp : T → T an inverse exists and is given by (Πp)

−1 = PT Diag( 1
p ).

Denote by ∇f(p) ∈ T the Riemannian gradient of S with the standard inner
product as Riemannian metric, then ∇Sf and ∇f are connected by (cf. [2,
Prop. 1])

∇Sf(p) = p∇f(p)− 〈p,∇f(p)〉p = Πp[∇f(p)]. (2.9)

The Riemannian gradient flow on S can be transformed onto T by expc. Accord-
ing to [9, Cor. 1 and Lem. 4] we have t 7→ p(t) ∈ S with p(0) = c solves gradient
flow (2.10)(a) if and only if t 7→ v(t) ∈ T with v(0) = 0 and p(t) = expc(v(t))
solves the gradient flow (2.10)(b)

(a) ṗ(t) = ∇Sf(p(t)) (b) v̇(t) = ∇f
(

expc(v(t))
)

(2.10)

The assignment manifold W is defined to be the product manifoldW := Sm
with tangent space given by TWW = Tm =: T for W ∈ W. The Fisher Rao
metric on S induces a Riemannian metric on W via the product metric, thus
the above formulas carry over to the product manifold setting by applying them
componentwise. In the following we use the description ofW as a set of matrices
W = {W ∈ Rm×n>0 : W1 = 1} together with T = {V ∈ Rm×n : V 1 = 0}.

3 Model

Motivation: The Assignment Flow. In order to better motivate the form
of our variational approach below and the parallels to [2], we review the core
concept of the assignment flow in a bit more detail. The basic idea of modeling
the labeling problem on the assignment manifold is to encode label lj ∈ L by
the j-th standard basis vector ej of Rn, which is a corner of ∆n. With this,
a labeling A ∈ Lm corresponds to an assignment matrix W ∈ ∆n with i-th
row Wi = ej if Ai = lj . These integral labelings are relaxed to the assignment
manifold W by allowing them to be fully probabilistic. Let f : V → F be some
given data on the graph G with values in a feature space F . Suppose some labels
L = {l1, . . . , ln} and a distance function d : F ×L → R are given. Then the data
dependent distance matrix D ∈ Rm×n measuring the fit of labels to the data is
defined as

Dij := d(fi, lj) for i ∈ [m], j ∈ [n]. (3.1)

These distances are lifted to the assignment manifold by the lifting map

Li = Li(Wi, Di) := expWi
(− 1

ρDi), (3.2)
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where Di denotes the i-th row of D. These vectors are used to build the similarity
matrix S ∈ W, where each row Si = Si(W,D) is the Riemannian mean given by
the unique minimizer of

1

2

∑
j∈N (i)

ωijd
2
S
(
(p, Lj(Wj , Dj)

)
(3.3)

for some chosen weights ωij > 0 with
∑
j∈N (i) ωij = 1 for every i ∈ V. A

label assignment is inferred by maximizing the correlation between the current
assignment state W and the similarity matrix S and has the form

sup
W∈W

E(W ) := 〈W,S(W,D)〉. (3.4)

Adopting the simplifying assumption that averaging changes slowly and ap-
proximating the Riemannian mean by the geometric mean, one arrives at the
assignment flow formulation (1.1).

Variational Model. Intuitively, the above described assignment flow also con-
tains the two classical components of labeling, using the data for label decisions
while locally regularizing these decisions in a spatial neighborhood. The goal for
our variational approach is to disentangle these two components in the assign-
ment flow, while keeping the basic building blocks: the overall smooth geometric
setting and regularization through geometric local averages.

Using the definition of the distance matrix D from (3.1), we propose the
following quality measure J(W ) evaluating an assignment matrix W ∈ W by

J(W ) := Jdata + ρJreg :=〈W,D〉+
ρ

2

∑
ij∈E

ωijd
2
S(Wi,Wj) (3.5a)

=
∑
i∈V

(
〈Wi, Di〉+

ρ

2

∑
j∈N (i)

ωijd
2
S(Wi,Wj)

)
, (3.5b)

with weights ωij > 0 and
∑
j∈N (i) ωij = 1 for every i ∈ V and a parameter ρ > 0

regulating the amount of regularization.
The purpose of the data term is to choose the best fit to the data, i.e. the

smallest distance at every node i ∈ V. Regularization is induced by comparing
the assignments Wi at every node i ∈ V with their neighboring assignments Wj

with j ∈ N (i), similar to [11] and [4]. The main take-home message of this
paper is: In contrast to the assignment flow, we do not directly compare the
assignments Wi to the Riemannian mean itself (cf. (3.4)), but rather use the
Riemannian mean defining objective functions (3.3) as a measure for similarity
in a spatial neighborhood. This way we avoid the need for an explicit expression
of the Riemannian mean and its derivative while at the same time favoring those
assignments similar to the Riemannian mean of neighboring assignments.

A label assignment is inferred by minimizing the obj. function: infW∈W J(W ).
Since 〈W,D〉 as well as the Riemannian distance are defined and continuous on
the whole space ∆m, so is the objective function J . Yet, this extension is not
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smooth due to the square root in the sphere map ψ, which isomorphically em-
beds S into the Euclidean sphere. Because of J : ∆m → R being continuous and
∆m compact, the existence of minimizers is assured and

inf
W∈W

J(W ) = min
W∈∆m

J(W ). (3.6)

As a consequence, the minimizer W ∗ might not be an element of the assignment
manifold W = rint(∆m) anymore.

Parameter influence of ρ. In the following we analyse the set of minimizers
for the two extreme cases of the parameter ρ > 0 being close to 0 and very large.

Case ρ→ 0: For ρ tending to 0, we loose the regularization term in the limit
and obtain a minimization problem which separates over the nodes

min
W∈∆m

∑
i∈V
〈Wi, Di〉 =

∑
i∈V

min
Wi∈∆

〈Wi, Di〉. (3.7)

Assume that every Di has a unique minimal entry denoted by Dimi < Dij for
j 6= mi. Then the unique minimizer W ∗i of 〈Wi, Di〉 is given by W ∗i = emi ∈ ∂∆
for every i ∈ V. Thus, the objective function J has a unique minimum at a
corner point of ∆m, i.e. W ∗ is an integral labeling.

Case ρ→∞: Equivalently characterizing the set of minimizer W ∗ by

argminW∈∆m Jdata(W )+ρJreg(W ) = argminW∈∆m
1
ρJdata(W )+Jreg(W ), (3.8)

shows, that for ρ tending towards infinity the influence of the data term vanishes
in the limit and we are only minimizing with respect to the regularizer, i.e.

argminW∈∆m
1

2

∑
ij∈E

ωijd
2
S(Wi,Wj). (3.9)

In this case the set of minimizers is given by all W ∗ ∈ ∆m having identical rows,
W ∗i = W ∗j for all i, j ∈ V, showing the existence of interior optima.

Due to the behaviour of the model in these two extreme cases, it is expected
that for larger ρ there exist local optima in the interior constituting fully prob-
abilistic assignments while for decreasing ρ closer to 0 local optima tend to lie
closer to the corners, i.e. result in integral assignments. Experimentally, this in-
tuition is indeed confirmed (see Experiments below).

Enforcing Integrality and Connection to Graphical Models. In order to
enforce (approximate) integral solutions of the model, also called rounding, we
add an additional cost term punishing large deviations from integral assignments
similar to [6]. This can be done by adding the entropy of W defined by

H(W ) :=
∑
i∈V

H(Wi) = −〈W, log(W )〉 ∈ [0,m log(n)], (3.10)
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thus obtaining the extended model with integrality enforcing parameter α > 0

Jα(W ) := J(W ) + αH(W ) = 〈W,D〉+ ρ

2

∑
ij∈E

ωijd
2
S(Wi,Wj) + αH(W ). (3.11)

For α → 0 we obtain the the previous model. For α → ∞ we end up with the
following minimization problem

min
W∈∆m

J(W ), s.t. Wi ∈ {0, 1}n for all i ∈ V. (3.12)

Under these constraints, every assignment vector equals a standard basis vector
Wi ∈ {e1, . . . , en} ⊂ Rn and the Riemannian distance in the regularizer only
takes on two different values

d2S(Wi,Wj) =

{
π2 , for Wi 6= Wj

0 , for Wi = Wj .
(3.13)

Therefore, this minimization problem has the form of a graphical model with
Potts prior (cf. [10, Section 3.3]). It is more appropriate however, to consider our
approach as a geometric alternative to the continuous cut variational formulation
of the image segmentation problem [5,8]. For an in-depth discussion of evaluating
discrete graphical models using the assignment flow we refer to [6].

4 Optimization Approach

Riemannian Gradient Flow. Our optimization strategy is to follow the Rie-
mannian gradient descend flow of J on the manifold W with a natural unbiased
initialization given by the barycenter at every node

Ẇ (t) = −∇WJα(W (t)), W (0) = 1mc
> (4.1)

or due to (2.10) equivalently the transformed flow on T

V̇ (t) = −∇Jα(W (t)), V (0) = 0, (4.2)

with W (t) = expC(V (t)).

Proposition 1. Setting ωij = 1
2 (ωij + ωji), the i-th row of the Riemannian

gradient and the Euclidean gradient of Jα at W ∈ W are given by(
∇WJα(W )

)
i

= ΠWiDi − ρ
∑

j∈N (i)

ωij Exp−1Wi
(Wj)− αΠWi log(Wi) (4.3a)

(
∇Jα(W )

)
i

= PTDi − ρ
∑

j∈N (i)

ωijPT
[

1
Wi

Exp−1Wi
(Wj)

]
− αPT log(Wi).

(4.3b)
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Proof. A standard calculation shows ∇
(
Jdata + αH

)
(W ) = PTD − αPT log(W )

and therefore
(
∇W(Jdata + αH)(W )

)
i

= ΠWi
Di − αΠWi

log(Wi) by (2.9) and
ΠWiPT = ΠWi . As for the Riemannian gradient of Jreg, we note that the Rie-
mannian gradient of d2S(p, q) with respect to p has the form ∇S,pd2S(p, q) =
−2 Exp−1p (q). The Euclidean gradient then follows by applying Π−1Wi

to (2.9).
ut

Numerical Integration of the Flow. For simplicity of notation we denote the
i-th row of the Euclidean gradient by ∇iJα(W ). We follow [9] for discretizing the
gradient flow (4.1) on W. This is done by choosing the common explicit Euler
method for the transformed flow (4.2) on the linear space T , which reads

V
(k+1)
i = V

(k)
i − h(k)∇iJα(W (k)), V

(0)
i = 0 for all i ∈ V, (4.4)

where h(k) > 0 denotes the step-size. Transforming this update scheme back

onto W by W
(k)
i = expc(V

(k)
i ) with initial condition W

(0)
i = 1

n1n and using the
fact that ∇iJα = ∇iJ(W )− αPT log(Wi), we obtain a multiplicative update

W
(k+1)
i =

1

Zi
W

(k)
i e−h

(k)∇iJα(W (k)) =
1

Z ′i

(
W

(k)
i

)1+h(k)α
e−h

(k)∇iJ(W (k)) (4.5)

where Zi and Z ′i are normalizing constants ensuring 〈W (k)
i ,1〉 = 1. This update

formula clearly illustrates the influence of the integrality parameter α as some
sort of built in rounding mechanism of the flow.

Assignment Normalization. The flow W (t) solving (4.1) evolves on the man-
ifold W and therefore all entries Wij(t) > 0 are positive all the time. If Wi(t)
approaches an integral label, then all but one entries approach 0, for t → ∞.
However, the multiplicative update (4.5) is only valid on the manifold W. Since
there is a difference between mathematical and numerical positivity we adopt
the strategy of [2, Sec. 3.3] for ensuring numerical positivity of the discretized
flow. The basic idea is to do an ε-normalization every time an entry of Wi drops
below ε > 0 given by

W ′i = Wi + (ε−min
j
Wij)1n and Wi ← 1

〈W ′
i ,1〉

W ′i . (4.6)

As shown in [3], the ε-normalization has an influence for the discrete flow of [2].
Since the model (3.5) is continuous on ∆m, applying this normalization strategy
only has a negligible effect in our situation for ε close to 0.

5 Experiments

We assess the parameter influence of ρ and α by applying our geometric vari-
ational approach to the following image labeling problem. For this, we take a
grid graph G = (V, E) with neighborhood size |N (i)| = 3 × 3 for every i ∈ V
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representing the spatial structure of a noisy RGB-image f : V → [0, 1]3, de-
picted in Fig. 5.2. Eight prototypical colors {l1, . . . , l8} ⊂ [0, 1]3 (Fig. 5.2) were
used as labels. The distance function d(fi, lj) = ‖fi − lj‖1/3 is used for con-
structing the distance matrix (3.1) and the weights in the regularizer are set to
ωij = 1/|N (i)|. For obtaining a fine discretization of the flow, a constant step-size
with value h = 0.1 is used for numerical integration by applying (4.5) together
with ε = 10−10 for the assignment normalization (4.6). As convergence criterion
we use the normalized relative change of the objective function Jα, defined by
r(W (k)) := |Jα(W (k)) − Jα(W (k−1))|/|hJα(W (k−1))|. Due to the small (save)
step-size and in order to give the dynamics enough time to trade off regulariza-
tion against rounding in our model, we set the maximum number of iterations to
2000 and stop the algorithm if either r(W (k)) drops below a threshold of 10−4 or
if the maximum number of iterations is reached. The figures provide quantitative
illustrations of all aspects of the variational model introduced in Section 3. We
refer to the figure captions for a detailed discussion.

6 Conclusion

This work clarifies some mathematically open points in connection with the
assignment flow. Due to the way in which we utilized the smooth geometric
setting and regularization through geometric local averages, the proposed varia-
tional model (3.5) avoids the need for an explicit expression of the Riemannian
mean and its derivative. To enforce integral assignments, an extended version of
the model was introduced in (3.11), by adding an entropy term. The interaction
between regularization and entropy minimization results in an interesting dy-
namics of the Riemannian gradient flow, illustrated by preliminary experiments.
The question of convergence properties and a closer investigation of the inter-
play between entropy and regularization in the optimization process provides an
opportunity for further research.
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dropping below 10−4. For α = 0, even relatively small values ρ = 0.1 and larger
ones lead to non integral solutions as indicated by the blurred images in the first
column, while for ρ = 0 we obtain an integral solution without regularization, as
expected from (3.7). The other parameter values for α > 0 clearly illustrate the
mechanism explained in Fig. 5.1. For smaller α more time is spent to minimize J
during the algorithm resulting in more regularized label assignments. Larger α
values cause a faster integral decision in an earlier stage of the algorithm leading
to less regularized results.
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Fig. 5.3: Interior vs. integral minima. Evaluation of model (3.11) for all pa-
rameter combinations (ρ, α) with values ρ, α ∈ {0.0, 0.1, 0.2, . . . , 1.9, 2.0}. Left:
The normalized average entropy values 1

m log(n)H after numerical optimization

are displayed. As expected from the model, larger α values lead to a decrease in
entropy favouring integral solutions as discussed in Fig. 5.1. If ρ increases relative
to α then the entropy term weakens and local optima tend towards fractional
assignments in the interior, leading to higher entropy values. Two special cases
are clearly visible. For α = 0 and ρ > 0 we are in the regime of (3.5) where local
optima tend to lie in the interior causing large entropy values. For α = ρ = 0
the optimization problem seperates over the nodes and the flow theoretically
converges towards an integral solution as discussed after (3.7) and illustrated
in Fig. 5.2 bottom left. However, the numerical integration scheme (4.6) slows
down for α = 0 as the flow converges towards an integral solution, preventing it
from reaching a low entropy state before the termination criterion of the algo-
rithm is fulfilled. Right: The corresponding number of iterations are shown. For
α = 0 the termination criterion is reached after about 1000 iterations, while for
ρ > α > 0 the averaging and integrality enforcing effects compensate each other
and result in a slowdown of the algorithm, thus reaching the maximum number
of 2000 iterations as indicated by the black region. For α = ρ and increasing α
the entropy term dominates and accelerates the integration of the flow, leading
to faster convergence.
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