
A One-Dimensional Analog VLSI
Implementation for Nonlinear Real-Time
Signal Preprocessing

R
econstruction of given noisy data is an ill-posed problem and a computationally intensive
task. Nonlinear regularization techniques are used to find a unique solution under certain
constraints. In our contribution we present a parallel mixed-signal architecture which

solves this nonlinear problem with in microseconds. By connecting all parallel cells in a circular
manner it is possible to process noisy data vectors of infinite length. This is achieved by virtually
shifting the nonlinear adaptive filter kernel over the noisy data vector. Additionally, we focus on
the interaction between theory, discretization, numerical simulations, macro-modeling, and
analog VLSI implementation for a theoretically well understood class of computer vision in an
exemplary and paradigmatic way. A one-dimensional (1D) experimental chip has been fabricated
using 0.8 mm CMOS technology. On-chip measurements are shown to agree with results from
numerical simulations. Results from applying the 1D chip to nonlinear smoothing of two-
dimensional image data will also be given correspondence.
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Introduction

Overview

An important research topic in computer vision is
the variational approach to nonlinear preprocessing
(adaptive smoothing) of images. The goal is to overcome
current techniques which are based on weak heuristics
and hardly manageable process parameters. Every

progress in this research has immediate positive
consequences for solving real-life applications of com-
puter vision.

Adaptive smoothing of images means computation of
smooth regions and preservation of intensity transitions
using raw image data. Since local computer vision
algorithms for segmentation of regions and detection of
transitions behave complementarily, the necessity of
integration of both processes into one approach is
obvious. A recent formulation of this problem is an
optimization scheme in the context of variational
calculus, a view which subsumes conventional ap-
proaches in computer vision (e.g., ‘‘split-and-merge’’).
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Since all approaches from this class result in iterative
solutions of sparse nonlinear equations, analog VLSI
implementations allow for real-time application, i.e. at
(video) frame rates.

The most powerful, in the sense of general, variational
approach was suggested by Mumford and Shah [1]. The
theory of this model (e.g. properties of solutions) are
subject of an intensive mathematical research and, with
focus on efficient algorithms, a lot of work has to be
done. A drawback of this continuously formulated
approach and its discretization is that there is no
continuous dependence of the results and the input
data. Furthermore, as yet, an analog VLSI implementa-
tion seems to be impossible to achieve.

A class of variational approaches which are less
powerful but have globally favorable properties was
proposed by Schnörr [2] (see the Problems statement
section). As a special case this class subsumes a
continuously formulated approach which resembles an
approach by Harris et al. [3], suggested for an analog
implementation, but avoids some of its drawbacks (e.g.
dependence on coordinates, non-controllable smoothing
behavior). Furthermore, our underlying mathematical
model allows for the design of approaches given
arbitrary data types (color, motion, etc.).

Analog VLSI technology experiences a remarkable
renaissance in the context of hardware implementation
of CNNs, opto-electrical systems (vision chips), and
micro systems. Advantages are, for example, time- and
amplitude-continuous processing or the possibility of
massive parallelism with a current-dynamic range of
seven decades. Main problems of an analog implemen-
tation are the device imperfections (mismatch) of MOS
components, the storage of analog signals, the stability
of feedback circuits, and the CAD support for the
design of circuits with higher complexity. The mismatch
of MOS components can be handled, as far as possible,
with symmetrical component layout and furthermore
with an individual adjustment of single circuit units.
Storage of analog signals can be achieved for short
periods with on-chip capacities, for medium periods
with amplitude-quantization along with refreshing, and
for long periods with isolated charge-packets in floating
gates. Up to now, the automation of the design of
complex analog circuits is not entirely possible. For the
hierarchical design macro-models are created, never-
theless the designer has to know details about the model
structure and physical parasitic effects. At this point, the
analog design differs from digital design and resides for

the time being in the domain of electronic engineers. For
the implementation of resistive nonlinear networks one
has to carefully consider the monotone behavior of non-
linear characteristics, which is mandatory for stability
since otherwise global oscillation may occur. This
condition of monotonicity should also not be violated
in a parasitic or dynamic manner by mismatch of circuit
units and represents consequently a non-trivial bound-
ary condition for the circuit designer.

Related work

Low-level feature extraction and image smoothing are
key issues in image processing and computer vision.
Variational approaches [1, 4–6] provide a mathemati-
cally concise problem formulation (cf. the survey [7])
being superior to ad-hoc smoothing schemes. A common
problem with these approaches, however, is their
computational complexity from an optimization point-
of-view. Stochastic optimization [4] is not feasible for
typical image sizes, and deterministic annealing proce-
dures [5, 6] cannot guarantee to obtain a ‘‘good’’ local
minimum. Therefore, the use of non-quadratic but
convex functionals has been advocated to simplify image
smoothing from a computational viewpoint [2,8,9].
Furthermore, although being much simpler, convex
functionals nevertheless provide reasonable approxima-
tions (cf. [10]) to the prototypical but mathematically
and computationally sophisticated variational smooth-
ing approach of Mumford and Shah [1]. Despite of
efficient digital implementations of numerical schemes
for solving variational equations [11], the computational
effort prohibits applications for which frame-rate
performance is required. As an alternative, analog
hardware concepts allow to map classes of early vision
problems onto time-continuous high-speed analog
circuitry by the direct use of voltage, current and charge
relationships of the physical devices [12].

The behavioral characteristic of electronic circuits as
well as the solution of variational equations can be
described by nonlinear differential equations [2]. An
analog circuit can solve the equations in fractions of a
second. The speed is limited only by the unavoidable
parasitic capacitors and the finite power dissipation [13].
This is the major motivation for the design of analog
VLSI networks suitable for solving such early vision
problems.

Inspired by biology, Koch and Poggio [14,15]
investigated the relationship between mathematically
stated regularization schemes and analog networks.
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Kirchhoff’s current and voltage laws, which represent
conservation and continuity restrictions satisfied by each
network component, solves for the regularization. They
derived a direct relationship between the generalized
energy of a nonlinear resistor (co-content) and the
theoretical regularization expression. From this view-
point, the properties of the electronic devices can be
analyzed regarding their effects on the solution. Math-
ematically well defined characteristics like convexity,
consistency, and uniqueness can be controlled directly
by the features of the used electronic devices. Therefore,
it is possible to describe prerequisites on the circuit level
which were originally defined on higher mathematical
levels.

For the realization of those networks, substantial
work has been carried out by Mead et al. [12, 16, 17] by
utilizing sub-threshold standard MOS technology for
massively-parallel analog signal processing. Good ex-
amples are optical motion sensors, silicon retinas, etc.
By including optical sensors (CMOS-compatible photo
diodes and transistors) vision systems can be implemen-
ted on one single chip. For current successful imple-
mentations see, for example, [18].

Build upon Mead’s fundamental research, Harris [3,
19] implemented nonlinear resistive networks for early
vision tasks. Utilizing resistive fuse elements he im-
plemented the non-convex approach of Blake and
Zissermann [5] (weak membrane model). He achieved
a robust solution by a graduated convexity mechanism
which is inherent to his resistive fuse circuit. The so-
called tiny-tanh network is a further development of
Sivilotti’s [20] nonlinear saturating resistor. By introdu-
cing a high-gain positive feedback, the network resem-
bles a discrete TV-norm realization [21]. Nevertheless,
the implementation lacks both an efficient input-output
mechanism and the possibility for controlling the
regularization parameters.

Most recent implementations of resistive fuse algo-
rithms utilizing floating-gate MOS-transistors for both,
controlling the transfer characteristic and long-term
error compensation, can be found in [22].

Also, in the last decade a lot of research in the field of
massively-parallel hardware has been triggered by the
Cellular Neural Network (CNN) theory introduced by
Chua and Yang [23, 24]. A CNN is defined on a time-
continuous, discrete grid and consists of an uniform
array of analog nonlinear dynamic computing cells.
They are interconnected in a local neighborhood and

contain no learning scheme or adaptation mechanism
and therefore are best suited for direct analog imple-
mentation. Discretized formulations of the regulariza-
tion equation proposed in this paper (see Theory
section) can be restated in the CNN framework [25] as
well. The model has to be altered to the hardware-
friendly full-range model [26] using nonlinear feedback
templates. Nevertheless the CNN framework is defined
on a discrete grid and therefore limited in its applica-
tions.

Various CMOS VLSI implementations of CNNs
have been reported [27]. They can be discriminated by
fixed [28] or variable [29, 30] templates, current [26] or
voltage mode [31], full [32] or limited [33] CNN-model,
on-chip [34] or off-chip sensors. They are referenced
here in detail as a starting point for further investiga-
tions in the field of analog VLSI systems for signal
processing.

Contribution and organization

In our paper, we present a massively-parallel VLSI
hardware implementation of a nonlinear smoothing
approach (one-dimensional (1D) case, 32 nodes) for
applications in computer vision as well as a special
architecture for processing 1D data streams. By analog
VLSI technology, limits in performance of iterative
solutions on digital computers have been overcome. In
particular, the interaction between theory, discretiza-
tion, numerical simulations, macro-modeling, and ana-
log VLSI implementation for a theoretically well
understood class of computer vision methods have been
investigated in an exemplary and paradigmatic way (see
also Figure 1). Characteristic of our work is the
thorough validation on all levels of description and
implementation.

In the second section we propose a convex variational
approach for adaptive smoothing and sketch a 1D FEM
discretization. We focus on the nonlinear characteristic
transfer function whose analog implementation proved
to be the hardest task for an analog circuit design. The
feedback of circuit-mismatch for the case of the
characteristic transfer function on the mathematical
model is described in the third section (Transfer function
constraints). Detailed investigation results in constraints
for analog circuit design. Then (in Analog cells) we
follow on with a brief review of technology imperfec-
tions in the context of analog VLSI circuits. Based on
this, we present a constraint-driven top-down design for
the core analog cell used for the 1D implementation. In
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the fourth section a systolic architecture tailored to time-
continuous analog signal processing is described in
detail. The results achieved with an 0.8 mm CMOS
implementation of the so-called dynamic circular net-
work (dCN) are shown in the fifth section. We conclude
our paper in the final section.

Theory

Problem statement

A convex variational approach for adaptive smoothing
was proposed by Schnörr [2] which results in the unique
minimizer u of the strict convex functional

JðvÞ ¼ 1

2

Z



ðvÿ gÞ2 þ l rvj jð Þ
n o

dx, ð1Þ

for a given data g and the non-quadratic function

lðtÞ ¼ l2ht
2,

l2l t
2 þ ðl2h ÿ l2l Þc�ð2tÿ c�Þ,

0 � t � c�:
05c� � t:

�
ð2Þ

The approach comprises essentially two parameters: lh
determines the degree of smoothing, whereas cr
controls the adaption to signal variations. For the
latter, the smoothing process becomes anisotropic at loci
with high gradients and gradually stops at such loci

along the direction of the image gradient. Hence,
essential signal structures are preserved. Finally, ll is a
small positive constant (ll¼ 0.1, for example), the
meaning of which is not relevant for the investigation
presented here.

The global minimizer of Eqn (1) is the unique solution
to the following variational equation [2]:

Lðu,vÞ ¼
Z




ðuÿ gÞvþ � ruj jð Þrurv dx ¼ 0, 8v, ð3Þ

where the function r(t):¼l’(t)/(2t) (see Figure 2)
characterizes the adaptive smoothing process (1).

Partial integration shows that, at least formally, u
may be considered as the steady-state solution of the
nonlinear diffusion equation [2, 35]:

du

dt
¼ r � � ruj jð Þruð Þ ÿ ðuÿ gÞ, ð4Þ

with Neumann boundary conditions.

Discretization

For the discretization of variational problems, FEM is
the first choice. FEM can be applied in a mechanistic
way, boundary conditions are incorporated automati-
cally, and the discrete approach obtained is consistent in
the sense that, under certain conditions [2], discrete
solutions uh to (3), for example, converge to the
continuous solution u for vanishing mesh width. In this
way discrete versions of our approach allow to maintain
favorable properties of the underlying continuous
problem formulation, like the rotational invariance of

Figure 1. Development scheme of an analog VLSI-chip for
adaptive smoothing.

Figure 2. The characteristic function r(t).
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the smoothness term, for example. For a sound
introduction to FEM we refer to, e.g. [36].

The basic idea of the Finite Element Method is the
restriction of optimization problems to finite-dimen-
sional subspaces. Let {� ,. . .,�n} be basis functions of a
finite-dimensional subspace Hh � H. Then, the
restriction of (3) to Hh reads:

Lðuh,�iÞ ¼ 0, 8i ¼ 0, . . . , n, ð5Þ

with minimizer uh2span{�o ,. . .,�n}. If we define the
isomorphism

I : Rn !Hh; u!
X
j

uj�j, ð6Þ

and the mappings

LiðuÞ :¼ LðIðuÞ,�iÞ, u ¼ ðu0, . . . , unÞT , ð7Þ

then the solution of (5) is equivalent to the solution of
the nonlinear system:

LðuÞ ¼ 0, L ¼ ðL0, . . . ,LnÞT ð8Þ

As mentioned above, we know from FEM theory
that the solutions uh converges to the solution u of (3),
if the formal discretization parameter h approaches zero
[2, 36].

Now we apply the FEM to the case of 1D discrete
signal data, with a constant sampling rate of 1. Thus,
our domain reads O¼ [0,n]. The first step is to
interpolate the signal data in a linear manner. Next,
we assign to each sample xi a basis function �i which is
uniquely defined by the following conditions:

�iðxÞ is linear within each interval ½xi, xiþ1�:

�iðxÞ ¼ 1 at sample xi,

�iðxÞ ¼ 0 at every sample xj 6¼ xi

Eqn (7) now reads:

LiðuÞ ¼
X
k

ðuk ÿ gkÞ
Z




�k�i dxþ

X
k

uk

Z



� ruhj jð Þr�k � r�i dx: ð9Þ

The integral terms in (9) vanish for all i ÿ kj j41. The
remaining integral terms can be computed analytically
to obtain a sparse system of nonlinear equations in
terms of the sample variables u. Evaluating (9), we get

for O¼ [0, n]

L0ðu0, u1Þ ¼
1

3
ð2u0 þ u1Þ ÿ

1

3
ð2g0 þ g1Þ

ÿ � u1 ÿ u0j jð Þðu1 ÿ u0Þ

Lnðunÿ1, unÞ ¼
1

3
ðunÿ1 þ 2unÞÿ

1

3
ðgnÿ1 þ 2gnÞ þ � un ÿ unÿ1j jð Þðun ÿ unÿ1Þ

Liðuiÿ1 � ui, uiþ1Þ ¼
1

6
ðuiÿ1 þ 4ui þ uiþ1Þ

ÿ 1

6
ðgiÿ1þ4giþgiþ1Þþ� ui ÿ uiÿ1j jð Þ

ðui ÿ uiÿ1Þ ÿ � uiþ1 ÿ uij jð Þðuiþ1 ÿ uiÞ:
ð10Þ

The discretization of (4) reads

du0
dt
¼ 1

3
ð2g0 þ g1Þ ÿ

1

3
ð2u0 þ u1Þ ÿ fnlðu1 ÿ u0Þ

dun
dt
¼ 1

3
ðgnÿ1 þ 2gnÞ ÿ

1

3
ðunÿ1 þ 2unÞ þ fnlðun ÿ unÿ1Þ

dui
dt
¼ 1

6
ðgiÿ1 þ 4gi þ giþ1Þ ÿ

1

6
ðuiÿ1 þ 4ui þ uiþ1Þ

þfnlðuiÿ1 ÿ uiÞ þ fnlðuiþ1 ÿ uiÞ,
ð11Þ

with the transfer function fnlðtÞ ¼ � tj jð Þt (see Figure 3).

For solving (8) in case of 2 or 3 dimensions on digital
computers, we have developed different efficient numer-
ical schemes [11]. Although efficient implementation on
parallel computers is possible, the computational effort

Figure 3. The 1D transfer function fnl(t).
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prohibits applications for which (near) real-time perfor-
mance is required. As an alternative, analog hardware
concepts allow to map Eqn (8) onto time-continuous
high-speed analog circuitry (see next section).

A Constraint-Driven Design

Transfer function constraints

In this section, we report on modeling the variational
Eqn (11) with focus on the circuit implementation. Due
to the limited accuracy of analog circuits (see Analog
cells section) a proper analysis of deviations from the
theoretical case is necessary. Since the nonlinear part of
(1) dominates the image smoothing behavior, we
emphasize on the modeling of the transfer function
fnl (t).

The nonlinear transfer function fnl (t) is implemented
by a simple amplifer-limiter circuit (see Figure 4) which
is specified as follows:

fwðtÞ
l2ht;

signðtÞc�l2h;
tj j5c�
tj j � c�:

�
ð12Þ

The approximate transfer function (12) corresponds
to (2) for the case of ll¼ 0. Due to the real circuit
behavior, the transfer function is monotonously
increasing. Our experiments have shown, that small
variations of the shape of transfer function fnl (t) do not
decisively influence the results of the image smoothing
process.

However, the results are more sensitive to offset errors
and inaccuracies of the smoothing parameters lh and cr
in the transfer function (see Figure 5). These errors,
which are caused by imperfections of the underlying

semiconductor manufacturing process, can be categor-
ized further as follows (see also Table 1):

(1) the input offset error, which is mainly caused by
threshold voltage deviations of the input differential
pair;

(2) the output error, which is caused by current mirror
mismatch in the output current limiter;

(3) errors in the saturation level (also caused by current
mirror mismatch); and

(4) gain errors of the input stage.

Regarding the analog implementation we expect two
types of errors; on the hand, global (or systematic)
errors, which affect all nodes in the same way, and on
the other hand, local (or stochastic) errors, which affect
each node individually (for a review on error in analog
circuits see next section).

A thorough investigation of all errors, and also of the
interaction between them, has been carried out* which
we summarize in Table 2. In the first row, limits for the
global error d are given. The second row lists the limits
for the local error s (normally distributed offsets and
parameters with standard deviation s). It can be seen
that the influence of local error is stronger than the
influence of the global error.

Analog cells

As described in the previous section, imperfections of
the underlying micro electronic devices may cause a
serious degradation of the results. Especially for analog
cells, the exact performance cannot be predicted and

Figure 4. Model (left) and behavior (right) of the approximate transfer function fw(t).

*Details of our investigations can be found in the Diploma
thesis by Ralf Wö (1997) Störungsanalyse eines eindimensinalen
nichtlinearen Relaxationsnetzwerkes zur Signalverarbeitung.
University of Hamburg, Departments of Informatics.
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thus, the design process must consider technology
imperfections in an early stage.

In analog circuit design the resulting error can be
categorized as shown in Figure 6. Systematic errors are
caused by different operating points of the various
transistors (e.g. a simple current mirror copies the
current in an exact way only if the source drain voltage
is equal for both). They can be reduced either by
carefully choosing the circuit topology and/or transistor
parameters or by adding auxiliary transistors which
keep the substantial transistors in a constant bias
condition (cascode transistors). These errors can be
simulated very accurately with standard simulation
tools. Therefore, their impact on the results can be
predicted by appropriate back annotation into high level

simulation tools (see preceding section). For the
application of adaptive signal smoothing the most
important systematic errors are the offset error and the
saturation level of the nonlinear transfer characteristic
(see Figure 5). The error should be as small as possible
and independent of the data input and output.

Random errors are caused by technology imperfec-
tions [37]. Due to this random influence even equal
transistors in the schematic behave slightly different in
their corresponding realization (mismatch). Moreover
one can discriminate between intra- and inter-die
variations. The first one takes only the transistors on
one chip into account whereas in the latter case the
variations between transistors on different chips are
considered. For most applications of analog computa-
tional circuits, the performance is determined by the
interaction of matched neighboring transistors (differ-
ential pairs, current mirrors, translinear loops, etc.).
The accuracy is reduced by the mismatch of these
devices. Therefore, the intra-die variation is the most
important error source. The larger errors due to inter-
die variations have to be small enough to guarantee
sufficient bias condition on all chips (yield) for a proper
performance. For the case of cascading multiple analog
chips an appropriate compensation method has to be
implemented [38].

Figure 5. Transfer function deviations: X-offset (top left), Y-offset (top right), cr-offset (bottom left) and l2h-offset with
c� � l2h¼ const (bottom right).

Table 1. Types of errors for the amplification-limiter circuit

Circuit errors
Transfer functions
deviations

Input offset error X-offset
Output offset error Y-offset
Output error of the limiter cr-deviation
Amplification error in
the 1st stage l2h-deviation, with l2hcr=const.
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To reduce the impact of the imperfections, different
levels of the design hierarchy have to be taken into
consideration: (i) algorithmic level; (ii) schematic level;
and (iii) layout level. The more abstract the design level
the higher the possibility for essential reductions.

First, regarding the algorithm level, the system has to
be insensitive regarding the mismatch, e.g. this can be
achieved by reducing the input output value range
(increasing signal to noise ratio, e.g. CNN full range
model [26]). In our case the algorithm is continuously
dependent on the regularization parameters and there-
fore inherently insensitive to slight variations of the
transfer function characteristic (see second section).

On the schematic level, the type of signal representa-
tion (voltage, current, pulses) has to be considered
carefully. The choice depends on either the preferred
input and output signals and the mandatory signal
transformations. Furthermore, the operation mode,
weak or strong inversion, has to be taken into account.
Strong inversion circuits offer better accuracy and
higher speed compared to circuits in weak inversion
mode [39]. Nevertheless, the latter ones have a bipolar-
like transfer characteristic which could be used to build
efficient circuits for special applications (translinear
circuits [40]).

On the layout level careful placement and routing
techniques have to be used to reduce mismatch as far as
possible [41].

By introducing the physical normalization values Iunit,
Vunit and gunit¼ Iunit/Vunit for the current, voltage and

transconductance respectively, the system’s Eqn (11) can
be mapped to a voltage/current relationship:

Cv
:
ui ¼ gunit

1

6
ðvgiÿ1

þ 4vgi
þ vgiþ1

ÿ ðvuiÿ1
þ 4vui

þ vuiþ1

� �
þ f otanl ðvuiÿ1

ÿ vui
Þ þ f

fota
nl ðvuiþ1

ÿ vui
Þ: ð13Þ

Where vgi
¼Vunit gii and vui

¼Vunit ui are the correspond-
ing voltage values of the input and state variables used
in the implementation. f otanl corresponds to fnl in Eqn (11)
taking a voltage as an input and a current as an output
signal. C is the capacitor which determines the time
constant t of the system: t & Cgunit.

The key element of the nonlinear relaxation scheme
is the controllable piece-wise linear transfer function
f otanl in the above equation. The circuitry for this
element should have minimum offset and saturation
value errors. The smaller these variations the larger
the range of the relaxation parameter can be made
(previous section). Considering Eqn (12) again, an
architecture based on operational transconductors
has been chosen (Figure 7; the switches are used for
the reconfiguration as described in the next section).
Input and output signals are voltages while the
summation as well as the nonlinear operator are realized
with currents.

The circuit used for the nonlinearity is depicted in
Figure 8. It is a standard OTA followed by a current
limiter. The systematic errors are further reduced by
introducing cascode transistors in the output stage. The
random offset value of the circuit is dominated by the
offset voltage error of the input differential stage. For
low variations, the signal to bias ratio is an important

Table 2. Necessary conditions for reasonable segmentation results. d denotes the global error and s denotes the local error, i.e. the
standard deviation of normally distributed offsets and parameters

X-offset Y-offset cr-offset l2h-offset

Global error d� 0:25 c� uncritical d� 0:5 c� d� 0:5 c�
Local error s� 0:2 c� s� 0:4 c�l2h s� 0:25 c� s� 0:25 l2h

Figure 6. Errors in analog VLSI.
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figure in circuit design [30]. Since the bias current of
the limiter is in the range of the saturation current itself,
the variation of the saturation current is as low as
possible. Furthermore the layout was done after careful
consideration of the matching topology in the circuit.
All circuits operate in strong inversion. The current
levels are in the range of micro amperes which results in
relaxation time constants of microseconds for the used
capacitors (&1 pF).

Based on an analytical error analysis, the simple
core circuits were optimized regarding their minimum
possible variations [42]. With these results, area and
power consumption can be calculated for the specifica-
tion of the application. The result of a Monte-Carlo
simulation for the used nonlinear circuit is depicted in
Figure 9. The left and right histograms show the offset

voltage error before (at point A in the schematic in
Figure 8) and after the current limiter (at the output
node). As expected from theory the error is dominated
by the input stage. With these results and the constraints
given by the high-level analysis of the algorithm the
impact of mismatch can be predicted accurately for the
system level.

Analog architecture—dynamic Circular Network
(dCN)

Based on the 1D discretization of the convex functional
(11) an architecture has been developed. The design has
been driven by required range of the parameter space (cr
and l2h ) and in addition relies on a perturbation analysis
indicating the minimum accuracy necessary to achieve
satisfying performance (see previous section).

Figure 7. Core cell architecture, all switches, except, ic_sw,
are closed for normal operation.

Figure 8. Non-linear circuit (only one output branch is
depicted).

Figure 9. Monte-Carlo simulation results. Left: offset voltage error before the current limiter, middle: error after the current
limiter, right: correlation between them.
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A dynamic circular architecture for processing infinite
signals

A major problem in designing analog circuits for signal
processing is the interfacing to the signal source and the
subsequent (digital) processing unit. When the signal is
generated off-chip, the signal must be fed into the
parallel structure of the analog unit. Usually this is done
by simply writing the input to the isolated cells. During
this time all cells act as memory elements, and after-
wards the array ‘‘computes’’ the result within micro-
seconds which is subsequently read out (e.g. [30]). Such
a design yields time a rather poor computational
performance since the effective computation time is
low in comparison to the time used for data input/
output. Another problem arises when the signal vector is
larger than the chip cell array. In this case the signal
vector has to be broken apart into overlapping blocks
which have to be processed sequentially. As a conse-
quence, the parts have to be merged in a further post-
processing step [43].

Our solution to these problems is based on a dynamic
reconfigurable circular architecture which is shifted
along the data vector at a very high rate [44]. For the
1D case the neighborhood Nr(i) of the cell Ci within a
radius r on a grid D is defined by (Figure 10(a)).

Nr ðiÞ ¼ fCjjminðhi ÿ jin,h j ÿ iiNÞ � r, j

¼ 0, . . . ,N ÿ 1, j 6¼ ig i ¼ 0, . . . ,N ÿ 1 ð14Þ

h�iN is the modulo N operation.

The shift mechanism of the network first replaces the
static cell links with programmable switches and,
second, allows each cell to perform in different working
modes (see (16) – (18) below).

Let ui denote the state variable of the cell Ci.
Following Eqn (11) the dynamic behavior of the cell is
defined by

@ui
@t
¼ eLðui,NðiÞ, egiÞ: ð15Þ

N(i) is the local neighborhood modulo the network
boundaries as defined in (14). The terms remaining
constant during relaxation for node Ci are denoted by egi
for inner cells egi0 and for boundary cells. To operate the
network in the dynamic manner as described above,
each cell can be programmed to satisfy one of the fol-
lowing conditions (all index calculations are modulo N):

fully connected cell
left ðrightÞ boundary cell with

:
@ui
@t

¼ eLðuiÿ1, ui, uiþ1, egiÞ ð16Þ
vs: Neumann ðzero fluxÞ cond:
constant boundary cell with

:
@ui
@t

¼ eLðui, uiþ1ðiÿ1Þ, ~g0iÞ ð17Þ

Dirichlet ðfixedÞ condition :
@ui
@t
¼ 0: ð18Þ

Furthermore, a cell can be disconnected from the
active network for calibration purposes. No long-term

Figure 10. (a) 1D circular network; (b) dynamic circular loop: the network is reconfigured while the analog state variables stay
resident in their corresponding cells. Part of the network can be disconnected from the active network for (e.g. offset voltage)
calibration purposes.
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analog storage devices are necessary since the calibra-
tion process is repeated periodically.

The operation of a 1D dynamic network is sketched in
Figure 10(b). The analog values reside in the corre-
sponding cell while only the connections of input,
output, and boundary cells are reconfigured. The analog
network processes the data while it is dynamically
reconfigured. Moreover, the reconfiguration process is
simple because only a maximum number of six cells have
to be accessed per cycle.

When no processing is performed, the network acts
like an analog shift register with a delay of N’ multiplied
by the sample time period. The effective length N’ is the
distance between the input and output node. It depends
on the size of the calibration pool and available
boundary conditions (see Figure 10(b)). For optimal
Dirichlet boundary condition @ui

@t ¼ 0
ÿ �

at the end of the
network, the effective length N’ can be chosen as large as
possible since there will be no reflection from that
boundary node.

Signal propagation

The architecture depicted in Figure 10 can be seen as a
systolic architecture. In difference to conventional
systolic systems where the data is ‘‘pumped’’ through
the computational units, in this approach the connec-
tions between the cells are altered to satisfy the systolic
behavior. In the following paragraphs the process of
reconfiguration is reviewed in an analytical way. For
simplicity the logical network length N’ is set to N, the
number of cells.

Let uki denote an index operation modulo N in the kth
step: uki ¼ uhi7ki with i the logical node number and
hi7ki the hardware node number (see Figure 10(b)). By
applying Eqns (16) – (18) to the simplified 1D discrete
case of Eqn (11), the system equations can be
formulated as follows

u
: k
i ¼

1

2
ðgk

i ÿ uk
i Þ þ fnl u k

iþ1 ÿ uk
i

�� ��Þ : i ¼ 0
ÿ

ð19Þ

_uki ¼ ðgk
i ÿ uk

i Þ þ fnl u k
iÿ1 ÿ uk

i

�� ��ÿ �
þ fnl u k

iþ1 ÿ uk
i

�� ��ÿ �
: i ¼ 1::ðN ÿ 2Þ

ð20Þ

u
: k
i ¼ 0 : i ¼ N ÿ 1, ð21Þ

for kT5t�(k+1)T while the cell inputs are
gki ¼ ŝðkÿ iÞ, 8i ¼ 0, . . . ,N ÿ 1, and the initial values

(t ¼ kT ) are given by the preexisting intermediate
results

uk
0 ðt ¼ kTÞ ¼ ŝ ðkTÞ : i ¼ 0 ð22Þ

uk
i ðt ¼ kTÞ ¼ ukÿ1

iÿ1 ðt ¼ kTÞ : i ¼ 1::ðN ÿ 1Þ: ð23Þ

ŝðkÞ is the input signal and T the sample time. The signal
is virtually shifted over the network since the input
signal g and the initial conditions (23) remain constant,
respectively (hi717(k71)iN=hi7kiN). The output can
be extracted at each processing step by retrieving the
state value of the Dirichlet boundary node ẑðkÞ ¼ uk

Nÿ1.

Furthermore an ‘‘area of influence’’ is defined in a
neighborhood of the cell Cj : i ÿ �5j5i þ �: L de-
scribes the maximum distance between two mutually
influencing cells. The value of this crucial distance is

Figure 11. Influence radius L vs. the network size N (L1

parallel mode, L2 circular mode), t2 after N/2, t3 after N cycles.

Figure 12. Linear diffusion results for different architectures;
as an input signal a Dirac-impulse has been used. — circular
(N=16); – – parallel (N=16); – – – parallel (N=200).
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determined by the characteristic space constant (e.g.
diffusion constant) for the underlying signal processing
task. As a matter of fact L is also limited by the size of
the network and the required or achievable accuracy of
the used analog circuit.

In a conventional parallel processing mode the
diffusion constant has to be chosen to satisfy Lp5N/2,
with N being the number of parallel working nodes. This
is the minimum condition for a correct result at the
center position. For the dynamic circular mode L can be
doubled (Lc5N ) since N is the size of memory in the
network (Figure 11). Of course this holds only for

systems where the time constant t is smaller than the
sample time T. For analog systems, this can be
guaranteed by the extremely fast settling time of the
network.

Figure 12 shows the impulse response for different
network architectures. The dotted line is the correct
propagation for a linear diffusion (L� 30) computed on
a 1D network of 200 nodes operating in parallel. The
dashed line is valid for a parallel network of only 16
nodes, whereas the solid one holds for a network of the
same size operating in the dynamic circular manner. It
can be seen that the difference in impulse response

Figure 13. Layout photograph of the chip: 32 cells are performing a non-linear filtering of analog signals of infinite length
(fabricated in 0.8mm CMOS, Austria Microsystems/AMS).

Figure 14. Measurement results for different values of cr. At such loci where the smoothing process adaptively stops vertical lines
are plotted.
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between loop-mode and the correct propagation result is
much smaller than between the parallel and ideal mode.
Due to the fixed value boundary on the right, the
memory length is extended to infinity resulting in an
asymmetric impulse response.

1D 0.8 mm CMOS realization and 1D/2D
experiments

Based upon the algorithm and architecture described in
the previous sections, a 1D prototype consisting of 32
identical analog cells was fabricated (see Figure 13). The
major challenge was the design of the nonlinear function
which has to be very accurate to guarantee minimum
impact of transistor mismatch (see Analog cells section).
The dynamic routing resources are included by MOS
switches which are controlled by a digital unit ([44],
Figure 7).

Measured results for different values of cr are
depicted in Figure 14. cr ranges from 0.01 to 0.05 for
an approximate constant value of l2h. It can be seen that
for smaller values of cr the salient signal structure is
preserved while for increasing cr the process degenerates
to a linear diffusion.

The measured signal can be compared to the
simulation results computed by solving the nonlinear
equation for cr¼ 0.01 and l2h=8 in Figure 15. The
difference between these signal vectors is mainly due to

offset voltage deviations between neighboring cells.
Whereas in smooth areas the difference is as low as
the offset voltage itself (a few millivolts), in steep
portions of the signal the difference can be large since
the adaptive behavior is slightly different.

In further experiments an overall random error of
about s¼ 2.5mV (standard deviation of the voltage
differences between input and output of band limited
signals) was measured. This first experimental design
can successfully and efficiently perform computationally
intensive nonlinear smoothing of 1D signals.

In addition to the 1D experiments, we carried out
several experiments with 2D gray-value images (see
Figure 16, [45]). The goal of these experiments was to
investigate from a practical perspective to which extent
even only the 1D chip with its reduced design complexity
is capable of satisfactorily smoothing 2D image data in a
nonlinear fashion. In this case, the image data was fed
into the 1D chip in a consecutive row-by-row and
column-by-column manner (note that for this input

Figure 15. Measured and simulated results for cr =0.01 and
l2h=8. The largest differences between the simulation and
measured data is located in steep signal portions due to the
adaptive behavior.

Figure 16. A real-world gray-value image corrupted with
noise (top: gaussian noise s=10%, bottom: salt and pepper
noise 5%).
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scheme the result is not fully consistent with the
2D theory since only an orientation-constrained dual
nonlinear diffusion along orthogonal data vectors
can be achieved). The promising results shown in
Figures 17 and 18 demonstrate the validity of this
pragmatic approach since adaptive nonlinear smoothing
as well as preservation of contrast edges can be
achieved. For this experiment, the partial derivatives
ux and uy have been computed via simple finite
differences whereas the threshold has been set to values
slightly above the theoretical value of cr such as to
reduce the influence of the inevitable noise of the analog
components. Our current experience with the 1D
experimental chip indicates a peak performance of
500 kHz/pixel (equivalent to 130ms/image). Since
this performance is not limited by the relaxation
time of the 1D network of cells itself but solely by
the rather weak performance of the currently used read-
out circuitry, it can be even further improved in
the future through appropriate design measures.
Eventually the experiments showed that the 1D chip
has the potential of a powerful but cheap image
preprocessing device.

Conclusion and further work

An efficient analog 1D hardware implementation of a
nonlinear diffusion algorithm has been proposed and
fabricated. Substantial problems (e.g. input/output of
the data, limited number of cells) in the design of
massively-parallel analog hardware have been over-
come. The analog network cells are connected in a
circular structure. Due to the dynamic reconfiguration
of the connections a nonlinear adaptive filter kernel can
be shifted virtually over a signal vector of ‘‘infinite’’
length. The boundary conditions have to be configured
as von Neumann (zero flux) or Dirichlet (fixed)
boundaries. Furthermore, our design has the potential
for calibrating cells, that are not in the active part of the
network, without disrupting the data stream. The
storage duration is constant for all analog signal
samples. Consequently, linear systematic error effects
resulting from leakage currents can be compensated as
well. A prototype containing a 1D nonlinear network
has been fabricated in 0.8 mm CMOS and is fully
functional. The chip can also be used for 2D image
smoothing provided that the result of successive 1D
relaxation along the rows and columns of the image is
acceptable for a given task.

Figure 18. Detected edges as signal transitions where the
smoothing process adaptively stopped.

Figure 17. Smoothed image using the 1D analog nonlinear
relaxation network (see text).
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Further work will focus on a 2D realization being
fully consistent with the multi-dimensional theory. In
addition, effective error reduction methods and efficient
architectures for higher dimensions have to be investi-
gated in order to exploit the potential of parallel analog
hardware for computer vision.
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2. Schnörr, C. (1994) Unique reconstruction of piecewise-
smooth images by minimizing strictly convex non-quad-
ratic functionals. J. of Math. Imag. Vision 4: 189–198.

3. Harris, J., Koch, C. & Luo, J. (1990) A two-dimensional
analog VLSI circuit for detecting discontinuities in early
vision. Science 248: 1209–1211.

4. Geman, S. & Geman, D. (1984) Stochastic relaxation,
Gibbs distributions and the Bayesain restoration of
images. IEEE Trans. Patt. Anal. Mach. Intell. 6(6):
721–741.

5. Blake, A. & Zisserman, A. (1987) Visual Reconstruction.
MIT Press.

6. Geiger, D. & Yuille, A. (1991) A common framework for
image segmentation. Int. J. of Comp. Vision 6(3):
227–243.

7. More, J.-M. & Solimini, S. (1995) Variational Methods in
Image Segmentation. Boston: Birkhäuser.
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10. Schnörr, C. (1998) A study of a convex variational
approach for image segmentation and feature extraction.
J. of Math. Imag. Vision 8(3): 271–292.
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