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ABSTRACT. We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows
for image labeling. An exact formula is derived for the parameter gradient of any loss function that is constrained
by the linear system of ODEs determining the linearized assignment flow. We show how to efficiently evaluate
this formula using a Krylov subspace and a low-rank approximation. This enables us to perform parameter
learning by Riemannian gradient descent in the parameter space, without the need to backpropagate errors or to
solve an adjoint equation. Experiments demonstrate that our method performs as good as highly-tuned machine
learning software using automatic differentiation. Unlike methods employing automatic differentiation, our
approach yields a low-dimensional representation of internal parameters and their dynamics which helps to
understand how assignment flows and more generally neural networks work and perform.
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1. INTRODUCTION

1.1. Overview, Motivation. Learning the parameters of large neural networks from training data consti-
tutes a basic problem in imaging science, machine learning and other fields. The prevailing approach utilizes
gradient descent or approximations thereof based on automatic differentiation [BPRS18] and corresponding
software tools, like PyTorch [PGM+19] and TensorFlow [AAB+16]. This kind of software support has been
spurring research in imaging science and machine learning dramatically. However, merely relying on numer-
ical schemes and their automatic differentiation tends to thwart attempts to shed light on the often-criticized
black-box behavior of deep networks and to better understand the internal representation and function of
parameters and their adaptive dynamics.

In this paper, we explore a different route. Adopting the linearized assignment flow approach introduced
by [ZSPS20], we focus on a corresponding large system of linear ODEs of the form

V̇ = A(Ω)V +B, (1.1)

and study a geometric approach to learning the regularization parameters Ω by Riemannian gradient descent
of a loss function

Ω 7→ L(V (T ; Ω)) (1.2)

constrained by the dynamical system (1.1). Here, we exploit the crucial property that the solution to (1.1) can
be specified in closed form (2.24) and can be computed efficiently using exponential integration ([ZSPS20]
and Section 2.4). Matrix V ∈ R|I|×c represents a tangent vector of the so-called assignment manifold, |I| is
the number of nodes i ∈ I of the underlying graph, and c is the number of labels (classes) that have to be
assigned to data observed at nodes i ∈ I . Specifically,

• we derive a formula – see Theorem 3.8 – for the Euclidean parameter gradient ∂ΩL(V (T ; Ω)) in
closed form;
• we show that a low-rank representation of this gradient can be used to efficiently and accurately

approximate this closed form gradient; neither backpropagation, nor automatic differentiation or
solving adjoint equations are required;
• we highlight that the resulting parameter estimation algorithm, in terms of a Riemannian gradient

descent iteration (3.7) on the parameter manifold, can be implemented without any specialized soft-
ware support with modest computational resources;

The significance of our work reported in this paper arises in a broader context. The linearized assignment
flow approach also comprises the equation

W (T ) = Exp1W (V (T )) (1.3)

that yields the labeling in terms of almost integral assignment vectors Wi ∈ Rc+, i ∈ I that form the rows
of the matrix W , depending on the solution V (t) of (1.1) for a sufficiently large time t = T . Both equations
(1.3) and (1.1) together constitute a linearization of the full nonlinear assignment flow [ÅPSS17]

Ẇ = RWS(W ) (1.4)
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at the barycenter 1W of the assignment manifold. Choosing an arbitrary sequence of time intervals (step
sizes) h1, h2, . . . and setting

W (0) = 1W , W (k) = W (hk), k ∈ N, (1.5)

a sequence of linearized assignment flows

W (k+1) = Exp1W (V (k)), (1.6a)

V (k+1) = V (k) + V
(
hk; Ω(k),W (k)

)
, k = 0, 1, 2, . . . (1.6b)

can be computed in order to approximate (1.4) more closely, where V
(
hk; Ω,W (k)

)
solves the corresponding

updated ODE (1.1) of the form

V̇ = A(Ω(k);W (k))V + Π0S(W (k)). (1.6c)

The time-discrete equations (1.6) reveal two basic ingredients of deep networks (or neural ODEs) which the
full assignment flow (1.4) embodies in a continuous-time manner: coupling a pointwise nonlinearity (1.6a)
and diffusion (1.6b),(1.6c) enhances the expressivity of network models for data analysis.

The key point motivating the work reported in this paper is that our results apply to learning the parameters
Ωk in each step of the iterative scheme (1.6). We expect that the gradient, and its low-dimensional subspace
representations, will help the further study of how each ingredient of (1.6) impacts the predictive power of
assignment flows. Furthermore, ‘deep’ extensions of (1.4) and (1.6) are equally feasible within the same
mathematical framework (cf. Section 5.2).

1.2. Related Work. Assignment flows were introduced by [ÅPSS17]. For a survey of prior and recent
related work, we refer to [Sch20]. Linearized assignment flows were introduced by [ZSPS20] as part of a
comprehensive study of numerical schemes for the geometric integration of the assignment flow equation
(1.4).

While the bulk of these schemes are based on a Lie group action (cf. [IMKNZ00]) on the assignment man-
ifold, which enables to apply established theory and algorithms for the numerical integration of ODEs that
evolve in an Euclidean space [HNW08], the linearity of the ODE (1.1) specifically allows to represent its so-
lution in closed form by the Duhamel (or variation-of-constants) formula [Tes12]. Corresponding extensions
to nonlinear ODEs rely on exponential integration [HOS09, HO10]. Iteration (1.6) combines a correspond-
ing iterative scheme and the tangent-space based parametrization (1.3) of the linearized assignment flow.

A key computational step of the latter class of methods requires to evaluate an analytical matrix-valued
function, like the matrix exponential and similar functions [Hig08, Section 10]. While basic methods
[MVL03] only work for problem of small and medium size, dedicated methods using Krylov subspaces
[HL97, AMH11] and established numerical linear algebra [Saa92, Saa03] can be applied to larger problems.
The algorithm that results from our approach employs such methods.

Machine learning requires to compute gradients of loss functions that take solutions of ODEs as argument.
This defines an enormous computational task and explains why automatic differentiation and corresponding
software tools are almost exclusively applied. Alternative dedicated recent methods like [KKRS21] focus on
a special problem structure, viz. the action of the differential of the matrix exponential on a rank-one matrix.
Our closed form formula for the parameter gradient also involves the differential of a matrix exponential.
Yet, we wish to evaluate the gradient itself rather than its action on another matrix. The special problem
structure that we can exploit is the Kronecker sum of matrices. Accordingly, our approach is based on the
recent corresponding work [BS17] and an additional subsequent low-rank approximation.

1.3. Contribution, Organization. We derive a closed form expression of the gradient of any C1 loss func-
tion of the form (1.2) that depends on the solution V (t) of the linear system of ODEs (1.1) at some arbitrary
but fixed time t = T . In addition, we develop a numerical method that enables to evaluate the gradient
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efficiently for the common large sizes of image labeling problems. We apply the method to optimal param-
eter estimation by Riemannian gradient descent and validate our approach by a series of proof-of-concept
experiments. This includes a comparison with automatic differentiation applied to two numerical schemes
for integrating the linearized assignment flow: geometric explicit Euler and exponential integration. It turns
out that our method is as accurate and efficient as the highly optimized automatic differentiation software,
like PyTorch [PGM+19] and TensorFlow [AAB+16]. We point out that to our knowledge, automatic differ-
entiation has not been applied to exponential integration, so far.

This paper extends the conference paper [ZPS21] in that all parameter dependencies of the loss function,
constrained by the linearized assignment flow, are taken into account (cf. diagram (3.15)). In addition,
a complete proof of the corresponding main result (Theorem 3.8) is provided. The space complexity of
various gradient approximations are specified in a series of Remarks. The approach is validated numerically
and more comprehensively by comparing to automatic differentiation and by examining the influence of all
parameters.

The plan for this paper is as follows. Section 2 summarizes the assignment flow approach, the linearized
assignment flow and exponential integration for integrating the latter flow. Section 3 details the derivation
of the exact gradient of any loss function of the flow with respect to the weight parameters that regularize
the flow. Furthermore, a low-rank approximation of the gradient is developed for evaluating the gradient
efficiently. We also sketch how automatic derivation is applied to two numerical schemes in order to solve
the parameter estimation problem in alternative ways. Numerical experiments are reported in Section 4 for
comparing the methods and for inspecting quantitatively the gradient approximation and properties of the
estimated weight patches that parametrize the linearized assignment flow. We conclude in Section 5 and
point out further directions of research.

2. PRELIMINARIES

2.1. Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N. The cardinality of a finite set S is denoted by
|S|, e.g. |[n]| = n. Rn+ denotes the positive orthant and Rn> its interior. 1 = (1, 1, . . . , 1)> has dimension
depending on the context that we specify sometimes by a subscript, e.g. 1n ∈ Rn. Similarly, we set 0n =
(0, 0, . . . , 0)> ∈ Rn. {ei : i ∈ [n]} is the canonical basis of Rn and In = (e1, . . . , en) ∈ Rn×n the identity
matrix.

The support of a vector x ∈ Rn is denoted by supp(x) = {i ∈ [n] : xi 6= 0}. ∆n = {p ∈ Rn+ : 〈1n, p〉 =
1} is the probability simplex whose points represent discrete distributions on [n]. Distributions with full
support [n] form the relative interior ∆̊n = ∆n ∩ Rn>. 〈·, ·〉 is the Euclidean inner product of vectors and
matrices. In the latter case, this reads 〈A,B〉 = tr(A>B) with the trace tr(A) =

∑
iAii. The induced

Frobenius norm is denoted by ‖A‖ =
√
〈A,A, 〉, and other matrix norms like the spectral norm ‖A‖2 are

indicated by subscripts. The mapping Diag : Rn → Rn×n sends a vector x to the diagonal matrix Diag(x)
with entries x. A ⊗ B denotes the Kronecker product of matrices A and B [Gra81, VL00] and ⊕ the
Kronecker sum

A⊕B = A⊗ In + Im ⊗B ∈ Rmn×mn, A ∈ Rm×m, B ∈ Rn×n. (2.1)

We have

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.2)

for matrices of compatible dimensions. The operator vecr turns a matrix into the vector by stacking the row
vectors. It satisfies

vecr(ABC) = (A⊗ C>) vecr(B). (2.3)
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The Kronecker product v ⊗ w ∈ Rmn of two vectors v ∈ Rm and w ∈ Rn is defined by viewing the vectors
as matrices with only one column and applying the definition of Kronecker products for matrices. We have

v ⊗ w = vecr(vw
>). (2.4)

The matrix exponential of a square matrix A is given by [Hig08, Ch. 10]

expm(A) =
∑
k≥0

Ak

k!
. (2.5)

L(E1, E2) denotes the space of all linear bounded mappings from E1 to E2.

2.2. Assignment Flow. Let G = (I, E) be a given undirected graph with vertices i ∈ I indexing data

FI = {fi : i ∈ I} ⊂ F (2.6)

given in a metric space (F , d). In this paper, we focus primarily on the application of image labeling in which
the graph G is a grid graph equipped with a 3×3 or larger neighborhoodNi = {k ∈ I : ik = ki ∈ E}∪{i}
at each pixel i ∈ I . The linearized assignment flow and the learning approach in this paper can, however,
also be applied to the case of data labeling on arbitrary graphs.

Along with FI , prototypical data (labels) LJ = {lj ∈ F : j ∈ J} are given that represent classes
j = 1, . . . , |J |. Supervised image labeling denotes the task to assign precisely one prototype lj to each
datum fi at every vertex i in a coherent way, depending on the label assignments in the neighborhoods Ni.
These assignments at i are represented by probability vectors

Wi ∈ ∆̊|J |, i ∈ I. (2.7)

The set ∆̊|J | becomes a Riemannian manifold denoted by S := (∆̊|J |, gFR) when endowed with the Fisher-
Rao metric gFR. Collecting all assignment vectors as rows defines the strictly positive row-stochastic assign-
ment matrix

W = (W1, . . . ,W|I|)
> ∈ W = S × · · · × S ⊂ R|I|×|J |, (2.8)

that we regard as point on the product assignment manifoldW . Image labeling is accomplished by geomet-
rically integrating the assignment flow W (t) solving

Ẇ = RW
(
S(W )

)
, W (0) = 1W :=

1

|J |
1|I|1

>
|J | (barycenter), (2.9)

where RW and S(W ) are defined in (2.11b) resp. (2.17). The assignment flow provably converges towards a
binary matrix [ZZS21], i.e. limt→∞Wi(t) = ej(i), for every i ∈ I and some j(i) ∈ J , which yields the label
assignment fi 7→ lj(i). In practice, geometric integration is terminated when W (t) is ε-close to an integral
point using the entropy criterion from [ÅPSS17], followed by trivial rounding, due to the existence of basins
of attraction around each integral point [ZZS21].

We specify the right-hand side of the differential equation in (2.9) — see (2.14) and (2.17) below — and
refer to [ÅPSS17, Sch20] for more details and the background. With the tangent space

T0 = TpS = {v ∈ R|J | : 〈1, v〉 = 0}, ∀p ∈ S, (2.10)

that does not depend on the base point p ∈ S, we define

Π0 : R|J | → T0, z 7→ I|J | −
1

|J |
1|J |1

>
|J |, (2.11a)

Rp : R|J | → T0, z 7→ Rp(z) =
(

Diag(p)− pp>
)
z, (2.11b)

Exp: S × T0 → S, (p, v) 7→ Expp(v) =
e
v
p

〈p, e
v
p 〉
p, (2.11c)
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Exp−1 : S × S → T0, (p, q) 7→ Exp−1
p (q) = Rp log

q

p
, (2.11d)

exp: S × R|J | → S, (p, z) 7→ expp(z) = Expp ◦Rp(z) =
pez

〈p, ez〉
, (2.11e)

where multiplication, division, exponentiation e(·) and log(·) apply component-wise to vectors. Correspond-
ing maps

RW , ExpW , expW (2.12)
in connection with the product manifold (2.8) are defined analogously, and likewise the tangent space

T0 = T0 × · · · × T0 = TWW, ∀W ∈ W (2.13)

and the extension of the orthogonal projection (2.11a) onto T0, again denoted by Π0. For example, regarding
(2.9), with W ∈ W and S(W ) ∈ W (or more generally S ∈ R|I|×|J |), we have

RWS(W ) =
(
RW1S1(W ), . . . , RW|I|S|I|(W )

)>
= vec−1

r

(
Diag(RW ) vecr

(
S(W )

))
(2.14a)

with

Diag(RW ) :=


RW1 0 · · · 0

0 RW2

...
...

. . . 0
0 · · · RW|I|

 . (2.14b)

Given data FI are taken into account as distance vectors

Di =
(
d(fi, l1), . . . , d(fi, l|J |)

)>
, i ∈ I (2.15)

and mapped toW by

L(W ) = expW (−1
ρD) ∈ W, Li(Wi) = expWi

(−1
ρDi) =

Wie
− 1
ρ
Di

〈Wi, e
− 1
ρ
Di〉

, (2.16)

where ρ > 0 is a user parameter for normalizing the scale of the data. These likelihood vectors represent
data terms in conventional variational approaches: Each individual flow Ẇi = RWiLi(Wi), Wi(0) = 1S
converges to ej(i) with j(i) = arg minj∈J Dij and in this sense maximizes the local data likelihood.

The vector field defining the assignment flow (2.9) arises through coupling flows for individual pixels
through geometric averaging within the neighborhoods Ni, i ∈ I , conforming to the underlying Fisher-Rao
geometry

S(W ) =


...

Si(W )>

...

 = GΩ
(
L(W )

)
∈ W, (2.17a)

Si(W ) = GΩ
i

(
L(W )

)
= ExpWi

( ∑
k∈Ni

ωik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I. (2.17b)

The similarity vectors Si(W ) are parametrized by strictly positive weight patches (ωik)k∈Ni , centered at
i ∈ I and indexed by local neighborhoods Ni ⊂ I , that in turn define the weight parameter matrix

Ω = (Ωi)i∈I ∈ R|I|×|I|+ , Ωi|Ni = (ωik)k∈Ni ∈ ∆̊|Ni|,
∑
k∈Ni

ωik = 1, ∀i ∈ I. (2.18)

The matrix Ω comprises all regularization parameters satisfying the latter linear constraints. Flattening these
weight patches defines row vectors Ωi|Ni , i ∈ I and, by complementing with 0, entries of the sparse row
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vectors Ωi of the matrix Ω. Note that the positivity assumption ωik > 0 is reflected by the membership
Ωi|Ni ∈ ∆̊|Ni|. Throughout this paper, we assume that all pixels have neighborhoods of equal size

|N | := |Ni|, ∀i ∈ I (2.19)

and therefore simply write Ωi|N = Ωi|Ni . These parameters are used in the linearized assignment flow, to
be introduced next. We explain a corresponding parameter estimation approach in Section 3 and a parameter
predictor in Section 4.4.

2.3. Linearized Assignment Flow. The linearized assignment flow, introduced by [ZSPS20], approxi-
mates (2.9) by

Ẇ = RW

(
S(W0) + dSW0RW0 log

W

W0

)
, W (0) = W0 ∈ W (2.20)

around any point W0. In what follows, we only consider the barycenter

W0 = 1W (2.21)

which is the initial point of (2.9). The differential equation (2.20) is still nonlinear but can be parametrized
by a linear ODE on the tangent space

W (t) = ExpW0

(
V (t)

)
, (2.22a)

V̇ = RW0

(
S(W0) + dSW0V

)
=: BW0 +A(Ω)V, V (0) = 0, (2.22b)

where matrix A(Ω) linearly depends on the parameters Ω of (2.17). The action of A(Ω) on V is explicitly
given by [ZSPS20, Prop. 4.4]

A(Ω)V = RW0dSW0V = RS(W0)ΩV
(2.14)
= vec−1

r

(
Diag(RS(W0)) vecr(ΩV )

)
(2.23a)

=

(
RS1(W0)

∑
k∈N1

ω1kVk, . . . , RS|I|(W0)

∑
k∈N|I|

ω|I|kVk

)>
, (2.23b)

where Diag(RS(W0)) is defined by (2.14b) and we took into account (2.21). The linear ODE (2.22b) admits a
closed-form solution which in turn enables a different numerical approach (Section 2.4) and a novel approach
to parameter learning (Section 3).

2.4. Exponential Integration. The solution to (2.22b) is given by a high-dimensional integral (Duhamel’s
formula) whose value in closed form is given by

V (t; Ω) = tϕ
(
tA(Ω)

)
BW0 , ϕ(x) =

ex − 1

x
=

∞∑
k=0

xk

(k + 1)!
, (2.24)

where the entire function ϕ is extended to matrix arguments as the limit of an absolutely convergent power
series in the matrix space [HJ91, Theorem 6.2.8]. As the matrix A is already very large even for medium-
sized images, however, it is not feasible in practice to compute ϕ(tA) in this way. Exponential integra-
tion [HL97, NW12], therefore, was used by [ZSPS20] for approximately evaluating (2.24), as sketched next.

Applying the row-stacking operator (2.3) to both sides of (2.22b) and (2.24), respectively, yields with

v = vecr(V ) (2.25)

the ODE (2.22b) in the form

v̇ = b+AJ(Ω)v, v(0) = 0, b = b(Ω) = vecr(BW0) ∈ Rn, (2.26a)

AJ(Ω) =
(
AJik(Ω)

)
i,k∈I ∈ Rn×n, AJik(Ω) =

{
ωikRSi(W0), k ∈ Ni,
0, k 6∈ Ni.

(2.26b)
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v(t; Ω) = tϕ
(
tAJ(Ω)

)
b, n := dim v(t; Ω) = |I||J |, (2.26c)

where AJ(Ω) results from

vecr
(
A(Ω)V

) (2.23)
= Diag(RS(W0)) vecr(ΩV ) = Diag(RS(W0))(Ω⊗ I|J |)v (2.27a)

= AJ(Ω)v. (2.27b)

Using the Arnoldi iteration [Saa03] with initial vector q1 = b/‖b‖, we determine an orthonormal basis
Qm = (q1, . . . , qm) ∈ Rn×m of the Krylov spaceKm(AJ , b) of dimensionm. As will be validated in Section
4, choosing m ≤ 10 yields sufficiently accurate approximations of the actions of the matrix exponential
expm and the ϕ operator on a vector, respectively, that are given by

expm
(
tAJ(Ω)

)
b ≈ ‖b‖Qm expm(tHm)e1, Hm = Q>mA

J(Ω)Qm, (2.28a)

tϕ
(
tAJ(Ω)

)
b ≈ t‖b‖Qmϕ(tHm)e1. (2.28b)

The expression ϕ(tHm)e1 results from computing the left-hand side of the relation [Hig08, Section 10.7.4]

expm

(
tHm e1

0 0

)
=

(
expm(tHm) ϕ(tHm)e1

0 1

)
(2.29)

and extracting the upper-right vector. Since Hm is a small matrix, any standard method [MVL03] can be
used for computing the matrix exponential on the left-hand side.

3. PARAMETER ESTIMATION

Section 3.1 details our approach for learning optimal weight parameters for a given image and ground
truth labeling: Riemannian gradient descent is performed with respect to a loss function that depends on the
solution of the linearized assignment flow. A closed form expression of this gradient is derived in Section 3.2
along with a low-rank approximation in Section 3.3 that can be computed efficiently. As an alternative and
baseline, we outline in Section 3.4 two gradient approximations based on numerical schemes for integrating
the linearized assignment flow and automatic differentiation.

3.1. Learning Procedure. Let

PΩ = {Ω ∈ R|I|×|I|+ : Ω satisfies (2.18)} (3.1)

denote the space of weight parameter matrices that parametrize the similarity mapping (2.17). Due to (2.18)
and (2.19), the restrictions Ωi|N are strictly positive probability vectors, as are the assignment vectors Wi

defined by (2.7). Therefore, similar to Wi ∈ S, we consider each Ωi|N as point on a corresponding manifold
(∆|N |, gFR) equipped with the Fisher-Rao metric and — in this sense — regard PΩ in (3.1) as corresponding
product manifold.

Let W ∗ ∈ W denote the ground truth labeling for a given image, and let V ∗ = Π0W
∗ ∈ T0 be a tangent

vector such that lims→∞ Exp1W (sV ∗) = W ∗. Our objective is to determine Ω such that, for some specified
time T > 0, the vector

VT (Ω) := V (T ; Ω), (3.2)
given by (2.24) and corresponding to the linearized assignment flow, approximates the direction of V ∗ and
hence

lim
s→∞

Exp1W

(
sVT (Ω)

)
= W ∗. (3.3)

In this formula the direction of the vector VT (Ω) only is relevant, but not its magnitude. A distance function
that also satisfies these properties is given by

fL : T0 → R, V 7→ 1− 〈V
∗, V 〉

‖V ∗‖‖V ‖
. (3.4)
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In addition, we consider a regularizer

R : PΩ → R, Ω 7→ τ

2

∑
i∈I
‖ti(Ω)‖2, ti(Ω) = exp−1

1Ω
(Ωi|N ), τ > 0 (3.5)

and define the loss function

L : PΩ → R, L(Ω) = fL
(
VT (Ω)

)
+R(Ω), (3.6)

with VT (Ω) from (3.2). Ω is determined by the Riemannian gradient descent sequence

Ω(k+1) = expΩ(k)

(
− h∇L(Ω(k))

)
, k ≥ 0, Ω

(0)
i |N = 1|N |, i ∈ I (3.7)

with step size h > 0. Here
∇L(Ω) = RΩ∂L(Ω) (3.8)

is the Riemannian gradient with respect to the Fisher-Rao metric. RΩ is given by (2.12) and (2.11b) and
effectively applies to the restrictions Ωi|N of the row vectors with all remaining components equal to 0.
It remains to compute the Euclidean gradient ∂L(Ω) of the loss function (3.6) which is presented in the
subsequent Section 3.2.

3.2. Loss Function Gradient. In Section 3.2.2 we derive a closed form expression for the loss function gra-
dient (Theorem 3.8), after introducing some basic calculus rules for representing and computing differentials
of matrix-valued mappings in Section 3.2.1.

3.2.1. Matrix Differentials. Let F : Rm1×m2 → Rn1×n2 be a smooth mapping. Using the canonical identifi-
cation TE ∼= E of the tangent spaces of any Euclidean space E with E itself, we both represent and compute
the differential

dF : Rm1×m2 → L(Rm1×m2 ,Rn1×n2) (3.9)
in terms of a vector-valued mapping f , which is defined by F according to the commutative diagram

Rm1×m2 Rn1×n2

L(Rm1×m2 , Rn1×n2 )
∼= Rn1n2×m1m2

Rm1m2 Rn1n2

F

f

vecr vecr

dF

df

(3.10)

In formulas, this means that based on the equation

vecr
(
F (X)

)
= f

(
vecr(X)

)
, ∀X ∈ Rm1×m2 , (3.11)

we set
vecr

(
dF (X)Y ) = df

(
vecr(X)

)
vecr(Y ), ∀X,Y ∈ Rm1×m2 (3.12)

and hence define and compute the differential (3.9) as matrix-valued mapping

dF := df ◦ vecr . (3.13)

The corresponding linear actions on Y ∈ Rm1×m2 and vecr(Y ) ∈ Rm1m2 , respectively, are given by (3.12).
We state an auxiliary result required in the next subsection, which also provides a first concrete instance of
the general relation (3.12).

Lemma 3.1 (differential of the matrix exponential). If F = expm: Rn×n → Rn×n, then (3.12) reads

vecr
(
d expm(X)Y

)
=
(

expm(X)⊗ In
)
ϕ(−X ⊕X>) vecr(Y ), Y ∈ Rn×n, (3.14)

with ϕ given by (2.24).
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Proof. The result follows from [Hig08, Thm. 10.13] where columnwise vectorization is used, after rearrang-
ing so as to conform to the row-stacking mapping vecr used in this paper. �

3.2.2. Closed-Form Gradient Expression. We separate the computation of L(Ω) and the gradient ∂L(Ω)
into several operations that were introduced in sections 2 and 3.1. We illustrate their composition and ac-
cordingly the process from parameters Ω to a lossL(Ω) in the following flow diagram that refers to quantities
in (2.26) and (2.27) related to the linearized assignment flow, after vectorization.

Ω S(W0) = exp1W

(
−1
ρΩD

)
b(Ω) = vecr(RW0S(W0))

AJ(Ω) = Diag(RS(W0))(Ω⊗ I|J |) vT (Ω) = Tϕ
(
TAJ(Ω)

)
b(Ω)

R(Ω) L(Ω) = fL(vT (Ω)) +R(Ω)

(M1) (M2)

(M3) (M4)

(M4)

(M5)

(3.15)

In what follows, we traverse this diagram from top-left to bottom-right and collect each partial result by a
corresponding lemma or proposition. Theorem 3.8 assembles all results and provides a closed form expres-
sion of the loss function gradient ∂L(Ω). To enhance readability, the proofs of most Lemmata are listed in
Appendix A.1.

We focus on mapping (M1) in diagram (3.15).

Lemma 3.2. The differential of the function

f1 : R|I|×|I| → R|I|×|J |, Ω 7→ f1(Ω) := S(W0) = exp1W

(
− 1

ρ
ΩD
)
, D ∈ R|I|×|J | (3.16)

and its transpose are given by

df1(Ω)Y = −1

ρ
Rf1(Ω)(Y D), ∀Y ∈ R|I|×|I|, (3.17a)

df1(Ω)>Z = −1

ρ
Rf1(Ω)(Z)D>, ∀Z ∈ R|I|×|J |, (3.17b)

with Rf1(Ω) defined by (2.14).

Proof: see Appendix A.1.

We consider mapping (M2) of diagram (3.15), taking into account mapping (M4) and notation (3.16).

Lemma 3.3. The differential of the function

f2 : R|I|×|I| → R|I|
2
, Ω 7→ f2(Ω) := b(Ω) = vecr

(
RW0f1(Ω)

)
(3.18)

and its transpose are given by

df2(Ω)Y = vecr
(
RW0df1(Ω)Y

)
, ∀Y ∈ R|I|×|I| (3.19a)

df2(Ω)>Z = df1(Ω)>(RW0Z), ∀Z ∈ R|I|×|I|. (3.19b)

Proof: see Appendix A.1.

We note that df2(Ω)> should act on a vector vecr(Z) ∈ R|I|
2
. We prefer the more compact and equivalent

non-vectorized expression (3.19b).
We turn to mapping (M3) of diagram (3.15) and use (3.15).
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Lemma 3.4. The differential of the mapping

f3 : R|I|×|I| → Rn×n, Ω 7→ f3(Ω) := AJ(Ω) = Diag(Rf1(Ω))(Ω⊗ I|J |), n = |I||J | (3.20)

is given by

df3(Ω)Y = Diag(dRf1(Ω)Y )(Ω⊗ I|J |) + Diag(Rf1(Ω))(Y ⊗ I|J |), ∀Y ∈ R|I|×|I|. (3.21a)

Here, Diag(dRf1(Ω)Y ) ∈ Rn×n is defined by (2.14b) and |I| block matrices of size |J |× |J | on the diagonal
of the form

dRf1i(Ω)Y = Diag
(
df1i(Ω)Y

)
−
(
df1i(Ω)Y

)
f1i(Ω)> − f1i(Ω)

(
df1i(Ω)Y

)>
, i ∈ I, (3.21b)

where df1i(Ω)Y is given by

(dRf1i(Ω)Y )Si =
(
(dRf1(Ω)Y )S

)
i
, i ∈ I (3.21c)

for any S = (. . . , Si, . . . )
> ∈ R|I|×|J | and by (3.17a).

Proof: see Appendix A.1.

We focus on the differential of the vector-valued mapping vT (Ω) ∈ Rn of (3.15) with n given by (2.26c).
We utilize the fact that analogous to (2.29), the vector

vT (Ω) = Tϕ(TAJ(Ω))b(Ω) = (In, 0n) expm
(
A(Ω)

)
en+1 (3.22a)

can be extracted from the last column of the matrix

expm
(
A(Ω)

)
=

(
expm

(
TAJ(Ω)

)
vT (Ω)

0>n 1

)
, A(Ω) =

(
TAJ(Ω) Tb(Ω)

0>n 0

)
. (3.22b)

By means of relation (3.11), we associate a vector-valued function fA with the matrix-valued mapping A
through

vecr
(
A(Ω)

)
= fA

(
vecr(Ω)

)
(3.23)

and record for later that, for any matrix Y ∈ R|I|×|I|, equation (3.12) implies

vecr
(
dA(Ω)Y

)
= dfA

(
vecr(Ω)

)
vecr(Y ). (3.24)

Lemma 3.5. The differential of the mapping A in (3.22b) is given by

dA(Ω)Y = T

(
df3(Ω) df2(Ω)

0>n 0

)((
1
1

)
⊗ Y

)
, ∀Y ∈ R|I|×|I|. (3.25)

Proof. Equation (3.25) is immediate due to

dA(Ω) =

(
TdAJ(Ω)Y Tdb(Ω)Y

0>n 0

)
(3.26)

and Lemmata 3.3 and 3.4. �

Now we are in the position to specify the differential of the solution to the linearized assignment flow with
respect to the regularizing weight parameters.

Proposition 3.6. Let
f4(Ω) := vT (Ω) := v(T ; Ω) (3.27)

denote the solution (2.26c) in vectorized form to the ODE (2.22b). Then the differential is given according
to the convention (3.13) by

df4(Ω)Y = T
(
d
(
ϕ
(
TAJ(Ω)

)
b(Ω)

)
+ ϕ

(
TAJ(Ω)

)
df2(Ω)

)
Y (3.28a)
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where

d
(
ϕ
(
TAJ(Ω)

)
b(Ω)

)
Y (3.28b)

=
((

expm(TAJ(Ω)), vT (Ω)
)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
· dfA

(
vecr(Ω)

)
vecr(Y ), (3.28c)

∀Y ∈ R|I|×|I|, (3.28d)

where AJ(Ω) is given by (2.26b), A(Ω) by (3.22b), dfA by (3.24) and Lemma 3.5, and df2 by Lemma 3.3.

Proof. Equation (3.28a) follows directly from equation (2.26c) and Lemma 3.3 makes explicit the second
summand on the right-hand side. It remains to compute the first summand. Using (3.22) and the chain rule,
we have for any Y ∈ R|I|×|I|,

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y = (In, 0n)d expm

(
A(Ω)

)(
dA(Ω)Y

)
en+1. (3.29a)

Applying vecr to both sides which does not change the vector on the left-hand side, yields by (2.3)

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y =

(
(In, 0n)⊗ e>n+1

)
vecr

(
d expm

(
A(Ω)

)
(dA(Ω)Y )

)
. (3.29b)

Applying Lemma 3.1 and (3.24), we obtain

d
(
Tϕ(TAJ(Ω))b(Ω)

)
Y =

(
(In, 0n)⊗ e>n+1

)(
expm

(
A(Ω)

)
⊗ In+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
(3.29c)

· dfA
(

vecr(Ω)
)

vecr(Y ) (3.29d)

and using (2.2) and (3.22b)

=
((

expm(TAJ(Ω)), vT (Ω)
)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
(3.29e)

· dfA
(

vecr(Ω)
)

vecr(Y ). �

We finally consider the regularizing mappingR(Ω), defined by (3.5) and corresponding to mapping (M5)
in diagram (3.15). Here, we have to take into account the constraints (2.18) imposed on Ω. Accordingly, we
define the corresponding set of tangent matrices

YΩ =
{
Y ∈ R|I|×|I| : 〈1N , Yi|N 〉 = 0, ∀i ∈ I

}
. (3.30)

Lemma 3.7. The differential of the mappingR in (3.5) is given by

dR(Ω)Y = τ
∑
i∈I

〈
ti(Ω),Π0

( Yi
Ωi

)∣∣∣
N

〉
, ∀Y ∈ YΩ. (3.31)

Proof: see Appendix A.1.

Putting all results together, we state the main result of this section.

Theorem 3.8 (loss function gradient). Let

L(Ω) = fL
(
vT (Ω)

)
+R(Ω) (3.32)

be a continuously differentiable loss function, where vT (Ω) given by (2.26c) is the vectorized solution to the
linearized assignment flow (2.22b) at time t = T . Then its gradient ∂L(Ω) is given by

〈∂L(Ω), Y 〉 = dL(Ω)Y, ∀Y ∈ YΩ (3.33a)

with

dL(Ω)Y =
〈
∂fL

(
vT (Ω)

)
, df4(Ω)Y

〉
+ dR(Ω)Y (3.33b)

and df4(Ω) given by (3.28), and with dR(Ω)Y given by Lemma 3.7.
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Proof. The claim (3.33) follows from applying the definition of the gradient in (3.33a) and evaluating the
right-hand side using the chain rule and Proposition 3.6, to obtain (3.33b). �

3.3. Gradient Approximation. In this section, we discuss the complexity of the evaluation of the loss
function gradient ∂L(Ω) as given by (3.33), and we develop a low-rank approximation (3.47) that is compu-
tationally feasible and efficient.

3.3.1. Motivation. We reconsider the gradient ∂L given by (3.33). The gradient involves the term df4(Ω)Y ,
given by (3.28), which comprises two summands. We focus on the computationally expensive first summand
on the right-hand side of (3.28a) given by (3.28b)-(3.28c), i.e., the term((

expm(TAJ(Ω)), vT (Ω)
)
⊗ e>n+1

)
ϕ
(
−A(Ω)⊕A(Ω)>

)
· dfA

(
vecr(Ω)

)
︸ ︷︷ ︸

=:C(Ω)

vecr(Y ). (3.34)

In order to evaluate the corresponding component of ∂L(Ω) based on (3.33b), the matrix C(Ω) is transposed
and multiplied with ∂fL(vT (Ω)),

C(Ω)>∂fL(vT (Ω)) (3.35a)

= dfA
(

vecr(Ω)
)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
·
((

expm(TAJ(Ω)), vT (Ω)
)> ⊗ en+1

)
∂fL(vT (Ω)) (3.35b)

= dfA
(

vecr(Ω)
)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
·
((

expm(TAJ(Ω)), vT (Ω)
)> ⊗ en+1

)(
∂fL(vT (Ω))⊗ (1)

)
(3.35c)

(2.2)
= dfA

(
vecr(Ω)

)>
ϕ
(
−A(Ω)> ⊕A(Ω)

)
·
((

expm(TAJ(Ω)), vT (Ω)
)>
∂fL(vT (Ω))⊗ en+1

)
.

(3.35d)

Thus, the matrix-valued function ϕ defined by (2.24) has to be evaluates at a Kronecker sum of matrices and
then multiplied by a vector. The structure of this expression has the general form

f(M1⊕M2)(b1 ⊗ b2), M1,M2 ∈ Rk×k, b1, b2 ∈ Rk, (3.36)

where in our case we have

M1 = −A(Ω)>, M2 = A(Ω), k = n+ 1 = |I||J |+ 1, (3.37a)

b1 =
(

expm(TAJ(Ω)), vT (Ω)
)>
∂fL

(
vT (Ω)

)
, b2 = en+1, (3.37b)

f = ϕ. (3.37c)

As the following discussions also hold in the general setting (3.36), we derive our gradient approximation in
this full generality. Afterwards, we apply our setting to the gradient approximation (3.47). First, we discuss
two ways to compute (3.36):

Direct computation: Compute the Kronecker sum M1⊕M2, evaluate the matrix function ϕ and mul-
tiply the vector b1⊗b2. This approach has space and time complexity of at leastO(k4), with k given
by (3.37a). The complexity might be even higher depending on how the function f is evaluated.

Krylov subspace approximation: Use the Krylov space Km(M1 ⊕M2, b1 ⊗ b2) for approximating
(3.36), as explained in Section 2.4. This approach has space complexity O(k2m2) and time com-
plexity O(k2(m+ 1)) [Saa11, p. 132].

Remark 3.9 (space complexity). Consider an image with 512×512 pixels (|I| = 262 144), |J | = 10 labels
(i.e. k = |I||J | + 1 = 2 621 441) and using 8 bytes per number. Then the direct computation requires to
store more than 1014 terabytes of data. The Krylov subspace approximation (with m = 10) is significantly
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cheaper, but still requires to store more than 5000 terabytes. Hence both methods are computationally in-
feasible especially in view of the fact that (3.36) has to be recomputed in every step of the gradient descent
procedure (3.7).

3.3.2. An Approximation by Benzi and Simoncini. To reduce the memory footprint, we employ an approx-
imation for computing (3.36), first discussed by Benzi and Simoncini [BS17], and refine it using a new ad-
ditional approximation in Section 3.3.3. In the following, the notation from Benzi and Simoncini is slightly
adapted to our definition (2.1) of the Kronecker sum that differs from Benzi and Simoncini’s definition of
the Kronecker sum (A⊕B = B ⊗ I + I ⊗A).

The approach uses the Arnoldi iteration [Saa03] to determine orthonormal bases Pm, Qm and the corre-
sponding Hessenberg matrices T1 and T2 of the two Krylov subspaces K(M1, b1), K(M2, b2). The matrices
are connected by a standard relation of Krylov subspaces [Hig08, Section 13.2.1],

M1Pm = PmT1 + t1pm+1e
>
m, (3.38a)

M2Qm = QmT2 + t2qm+1e
>
m, (3.38b)

where t1 ∈ R, pm+1 ∈ Rn (resp. t2 ∈ R, qm+1 ∈ Rn) refer to the entries of the Hessenberg matrices and the
orthonormal bases in the next step of the Arnoldi iteration. With these formulas we deduce

(M1 ⊕M2)(Pm ⊗Qm)
(2.1)
= (M1Pm ⊗Qm) + (Pm ⊗M2Qm) (3.39a)

(3.38)
= (PmT1 + t1pm+1e

>
m ⊗Qm) + (Pm ⊗QmT2 + Pm ⊗ t2qm+1e

>
m) (3.39b)

= (Pm ⊗Qm)(T1 ⊕ T2) + (t1pm+1e
>
m ⊗Qm) + (Pm ⊗ t2qm+1e

>
m). (3.39c)

Ignoring the last two summands and multiplying by (Pm ⊗Qm)> yields the approximation

(M1 ⊕M2) ≈ (Pm ⊗Qm)(T1 ⊕ T2)(Pm ⊗Qm)>, (3.40)

which after applying f and multiplying b1 ⊗ b2 leads to the approximation

f(M1 ⊕M2)(b1 ⊗ b2) ≈ (Pm ⊗Qm)f(T1 ⊕ T2)(Pm ⊗Qm)>(b1 ⊗ b2) (3.41)

of the expression (3.36) as proposed by Benzi and Simoncini. We note that, due to the orthonormality of the
bases Pm and Qm and their relation to the vectors b1, b2 that generate the subspaces K(M1, b1), K(M2, b2),
the approximation simplifies to

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖(Pm ⊗Qm)f(T1 ⊕ T2)e1 (3.42a)

= ‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
, (3.42b)

where e1 ∈ Rm
2

denotes the first unit vector.

Remark 3.10 (complexity of the approximation (3.42b)). Computing and storing the matrices Pm,Qm, T1

and T2 has space complexityO(2km2) and a time complexity ofO(2k(m+ 1)) [Saa11, p. 132]. Storing the
matrices T1⊕T2 and f(T1⊕T2) has complexityO(m4). Finally, multiplying the three matrices Pm ∈ Rk×m,
vec−1

r (f(T1 ⊕ T2)e1) ∈ Rm×m andQ>m ∈ Rm×k has time complexityO(k2m+km2) and space complexity
O(k2 + km).

Ignoring negligible terms (recallm� k), the entire approximation has computational complexityO(k2m)
and storage complexity O(k2). Compared to the Krylov subspace approximation of (3.36) discussed in the
preceding section, this is a reduction of space complexity by a factor m2.

Consider an image with 512× 512 pixels (|I| = 262 144) and |J | = 10 labels as in Remark 3.9. Then the
approximation (3.42b) requires to store a bit more than 50 terabytes. While this is a huge improvement com-
pared to the 5000 terabytes from the Krylov approximation (see Remark 3.9), using this approximation is still
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computationally infeasible. This motivates why we introduce below an additional low-rank approximation
that yields a computationally feasible and efficient gradient approximation.

3.3.3. Low-Rank Approximation. We consider again the approximation (3.42b)

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
(3.43)

and decompose the matrix vec−1
r

(
f(T1 ⊕ T2)e1

)
∈ Rm×m using the singular value decomposition (SVD)

vec−1
r

(
f(T1 ⊕ T2)e1

)
=
∑
i∈[m]

σiyi ⊗ z>i , (3.44)

with yi, zi ∈ Rm and the singular values σi ∈ R, i ∈ [m]. As m is generally quite small, computing the
SVD is neither computationally nor storage-wise expensive. We accordingly rewrite the approximation in
the form

‖b1‖‖b2‖ vecr

(
Pm vec−1

r

(
f(T1 ⊕ T2)e1

)
Q>m

)
(3.45a)

= ‖b1‖‖b2‖ vecr

(
Pm

( ∑
i∈[m]

σiyi ⊗ z>i
)
Q>m

)
(3.45b)

= ‖b1‖‖b2‖
∑
i∈[m]

σi(Pmyi)⊗ (Qmzi). (3.45c)

Remark 3.11 (space complexity). While the factorized form (3.45c) is equal to the approximation (3.42b),
it requires only a fraction of the storage space: The intermediate results require storing m singular values
and k numbers for each Pmyi and Qmzi, and the final approximation has an additional storage requirement
of O(2km). In total O(4km) numbers need to be stored.

For a 512×512 pixels image with 10 labels (see Remark 3.9), storing this approximation requires at most
a gigabyte of memory.

In practice, this can be further improved: Numerical experiments show that the singular values decay very
rapidly, such that just the first singular value can be used to obtain the gradient approximation

f(M1 ⊕M2)(b1 ⊗ b2) ≈ ‖b1‖‖b2‖σ1(Pmy1)⊗ (Qmz1). (3.46)

Numerical results in Section 4 demonstrate that this approximation is sufficiently accurate.

Remark 3.12 (space complexity). The term ‖b1‖‖b2‖σ1(Pmy1)⊗(Qmz1) requires to storeO(2k) numbers,
i.e. about twice as much storage space as the original image. In total, we need to storeO(2k+2km) numbers.
The required storage for the running example (see Remark 3.9) now adds up to less than 500 megabytes.

We conclude this section by returning to our problem using the notation (3.37) and state the proposed
low-rank approximation of the loss function gradient. By (3.33), (3.35), (3.37) and (3.46), we have

∂L(Ω) ≈ c(Ω) · vec−1
r

(
dfA
(

vecr(Ω)
)>(

σ1(Pmy1)⊗ (Qmz1)
)

(3.47a)

where

c(Ω) =
∥∥( expm(TAJ(Ω)), vT (Ω)

)>
∂fL

(
vT (Ω)

)∥∥, (3.47b)

vT (Ω) = v(T ; Ω) (cf. (2.26c)) (3.47c)

σ1y1 ⊗ z>1 ≈ vec−1
r

(
ϕ(T1 ⊗ T2)e1

)
. (largest singular value and vectors) (3.47d)

Here, the matrices Pm, Qm, T1, T2 result from the Arnoldi iteration, cf. (3.38), that returns the two Krylov
subspaces used to approximate the matrix vector product ϕ(−A(Ω)> ⊕A(Ω))b1, with b1 given by (3.37b).
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3.4. Computing the Gradient using Automatic Differentiation. An entirely different approach to com-
puting the gradient ∂L(Ω) of the loss function (3.6) is to not use an approximation of the exact gradient
given in closed form by (3.8), but to replace the solution vT (Ω) to the linearized assignment flow in (3.33b)
by an approximation determined by a numerical integration scheme and to compute the exact gradient there-
from. Thus, one replaces a differentiate-then-approximate approach by an approximate-then-differentiate
alternative. We numerically compare these two approaches in Section 4.

We sketch the latter alternative. Consider again the loss function (3.6) evaluated at the linearized assign-
ment flow integrated up to time T

L(Ω) = fL
(
vT (Ω)

)
. (3.48)

Gradient approximations determined by automatic differentiation depend on what numerical scheme is used.
We pick out two basic choices out of a broad range of proper schemes studied in [ZSPS20]. In both cases, we
implemented the loss function fL in PyTorch together with the functions Ω 7→ AJ(Ω) and Ω 7→ b(Ω) given
by (2.26). Now two approximations can be distinguished depending on how the mappings (AJ(Ω), b(Ω)) 7→
vT (Ω) = v(T ; Ω) are implemented.

Automatic Differentiation based on the explicit Euler scheme: We partition the interval [0, T ] into
T/h subintervals with some step size h > 0 and use the iterative scheme

v(k+1) = v(k+1) + h
(
AJ(Ω)v(k) + b(Ω)

)
, v(0) = 0, (3.49)

in order to approximate vT (Ω) ≈ v(T/h) the solution to the linearized assignment flow ODE (2.26a).
As the computations only involve basic linear algebra, PyTorch is able to compute the gradient using
automatic differentiation.

Automatic Differentiation based on exponential integration: The second approximation utilizes the
numerical integration scheme developed in Section 2.4. Again, only basic operations of linear al-
gebra are involved so that PyTorch can compute the gradient using automatic differentiation. The
more special matrix exponential (2.29) is computed by PyTorch using a Taylor polynomial approxi-
mation [BBC19].

Both approaches determine an approximation of the Euclidean gradient ∂L(Ω) which we subsequently
convert into an approximation of the Riemannian gradient using Equation (3.8).

4. EXPERIMENTS

In this section, we report and discuss a series of experiments illustrating our novel gradient approxima-
tion (3.47) and the applicability of the linearized assignment flow to the image labeling problem.

We start with a discussion of the data generation (Section 4.1) and the general experimental setup (Sec-
tion 4.2), before discussing properties of the gradient approximation (Section 4.3). In order to illustrate a
complete pipeline that can also label previously unseen images, we trained a simple parameter predictor and
report its application in Section 4.4.

4.1. Data Generation. As for the experiments, we focused on the image labeling scenarios depicted in
Figures 4.1a and 4.1b. Each scenario consists of a set containing five 128 × 128 pixel images with ran-
dom Voronoi structure, in order to mimic low-dimensional structure that has to be separated in noisy data
from the background. This task occurs frequently in applications and cannot be solved without adaptive
regularization.

For the design of the parameter predictor (Section 4.4), we used all patches of five additional unseen
images for validation. In all cases we report the mean over all labeled pixels of 5 training and validation
images, respectively. In order to test the resilience to noise, we added Gaussian noise to the images. The
ground truth labeling is, in both labeling scenarios, given by the noiseless version of the images.
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In the first scenario illustrated by Figure 4.1a, we want to separate the boundary of the cells (black label)
from their interior (white label). The main difficulty here is to preserve the thin line structures even in the
presence of image noise. Weight patches with uniform (uninformed) weights average out most of the lines
as Figure 4.1c shows.

In the second scenario illustrated by Figure 4.1b, we label the Voronoi cells according to their color
represented by 8 labels. Due to superimposed noise, a pixelwise local rounding to the nearest label yields
about 50% wrongly labeled pixels, see Figure 4.1d.

4.2. Experimental Setup. Features and Parametrization. For simplicity, we used the raw image data in
a 3 × 3 window around each pixel as feature (2.6) for this pixel. Weight patches (ωik)k∈Ni in the Ω-matrix
(2.18) also had the size of 3× 3 pixels in all experiments. While the linearized assignment flow works with
arbitrary features and also with larger neighborhood sizes for the weight parameters, the above setup suffices
to illustrate and substantiate the contribution of this paper.

Performance measure. All labelings were evaluated on the tangent space of the assignment manifold
using the loss function fL given by (3.4). Since the values of this function are rather abstract, however, we
report the percentage of wrongly labeled pixels in all performance plots.

Gradient computation. We evaluated the loss function and approximated its Riemannian gradient in
three different ways, as further detailed in Section 4.3, throughout using uniform (uninformed) weight
patches as initialization. In particular, other common ways to update the parameters, like Adam or AdaMax
[KB17], are possible as well, in conjunction with our approach. Therefore, we also compared gradient
approximations based on our approach with the results of automatic differentiation, as implemented by Py-
Torch [PGM+19].

Parameter prediction. Parameter prediction for labeling novel data relies on the relation of features
extracted from training data to corresponding parameters estimated by the Riemannian gradient descent (3.7).
For any feature extracted from novel data, the predictor specifies the parameters, to be used for labeling the
data by integrating the linearized assignment flow after substituting the predicted parameters. Details are
provided in Section 4.4.

4.3. Properties of the Gradient Approximation. In this section, we report results that empirically validate
our novel gradient approximation (3.47) by means of parameter estimation for the linearized assignment flow.

First, we compared our gradient approximation with two methods based on automatic differentiation
(backpropagation), see also Section 3.4. To this end, we implemented in PyTorch [PGM+19] the simple
explicit Euler scheme (3.49) for integrating the linearized assignment flow and computed the gradient of the
loss function L(Ω) (3.6) with respect to Ω using automatic differentiation. Similarly, the Krylov subspace
approximation (2.28b) of the solution of the linearized assignment flow was implemented in PyTorch. As
all involved computations in this approximation are basic linear algebra operations, PyTorch is able to apply
automatic differentiation for evaluating the gradient.

These gradients are used for carrying out the gradient descent iteration (3.7) in order to optimize the
weight parameters. Figure 4.2 illustrates the comparison of the three approaches. Although they rely on
quite different principles, we observe a remarkable comparability of the three approaches with respect to the
reduction of the percentage of wrongly labeled pixels per training iteration, for both noisy and noiseless im-
ages. In particular, our low-rank approximation based on the closed-form loss function gradient expression
is competitive. In view of the minor differences between the curves, we point out that changing hyperpa-
rameters, like the step size in the gradient descent or the scale parameter τ of the regularizer R in (3.5),
have a greater effect on the training performance than the choice of either of the three approaches. Over-
all, these results validate the closed form formulas in Section 3.2 and, in particular, Theorem 3.8, and the
subsequent low-rank approximation in Section 3.3. We point out, however, that our approach only reveals
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(a) Random Voronoi line structure to be
labeled from noisy input data.

(b) Random colored Voronoi regions to
be labeled from noisy input data.

(c) Labeling with uniform weights,
that is without weight adaption, cannot
separate line structure from the back-
ground in noisy data.

(d) Pixelwise individual nearest la-
bel assignments produce an error rate
larger than 50%.

FIGURE 4.1. Randomized scenarios for training and testing. Two randomly generated
images for the two respective scenarios that were used to evaluate weight parameter esti-
mation and prediction. (a) Random line structure whose accurate labeling requires to adapt
weight parameters. (b) Random Voronoi cells to be labeled by pixelwise assignment of one
of the colors ( , , , , , , , ).
In both cases, Gaussian noise was added. The resulting noisy images are shown in the lower
part of either panel (rescaled in the color channels to avoid color clipping). (c) The amount
of noise is chosen quite large such that a labeling with uniform (“uninformed non-adaptive”)
weights completely destroys the thin line structure in (a). (d) A pixelwise local nearest label
assignment yields around 50% wrongly labeled pixels for the labeling scenario depicted in
(b). Both of these naive parameter settings indicate the need for a more structured choice of
the weight patches, by taking into account local image features in a local spatial neighbor-
hood.

data-dependent low-dimensional subspaces where the essential parameters of the linearized assignment flow
reside.
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(a) Noisy image
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Krylov Approximation (AD)
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(b) Noiseless image

FIGURE 4.2. Comparing gradient approximation and automatic differentiation. Both
figures show, for the second scenario depicted by Figure 4.1b, the effect of parameter learn-
ing in terms of the labeling error during the training procedure (3.7). Panel (a) shows the
result for noisy input data, panel (b) or noiseless input data. Note the different scales of
the two ordinates. As is exemplarily shown here by both figures, we generally observed
very similar results for all three algorithms which validates the closed form formulas in
Section 3.2 and the subsequent subspace approximation in Section 3.3.

Next, we compared our gradient approximation to the exact gradient on a per-pixel basis. However, as
the exact gradient is computationally infeasible, we used the gradient produced by automatic differentiation
of the explicit Euler scheme with a very small step size as surrogate. Figure 4.3a demonstrates the high
accuracy of our gradient approximation. A pixelwise illustration of the gradient approximation, at the initial
step of the training procedure for adapting the parameters, is provided by Figure 4.3b. The set of pixels with
non-zero loss function gradient concentrate around the line structure since here weight adaption is required
to achieve a proper labeling.

Our last three experiments regarding the gradient approximation, illustrated by Figure 4.4, concern
• the influence of the Krylov dimension m,
• the rank of our approximation, and
• the time T up to which the linearized assignment flow is integrated.

We observe according to Figure 4.4a that already Krylov subspace of small dimension m ≈ 10 suffice for
computing linearized assignment flows and learning their parameters. Similarly, the final rank-one gradient
approximation of the gradient according to Eq. (3.46) suffices for parameter estimation, as illustrated in
Figure 4.4b. These experiments show that quite low-dimensional representations suffice for representing the
information required for optimal regularization of dynamic image labeling. We point out that such insights
cannot be gained from automatic differentiation.

The influence of the time T used for integrating the linearized assignment flow on parameter learning
is illustrated in Figure 4.4c. For the considered parameter estimation setup, we observe that already small
integration times T yield good training results, whereas large times T yield slower convergence. A possible
explanation is that, in the latter case, the linearized assignment flow is close to an integral solution which,
when erroneous, is more difficult to correct.

4.4. Parameter Prediction. Besides parameter learning, parameter prediction for unseen test data defines
another important task. This task amounts to model and represent the relation of local features and optimal
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(b) Norm of gradients

FIGURE 4.3. Checking the gradient approximation at each pixel. We evaluated our
gradient approximation (3.47), at the first step of the training iteration and at each pixel, for
the scenario depicted in Figure 4.1a. As a proxy for the exact but computationally infeasible
gradient, we used the gradient produced by automatic differentiation of the explicit Euler
scheme with a very small step size. Then we compared both gradients at each pixel using the
cosine similarity, i.e. the value 1 means that the gradients point exactly in the same direction,
whereas 0 signals orthogonality and −1 means that they point in opposite directions. (a)
More than 99% of the pixels have a value of 0.9 or more, corresponding to an angle of 26◦

or less between the gradient directions. This illustrates excellent agreement between our
gradient approximation and the exact gradient. Disagreements with the exact gradient occur
rarely and randomly at isolated pixels throughout the image. (b) Norm of the gradients are
displayed at each pixel. Non-vanishing norms indicate where parameter learning (adaption)
occurs. Since the initial weight parameter patches are uniform, no adaption – corresponding
to zero norms of gradients – occurs in the interior of each Voronoi cell, because parameters
are already optimal in such homogeneous regions.

weight parameters, as basis to predict proper weights in unseen test data as a function of corresponding local
features.

We illustrate this for the scenario depicted by Figure 4.1a using the following simple end-to-end learned
approach to parameter prediction. We trained a predictor that produces a weight patch Ω̂i given the features
fi at vertex i of novel unseen data. The predictor is parameterized with N = 50 by

pj ∈ R3|N |, j ∈ [N ] feature prototypes, (4.1a)

νj ∈ T0, j ∈ [N ] tangent vectors representing prototypical weight patches, (4.1b)

and a scale parameter σ ∈ R. Similar to the assignment vectors (2.7), the to-be-predicted weight patches
Ω̂i are elements of the probability simplex ∆̊|Ni|, see (2.18). Accordingly, use tangent vector νj ∈ T0

to represent weight patches. In particular, tangent vector of predicted weight patches result from weight
averaging of vectors {νj}j∈[N ], and the predicted weight patch by lifting, see (4.4).

We initialize σ = 1 and initialize the pj , j ∈ [N ] by clustering noise-free patches extracted from of
training images. Given pj , we initialize νj such that it is directed towards the label of the corresponding
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FIGURE 4.4. Influence of Krylov subspace dimension, rank of the gradient approxima-
tion and integration time. The setup of Figure 4.2 was used to demonstrate the influence
of the Krylov subspace dimension, the low-rank approximation and the integration time
T on our gradient approximation for parameter learning. (a) In general, we observed that
Krylov dimensions of 5 to 10 are sufficient for most experiments. Larger Krylov dimen-
sions only increase the computation time without any noticeable improvement of accuracy.
(b) Training curves for different low-rank approximations coincide. This illustrates that just
selecting the largest singular value and vectors in (3.47), according to the final rank-one
approximation (3.46), suffices for parameter learning. (c) For small integration times T , the
convergence rates of training do not much differ. Only for larger time points T , we observe
slower convergence of training, presumably because almost hard decisions are more difficult
to correct by changing the parameters of the underlying dynamical system.

prototypical patch,

νj = Π0

(
e−‖pj,1−pj,center pixel‖, . . . , e−‖pj,|N|−pj,center pixel‖

)>
, j ∈ [N ]. (4.2)

The predictor is trained by the following gradient descent iteration. As the change in the number of
wrongly labeled pixels was small, we stopped the iteration after 100 steps, see Figure 4.5c.

(1) We compute the similarities

sij = e−σ‖fi−pj‖, j ∈ [N ] (4.3)

for each fi and pixels i in all training images.
(2) We predict the corresponding weight patches as lifted weighted average of the tangent vectors νj

Ω̂i(ν, p, σ) = exp1Ω

( ∑
j∈[N ]

sij∑
k∈[N ] sik

νj

)
. (4.4)

(3) Substituting Ω̂ for Ω, we run the linearized assignment flow and evaluate the distance function (3.4).
(4) The gradient of this function with respect to the predictor parameters (ν, p, σ) results from composing

the differential due to Theorem 3.8 and the differential of (4.4).
(5) The gradient is used to update the predictor parameters, and all steps are repeated.

During training, the accuracy of the predictor is monitored, as illustrated by Figure 4.5c. The iteration
terminates when the slope of the validation curve, which measures label changes, are sufficiently flat.

After the training of the predictor, the linearized assignment flow is parametrized in a data-driven way so
as to separate reliably line structure in noisy data for arbitrary random instances, as depicted by Figure 4.5:
panel (f) and last row. This result should be compared to the non-adaptive labeling result in Figure 4.1c.
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(a) Section of noise-free image (b) Section of noisy image
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Validation (noise rate = 0.1)

Training (noise rate = 0.01)

Validation (noise rate = 0.01)

Training iteration

(c) Predictor accuracy

(d) Predicted Ω-weight patches for
noiseless input

(e) Predicted Ω-weight patches for
noisy input

(f) Labeling of the noisy image with
predicted weights

FIGURE 4.5. Parameter Predictor. We learned a weight patch predictor as described in
Section 4.4 for the scenario depicted by Figure 4.1a. In order to assess the predicted parame-
ters by comparison, we also estimated weights patches for the noise-free test data in the same
way as for the training data. (a) Section of a noise-free test image. (b) The corresponding
section of the noisy test image that is used as input data for prediction. (c) The training and
validation accuracy during the training of the predictor. (d) Weight patches estimated for the
noise-free data (a). (e) Predicted weight patches based on the noisy data (b). (f) The labeled
(section of the) test image using the predicted weight patches (d). Comparing this result to
the result depicted by Figure 4.1c shows the effect of predicted parameter adaption. Last
row: Further labelings on unseen noisy random test images.
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5. CONCLUSION AND FURTHER WORK

5.1. Conclusion. We presented a novel approach for learning the parameters of the linearized assignment
flow for image labeling. Based on the exact formula of the parameter gradient of a loss function subject
to the ODE-constraint, an approximation of the gradient was derived using exponential integration and a
Krylov subspace based low-rank approximation, that is memory efficient and sufficiently accurate. Experi-
ments demonstrate that our research implementation is on par with highly tuned-machine learning toolboxes.
Unlike the latter, however, our approach additionally returns the essential information for image labeling in
terms of a low-dimensional parameter subspace.

5.2. Future Work. Our future work will study generalizations of the linearized assignment flow. Since this
can be done within the overall mathematical framework of the assignment flow approach, the result presented
in this paper are applicable. We briefly indicate this for the continuous-time ODE (1.1) that we write down
here again with an index 0,

V̇0 = A0(Ω0)V0 +B0. (5.1)
Recall that B0, given by BW0 of (2.22b), represents the input data (2.15) via the mappings (2.16) and (2.17).
Now suppose the data are represented in another way and denoted by B1. Then consider the additional
system

V̇1 = A1(Ω1)V1 +B1 + V0(T )L, (5.2)
where the solution V0(T0) to (5.1) at time t = T0, possibly transformed to a tangent subspace by a linear
mapping L, modifies the data term B1 of (5.2). Applying (2.24) to (5.1) at time t = T0 and to (5.2) at time
t = T1 yields the solution

V1(T1) = T1ϕ
(
T1A1(Ω)

)(
B1 + T0ϕ

(
T0A0(Ω0)

)
B0L

)
, (5.3)

which is a composition of linearized assignment flows and hence linear too, due to the sequential coupling
of (5.1) and (5.2). Parallel coupling of the dynamical systems is feasible as well and leads to larger matrix
ϕ that is structured and linearly depends on the components A0(Ω0), A1(Ω1), L. Designing larger networks
of this sort by repeating these steps is straightforward.

In either case, the overall basic structure of (1.1), (1.3) is preserved. This enables us to broaden the scope
of assignment flows for applications and to study, in a controlled manner, various mathematical aspects of
deep networks in terms of sequences of generalized linearized assignment flow, analogous to (1.6).
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APPENDIX A. PROOFS

A.1. Proofs of Section 3.2.2.

Proof of Lemma 3.2. Regarding the differential of the mapping (2.11e) with respect to its second argument,
we have d expp(u)v = Rexpp(u)v by [ZSPS20, Lemma 4.5], with R given by (2.11b). Applying this relation
to (3.16) where exp1W acts row-wise analogous to the mappingRW as explained by (2.12) and (2.14), yields

df1(Ω)Y = Rexp1W (− 1
ρ

ΩD)

(
− 1

ρ
Y D

)
= Rf1(Ω)

(
− 1

ρ
Y D

)
, ∀Y ∈ R|I|×|I|, (A.1)
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which is (3.17a). As for the transpose, we vectorize both sides using again (2.14),

vecr
(
df1(Ω)Y

)
= Diag(Rf1(Ω)) vecr

(
− 1

ρ
Y D

)
= −1

ρ
Diag(Rf1(Ω))(I|I| ⊗D>) vecr(Y ). (A.2)

Applying the transposed matrix to any vector vecr(Z) with Z ∈ R|I|×|J | and taking into account the sym-
metry of the matrix Diag(Rf1(Ω)), yields

df1(Ω)>Z = −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) vecr(Z)

)
(A.3a)

(2.14)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) vecr(Rf1(Ω)Z)

)
= −1

ρ
Rf1(Ω)(Z)D>. �

Proof of Lemma 3.3. Since RW0 does not depend on Ω and vecr is linear, we directly obtain (3.19a). Re-
garding the transpose map, we expand the right-hand side of (3.19a),

df2(Ω)Y
(2.14)
= Diag(RW0) vecr(df1(Ω)Y )

(A.2)
= −1

ρ
Diag(RW0) Diag(Rf1(Ω))(I|I| ⊗D>) vecr(Y ). (A.4)

Applying the transposed matrix to any vector vecr(Z) ∈ R|I|
2

yields (recall that the matrices Diag(RW0),
Diag(Rf1(Ω)) are symmetric)

df2(Ω)>Z = −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) Diag(RW0) vecr(Z)

)
(A.5a)

(2.14)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) Diag(Rf1(Ω)) vecr(RW0Z)

)
(A.5b)

(2.14)
= −1

ρ
vec−1

r

(
(I|I| ⊗D) vecr

(
Rf1(Ω)(RW0Z)

))
= −1

ρ
Rf1(Ω)(RW0Z)D> (A.5c)

(3.17b)
= df1(Ω)>(RW0Z). �

Proof of Lemma 3.4. We have

df3(Ω)Y =
(
dDiag(Rf1(Ω))Y

)
(Ω⊗ I|J |) + Diag(Rf1(Ω))(Y ⊗ I|J |), ∀Y ∈ R|I|×|I| (A.6)

and have to the differential in the first summand on the right-hand side. By (2.14),

Diag(Rf1(Ω)) vecr(S) = vecr(Rf1(Ω)S), ∀S ∈ R|I|×|J | (A.7)

and hence dDiag(Rf1(Ω)) is given by(
dDiag(Rf1(Ω))Y

)
vecr(S) = vecr

(
(dRf1(Ω)Y )S

)
, ∀Y ∈ R|I|×|I|, ∀S ∈ R|I|×|J |. (A.8)

It remains to compute dRf1(Ω) and to evaluate the defining right-hand side, to obtain the left-hand side in
explicit form. Focusing on a single component Rf1i

(Ω) of the mapping Rf1(Ω), we have by (2.11b)

Rf1i
(Ω) = Diag

(
f1i(Ω)

)
− f1i(Ω)f1i(Ω)> (A.9a)

dRf1i(Ω)Y = Diag
(
df1i(Ω)Y

)
−
(
df1i(Ω)Y

)
f1i(Ω)> − f1i(Ω)

(
df1i(Ω)Y

)> (A.9b)

and hence for any Si ∈ R|J | and S = (. . . , Si, . . . )
> ∈ R|I|×|J |

(dRf1i(Ω)Y )Si =
(
(dRf1(Ω)Y )S

)
i
, i ∈ I. (A.9c)

Thus, analogous to (2.14), we obtain

(dRf1(Ω)Y )S =
(
. . . , (dRf1i(Ω)Y )Si, . . . )

> = vec−1
r

((
Diag(dRf1(Ω))Y

)
vecr(S)

)
. (A.9d)
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Applying vecr to both sides and comparing with (A.8), we conclude

dDiag(Rf1(Ω))Y = Diag(dRf1(Ω)Y ) (A.9e)

which proves (3.21). �

Proof of Lemma 3.7. The mapping expp specified by (2.11e) satisfies expp = expp ◦Π0 and a short compu-
tation [ÅPSS17, Appendix]) shows that the restriction expp |T0 , again denoted by expp, has the inverse

exp−1
p : S → T0, q 7→ Π0(log q − log p) (A.10)

and consequently the differential

d exp−1
p (q)u = Π0

(u
q

)
, u ∈ T0. (A.11)

For W, W̃ ∈ W and V ∈ T0, this differential applies componentwise, i.e.(
d exp−1

W (W̃ )V
)
i

= Π0

( Vi
W̃i

)
, i ∈ I. (A.12)

Application to (3.5) yields for any Y ∈ YΩ equation (3.31). �
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