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Abstract. At the present time Optical Coherence Tomography (OCT)
is among the most commonly used non-invasive imaging methods for
the acquisition of large volumetric scans of human retinal tissues and
vasculature. Due to tissue-dependent speckle noise, the elaboration of
automated segmentation models has become an important task in the
field of medical image processing.
We propose a novel, purely data driven geometric approach to order-
constrained 3D OCT retinal cell layer segmentation which takes as input
data in any metric space. This makes it unbiased and therefore amenable
for the detection of local anatomical changes of retinal tissue structure.
To demonstrate robustness of the proposed approach we compare four
different choices of features on a data set of manually annotated 3D OCT
volumes of healthy human retina. The quality of computed segmentations
is compared to the state of the art in terms of mean absolute error and
Dice similarity coefficient.

1 Introduction

Overview. Optical Coherence Tomography (OCT) is a non-invasive imaging
technique which measures the intensity response of back scattered light from
millimeter penetration depth. We focus specifically on the application of OCT
in ophthalmology for aquisition of high-resolution volume scans of the human
retina. This provides information about retinal tissue structure in vivo to under-
stand human eye functionalities. OCT devices record multiple two-dimensional
B-scans in rapid succession and combine them into a single volume in a sub-
sequent alignment step. Taking an OCT scan only takes minutes and can help
detect symptoms of pathological conditions such as glaucoma, diabetes, multiple
sclerosis or age-related macular degeneration.

The relative ease of data aquisition also enables to use multiple OCT vol-
ume scans of a single patient over time to track the progression of a pathology
or quantify the success of therapeutic treatment. To better leverage the avail-
ability of raw OCT data in both clinical settings and empirical studies, much
work has focused on automatic extraction of relevant information, in particular
automatic cell layer segmentation, detection of fluid and reconstruction of vas-
cular structures. The difficulty of these tasks lies in challenging signal-to-noise
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ratio which is influenced by multiple factors including mechanical eye movement
during registration and the presence of speckle.

Related Work. Effective segmentation of OCT volumes is a very active
area of research. Several methods for segmenting human retina were proposed
in [16], [12],[11] and [2] which rely on graphical models. To increase robustness,
the retina segmentation approaches proposed in [23] and [9] employ shape priors
using soft constraints. In [19] Rathke first introduced a parallelizable segmenta-
tion method based on probabilistic graphical models with global low-rank shape
prior. Variational approaches given in [8,26] and [18] model retina layers by zero
level sets with properly chosen functionals including soft constraints. Much re-
cent work has focused on the use of deep learning to address the task of cell
layer segmentation in a purely data driven way. Methods presented in [17,21]
rely on the U-net architecture [20] which yields good predictive performance in
settings with limited availability of training data. To enforce global order of cell
layers along a spatial axis as well as additional regularization, local predictions
have been tied together through graph-based methods [10] or through a second
machine learning component [14]. However, if global context is already used in
feature extraction, the risk of overfitting remains and unseen pathologies may
result in unpredictable behavior.

Approach. Our segmentation approach is a smooth image labeling algo-
rithm based on geometric numerical integration on an elementary statistical
manifold. It can work with input data from any metric space, making it ag-
nostic to the choice of feature extraction and suitable as plug-in replacement
in diverse pipelines. In addition to respecting the natural order of cell layers,
our segmentation process has a high amount of built-in parallelism such that
modern graphics acceleration hardware can easily be leveraged. We evaluate the
effectiveness of our novel approach for a selection of input features ranging from
traditional covariance descriptors to convolutional neural networks.

Contribution. We propose a geometric assignment approach that extends
the approach introduced by [4] to retinal layer segmentation with the following
novel characteristics:

(i) By leveraging a continuous characterization of layer ordering, our method is
able to simultaneously perform local regularization and to incorporate the
global topological ordering constraint in a single smooth labeling process.
The segmentation is computed from a distance matrix containing pairwise
distances between data for each voxel and prototypical data for each layer
in some feature space. This highlights the ability to extract features from
raw OCT data in a variety of different ways and to use the proposed seg-
mentation as a plug-in replacement for other graph-based methods.

(ii) Computationally fast and high-quality cell layer segmentations of OCT
volumes are obtained by using only local features for each voxel. This is
in contrast to competing deep learning approaches which commonly use
information from an entire B-scan as input. In addition, the exclusive use
of local features combats bias introduced through limited data availability
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in training and enables the incorporation of three-dimensional information
without compromising runtime scalability.

(iii) The highly parallelizable segmentation approach with global voxel interac-
tion enables robust cell layer segmentation of entire OCT volumes without
using any prior knowledge other than local regularity and order of cell lay-
ers. In particular, no global shape prior is used as opposed to segmentation
methods relying on graphical models like, e.g., [19]. Figure 1.1 shows a
typical result obtained with our novel approach after segmenting healthy
retina tissues with labels specified in (4.1).

Organization. Our paper is organized as follows. The assignment flow ap-
proach is briefly summarized in Section 2 and extended in Section 4 in order
to take into account the order of layers as a global constraint. In Section 3,
we consider the Riemannian manifold Pd of positive definite matrices as a suit-
able feature space for local OCT data descriptors. The resulting features are
subsequently compared to local features extracted by a convolutional network in
Section 5. The evaluation of performance measures for OCT segmentation of our
novel approach are reported in Section 5 and compared to the state-of-the-art
method given in [16].

Fig. 1.1: From left to right: 3D OCT volume scan dimension 512×512×256 of healthy
human retina with ambiguous locations of layer boundaries. The resulting segmenta-
tion of 11 layers expressing the order preserving labeling of the proposed approach.
Illustration of boundary surfaces between different segmented cell layers.

2 Assignment Flow

We summarize the assignment flow approach introduced by [4] and refer to the
recent survey [22] for more background and a review of recent related work.

Assignment Manifold. Let (F , dF ) be a metric space and Fn = {fi ∈
F : i ∈ I}, |I| = n given data. Assume that a predefined set of prototypes
F∗ = {f∗j ∈ F : j ∈ J }, |J | = c is given. Data labeling denotes assignments j →
i, f∗j → fi to be determined in a spatially regularized fashion. The assignments

at each pixel i ∈ I are encoded by assignment vectors Wi = (Wi1, . . . ,Wic)
> ∈ S

in the relative interior S = rint∆c of the probability simplex, that becomes a
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Riemannian manifold (S, g) endowed with the Fisher-Rao metric g from infor-
mation geometry. The assignment manifold (W, g), W = S × · · · × S (n = |I|
factors) is the product manifold whose points encode the label assignments at
all pixels.

Assignment Flow. Based on the given data and prototypes, the distance

vector field DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)>
, i ∈ I is well defined. This data

representation is lifted to the assignment manifold by the likelihood map and the
likelihood vectors, respectively,

Li : S → S, Li(Wi) =
Wie

− 1
ρDF;i

〈Wi, e
− 1
ρDF;i〉

, i ∈ I. (2.1)

This map is based on the affine e-connection of information geometry and the
scaling parameter ρ > 0 is used for normalizing the a-prior unknown scale of the
components of DF ;i that depends on the specific application at hand. The like-
lihood vectors are spatially regularized by the similarity map and the similarity
vectors, respectively,

Si : W → S, Si(W ) = ExpWi

( ∑
k∈Ni

wik Exp−1Wi

(
Lk(Wk)

))
, i ∈ I, (2.2)

where Expp(v) = pev/p

〈p,ev/p〉 is the exponential map corresponding to the e-connection

and positive weights ωik, k ∈ Ni, that sum up to 1 on every patch around pixel
i indexed by Ni, determine the regularization properties.

The assignment flow is induced on the assignment manifoldW by the locally
coupled system of nonlinear ODEs

Ẇi = RWiSi(W ), Wi(0) = 1S , i ∈ I, (2.3)

where the map Rp = Diag(p) − pp>, p ∈ S turns the right-hand side into a
tangent vector field and 1W ∈ W denotes the barycenter of the assignment
manifold W. The solution W (t) ∈ W is numerically computed by geometric
integration [27] and determines a labeling W (T ) for sufficiently large T after
a trivial rounding operation. Convergence and stability of the assignment flow
have been studied by [28].

3 OCT Data Representation by Covariance Descriptors

In this section, we briefly sketch the basic geometric notation for representation
of OCT data in terms of covariance descriptors fi ∈ Fn [25] and identify the
metric data space (F , dF ) underlying (2.1).

The Manifold Pd. The Riemannian manifold (Pd, g) of positive definite

matrices of dimension (d+1)(d)
2 and the Riemannian metric are given by

Pd = {S ∈ Rd×d : S = S>, S is positive definite} (3.1a)

gS(U, V ) = tr(S−1US−1V ), U, V ∈ TSPd = {S ∈ Rd×d : S> = S}. (3.1b)



Assignment Flow For Order-Constrained OCT Segmentation 5

The Riemannian distance is given by

dPd(S, T ) =
(∑
i∈[d]

(
log λi(S, T )

)2)1/2
, (3.2)

whereas the globally defined exponential map reads

expS(U) = S
1
2 expm(S−

1
2US−

1
2 )S

1
2 , (3.3)

with expm(·) denoting the matrix exponential. Given a smooth objective func-
tion J : Pd → R, the Riemannian gradient is given by

grad J(S) = S
(
∂J(S)

)
S ∈ TSPd, (3.4)

where the symmetric matrix ∂J(S) is the Euclidean gradient of J at S.

Region Covariance Descriptors. To apply the introduced geometric frame-
work, we model each OCT volume by a mapping I : D → R+ where D ⊂ R3 is
an underlying spatial domain.

To each voxel v ∈ D, we associate the local feature vector f : D → R10,

f(v) := (I(v),∇xI(v),∇yI(v),∇zI(v),
√

2∇xyI(v), . . . ,∇zzI(v))> (3.5)

assembled from the raw intensity value I(v) as well as first- and second-order
responses of derivatives filters capturing information from larger scales following
[13]. By introducing a suitable geometric graph spanning D, we can associate
a neighborhood N (i) of fixed size with each voxel i ∈ I as in (2.2). For each
neighborhood, we define the regularized region covariance descriptor Si as

Si :=
∑

j∈N (i)

θij(fj − fi)(fj − fi)T + εI, fi =
∑

k∈N (i)

θikfk, (3.6)

as a weighted empirical covariance matrix with respect to feature vectors fj . The
small value 1� ε > 0 acts as a regularization parameter enforcing positive def-
initeness of Si. In the following, we use the shorthand notation [n] = {1, . . . , n}
for natural numbers n.

Computing Prototypical Covariance Descriptors. Given a set of co-
variance descriptors

SN = {(S1, ω1), . . . , (SN , ωN )} ⊂ Pd (3.7)

together with positive weights ωi, we next focus on the solution of the problem

S = arg min
S∈Pd

J(S;SN ), J(S;SN ) =
∑
i∈[N ]

ωid
2
Pd(S, Si), (3.8)

with the distance dPd given by (3.2). From (3.3), we deduce

U = exp−1S ◦ expS(U) = S
1
2 logm

(
S−

1
2 expS(U)S−

1
2

)
S

1
2 (3.9)
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with the matrix logarithm logm = expm−1 [15, Section 11]. The efficient mean
retrieval of (3.8) regarding the evaluation of (3.2) requires a nontrivial matrix
decomposition that has to be applied multiple times to every voxel (vertex) of a
3D gridgraph. This results in an overall quite expensive approach in particular
for a large data set. Therefore we reduce the computational costs by relying on
an approximation of the Riemannian mean by employing surrogate metrics and
distances introduced below.

Log-Euclidean Distance and Means. A computationally cheap approach
was proposed by [3] (among several other ones). Based on the operations

S1 � S2 = expm
(

logm(S1) + logm(S2)
)
, (3.10a)

λ · S = expm
(
λ logm(S)

)
, (3.10b)

the set (Ps,�, ·) becomes isomorphic to the vector space where � plays the role
of addition. Consequently, the mean of the data SN given by (3.7) is defined
analogous to the arithmetic mean by

S = expm
( ∑
i∈[N ]

ωi logm(Si)
)
. (3.11)

While computing the mean is considerably cheaper than integrating the flow
induced by (3.4) with respect to objective (3.8), the geometry (curved structure)
of the manifold Pd is ignored. Therefore, in the next section, we additionally
consider another approximation of the Riemannian mean that better respects
the underlying geometry but can still be evaluated efficiently.

S-Divergence and Means. For an approximation of the objective func-
tion (3.8), we replace the Riemannian d2g(p, q) distance by the Stein divergence
proposed by Sra [24]

Ds(S1, S2) = log det
(S1 + S2

2

)
− 1

2
log det(S1S2), S, S1, S2 ∈ Pd, (3.12)

and avoid involved generalized eigenvalue problem for evaluation of (3.2) by
replacing (3.8) with

S = arg min
S∈Pd

Js(S;SN ), Js(S;SN ) =
∑
i∈[N ]

ωiDs(S, Si). (3.13)

We refer to, e.g., [6,5] for a more complete exposition of divergence functions.
The Riemannian gradient flow for this specific problem reads

Ṡ = − grad Js(S;SN )
(3.4)
= −S∂J(S;SN )S (3.14a)

= −1

2

(
SR(S;SN )S − S

)
, R(S;SN ) =

∑
i∈[N ]

ωi

(S + Si
2

)−1
. (3.14b)
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Discretizing the flow using the geometric explicit Euler scheme with step size h
yields,

S(t+1) = expS(t)

(
− h grad Js(S(t);SN )

)
(3.15a)

(3.3)
= S

1
2

(t) expm
(h

2

(
I − S

1
2

(t)R(S(t);SN )S
1
2

(t)

))
S

1
2

(t). (3.15b)

Using as initial point S(0) the log-Euclidean mean (3.11) defines the following
algorithm that we use for mean retrieval throughout the present paper.

Algorithm 1: Geometric Matrix Mean Based on the S-divergence.

Initialization, ε (termination threshold)
t = 0, S(0) solves (3.11)
ε0 > ε (any value ε0)
while εt > ε do

LL> = S(t)

LiL
>
i =

S(t)+Si

2
for i ∈ [N ]

U = I − S
1
2
(t)

(∑
i∈[N ] ωi(LiL

>
i )−1

)
S

1
2
(t)

S(t+1) = S
1
2
(t) expm(h

2
U)S

1
2
(t)

εt+1 := ‖U‖F , t← t+ 1

4 Ordered Layer Segmentation

In this section, we work out an extension of the assignment flow (Section 2) which
is able to respect the order of cell layers as a global constraint while remaining in
the same smooth geometric setting. In particular, existing schemes for numerical
integration still apply to the novel variant.

4.1 Ordering Constraint

With regard to segmenting OCT data volumes, the order of cell layers is crucial
prior knowledge. Figure 4.1 illustrates for a schematic OCT volume acquisition
of 11 retina layers and 3 separating membranes (ILM,ELM,BM) and typical
scan notations used throughout the paper. To incorporate this knowledge into
the geometric setting of Section 2, we require a smooth notion of ordering which
allows to compare two probability distributions. In the following, we assume
prototypes f∗j ∈ F , j ∈ [n] in some feature space F to be indexed such that
ascending label indices reflect the physiological order of cell layers.

Definition 1 (Ordered Assignment Vectors). A pair of voxel assignments
(wi, wj) ∈ S2, i < j within a single A-scan is called ordered, if wj − wi ∈ K =
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CS

CC

BM

RPE

PR2

PR1

ELM

ONL

OPL

INL

IPL

GCL

RNFL

ILM
Retina Layers

2 ︸︷︷︸

3

︸
︷︷

︸

1

︸
︷︷

︸

A-Scan B-Scan

Fig. 4.1: OCT volume acquisition: 1© is the A-scan axis (single A-scan is marked yellow).
Multiple A-scans taken in rapid succession along axis 2© form a two-dimensional B-scan
(single B-scan is marked blue). The complete OCT volume is formed by repeating this
procedure along axis 3©. A list of retina layers and membranes we expect to find in
every A-scan is shown on the left.

{By : y ∈ Rc+} which is equivalent to Q(wj − wi) ∈ R+ with the matrices

Bij :=


−1 if i = j

1 if i− j = 1

0 else

, Qi,j =

{
1 if i ≥ j
0 else

(4.1)

4.2 Ordered Assignment Flow

Likelihoods as defined in (2.1) emerge by lifting − 1
ρDF regarded as Euclidean

gradient of − 1
ρ 〈DF ,W 〉 to the assignment manifold. It is our goal to encode

order preservation into a generalized likelihood matrix Lord(W ). To this end,
consider the assignment matrix W ∈ SN for a single A-scan consisting of N
voxels. We define the related matrix Y (W ) ∈ RN(N−1)×c with rows indexed by
pairs (i, j) ∈ [N ]2, i 6= j in fixed but arbitrary order. Let the rows of Y be given
by

Y(i,j)(W ) =

{
Q(wj − wi) if i > j

Q(wi − wj) if i < j
. (4.2)

By construction, an A-scan assignment W is ordered exactly if all entries of
the corresponding Y (W ) are nonnegative. This enables to express the ordering
constraint on a single A-scan in terms of the energy objective

Eord(W ) =
∑

(i,j)∈[N ]2, i 6=j

φ(Y(i,j)(W )) . (4.3)

where φ : Rc → R denotes a smooth approximation of δRc+ . In our numerical
experiments, we choose

φ(y) =

〈
γ exp

(
− 1

γ
y

)
,1

〉
(4.4)
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with a constant γ > 0. Suppose a full OCT volume assignment matrix W ∈ W
is given and denote the set of submatrices for each A-scan by C(W ). Then order
preserving assignments consistent with given distance data DF in the feature
space F are found by minimizing the energy objective

E(W ) = 〈DF ,W 〉+
∑

WA∈C(W )

Eord(WA) . (4.5)

We consequently define the generalized likelihood map

Lord(W ) = expW
(
−∇E(W )

)
= expW

(
− 1

ρ
DF −

∑
WA∈C(W )

∇Eord(WA)
)

(4.6)

and specify a corresponding assignment flow variant.

Definition 2 (Ordered Assignment Flow). The dynamical system

Ẇ = RWS(Lord(W )), W (0) = 1W (4.7)

evolving on W is called the ordered assignment flow.

By applying known numerical schemes [27] for approximately integrating the flow
(4.7), we find a class of discrete-time image labeling algorithms which respect
the physiological cell layer ordering in OCT data. In chapter 5, we benchmark
the simplest instance of this class, emerging from the choice of geometric Euler
integration.

5 Experimental Results and Discussion

OCT-Data. In the following sections, we describe experiments performed on
a set of volumes with annotated OCT B-scans extracted by a spectral domain
OCT device (Heidelberg Engineering, Germany). Further, we always assume an
OCT volume in question to consist of NB B-scans, each comprising NA A-scans
with N voxels.

While raw OCT volume data has become relatively plentiful in clinical set-
tings, large volume datasets with high-quality gold-standard segmentation are
not widely available at the time of writing. By extracting features which rep-
resent a given OCT scan locally as opposed to incorporating global context at
every stage, it is our hypothesis that superior generalization can be achieved in
the face of limited data availability. This is most expected for pathological cases
in which global shape of cell layers may deviate drastically from seen examples in
the training data. Our approach consequently differs from common deep learn-
ing methods which explicitly aim to incorporate global context into the feature
extraction process. Utilization of shape prior limits the methods ability to gen-
eralize to unseen data if large deviation from the expected global shape seen in
training is present.



10 D. Sitenko, B. Bastian, C. Schnörr

Prototypes on Pd. For applying the framework introduced in Section (2),
we interpret covariance features (3.6) as data points fi ∈ Fn evolving on the nat-
ural metric space (3.1a) and model each retina tissue indexed by l ∈ {1, . . . , C}
with a random variable Sl taking values {Skl }

Nl
k=1. To generalize the retina layer

detection to multiple OCT data sets instead of just using a single prototype
(3.13), we partition the samples {Skl }

Nl
k=1 into Kl disjoint sets {Sl1, . . . , SlKl}

with representatives {S̃1
l , . . . , S̃

Kl
l }. These are serving as prototypes f∗j , j ∈ J

which are determined offline for each l ∈ {1, . . . , 14} as the minimal expected loss
measured by the Stein divergence (3.12) according to K-means like functional

Epl(S
l) =

Kl∑
j=1

p(j)
∑
Si∈Sj

p(i|j)
p(j)

DS(Sil , S̃
j
l ), p(i, j) =

1

Nl
, p(j) =

Nj
Nl
, (5.1)

with marginals pl(j) =
∑Nj
i=1 pl(j|Sil ) and using Algorithm (1) for mean retrieval.

The experimental results discussed next illustrate the relative influence of the

Fig. 5.1: From top to bottom. 1st row: One B-scan from OCT-volume showing the
shadow effects with annotated ground truth on the right. 2nd row: Nearest neighbor
assignment based on prototypes computed with Stein divergence and result of the
segmentation returned by the basic assignment flow (Section (2)) on the right. 3rd row:
Illustration of the proposed layer-ordered volume segmentation based on covariance
descriptors with ordered volume segmentation for different γ = 0.5 on left and γ = 0.1
on the right (cf. Eq. (4.4)). 4th row: Illustration of local rounding result extracted
from Res-Net and the result of ordered flow on the right.

covariance descriptors and regularization property of the ordered assignment
flow, respectively. Throughout, we fixed the grid connectivity Ni for each voxel
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i ∈ I to 3× 5× 5. Figure (5.1), second row, illustrates a typical result of nearest
neighbor assignment and the volume segmentation without ordering constraints.
As the second raw shows, the high texture similarity between the choroid and
GCL layer yields wrong predictions resulting in violation of biological retina
ordering through the whole volume which cannot be resolved with the based
assignment flow approach given in Section (2). In third row of Figure (5.1), we
plot the ordered volume segmentation by stepwise increasing the parameter γ
defined in (4.4), which controls the ordering regularization by means of the novel
generalized likelihood matrix (4.6). The direct comparison with the ground truth
remarkably shows how the ordered labelings evolve on the assignment manifold
while simultaneously giving accurate data-driven detection of RNFL,OPL,INL
and the ONL layer. For the remaining critical inner layers, the local prototypes
extracted by (5.1) fail to segment the retina properly, due to the presence of
vertical shadow regions originating from the scanning process of the OCT-data.

CNN Features. In addition to the covariance features in Section 3, we
compare a second approach to local feature extraction based on a convolutional
neural network architecture. For each node i ∈ [n], we trained the network to
directly predict the correct class in [c] using raw intensity values in Ni as in-
put. As output, we find a score for each layer which can directly be transformed
into a distance vector suitable as input to the ordered assignment flow (4.7) via
(4.6). The specific network used in our experiments has a ResNet architecture
comprising four residually connected blocks of 3D convolutions and ReLU ac-
tivation. Model size was hand-tuned for different sizes of input neighborhoods,
adjusting the number of convolutions per block as well as corresponding channel
dimensions. In particular, labeling accuracy is increased for detection of RPE
and PR2 layers, as illustrated in the last raw of figure (5.1).

Evaluation. To assess the segmentation performance of our proposed ap-
proach, we compared to the state of the art graph-based retina segmentation
method of 10 intra-retinal layers developed by the Retinal Image Analysis Labo-
ratory at the Iowa Institute for Biomedical Imaging [16,1,11], also referred to as
the IOWA Reference Algorithm. We quantify the region agreement with man-
ual segmentation regarded as gold standard. Specifically, we calculate the DICE
similarity coefficient [7] and the mean absolute error for segmented cell layer
within the pixel size of 3.87 µm compared to human grader on an OCT volume
consisting of 61 B-scans reported in Table 1. To allow a direct comparison to the
proposed segmentation method, the evaluation was performed on layers summa-
rized in Table 1. We point out that in general our method is not limited to any
number of segmented layers if ground truth is available and further performance
evaluations though additional comparison with the method proposed in [19] will
be included in the complete report of the proposed approach which is beyond
scope of this paper. The OCT volumes were imported into OCTExplorer 3.8.0
and segmented using the predefined Macular-OCT IOWA software.

Both methods detect the RNFL layer with high accuracy whereas for the
underlying retina tissues the automated segmentation with ordered assignment
flow indicates the smallest mean absolute error and the highest Dice similarity
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index underpinning the superior performance of order preserving labeling in view
of accuracy.

Fig. 5.2: Visualization of segmented intraretinal surfaces: Left: IOWA layer detection
of 10 boundaries, Middle: Proposed labeling result based on local features extraction,
Right: Ground truth. For a quantitative comparison: see Table 1.

OAF DICE index Mean absolute error

RNFL 0.9962 3.5920

GCL 0.8390 1.3091

IPL 0.8552 4.0340

INL 0.8714 6.0180

OPL 0.8886 4.5345

ONL+ELM+PR1 0.9070 1.9550

PR2+RPE 0.9784 2.6511

IOWA DICE index Mean absolute error

RNFL 0.9906 2.8290

GCL 0.7933 2.1063

IPL 0.7148 5.0753

INL 0.7696 6.0090

OPL 0.8510 5.4852

ONL+ELM+PR1 0.8374 7.0928

PR2+RPE 0.9006 12.4891

Table 1: Mean absolute error measures are given in pixels (1 pixel = 3.87 µm). Left:
Dice and mean absolute error of the proposed approach. Right: Resulting metrics
achieved by IOWA reference algorithm. All numbers demonstrate the superior perfor-
mance of our novel order-preserving labeling approach.

6 Conclusion

In this paper we presented a novel, fully automated and purely data driven
approach for retina segmentation in OCT-volumes. Compared to methods [16]
[9] and [19] that have proven to be particularly effective on tissue classification
with a priory known retina shape orientation, our ansatz merely relies on local
features and yields ordered labelings which are directly enforced through the
underlying geometry of statistical manifold. Consequently, by building on the
feasible concept of spatially regularized assignment [22], the ordered flow (2)
possesses the potential to be extended towards the detection of pathological
retina changes and vascular vessel structure, which is the objective of our current
research.
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