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Abstract. We present a non-convex variational approach to non-binary
discrete tomography which combines non-local projection constraints
with a continuous convex relaxation of the multilabeling problem. Min-
imizing this non-convex energy is achieved by a fixed point iteration
which amounts to solving a sequence of convex problems, with guaran-
teed convergence to a critical point. A competitive numerical evaluation
using standard test-datasets demonstrates a significantly improved re-
construction quality for noisy measurements from a small number of
projections.

1 Introduction

Computed tomography [14] deals after spatial discretization in an algebraic set-
up with the reconstruction of 2D- or 3D-images u ∈ RN from a small number of
noisy measurements b = Au + ν ∈ Rm. The latter correspond to line integrals
that sum up all absorptions over each ray transmitted through the object. A
given projection matrix A ∈ Rm×N encodes this imaging geometry. Applications
range from medical imaging [3] to natural sciences and industrial applications,
like non-destructive material testing [7]. Many situations require to keep the
number of measurements as low as possible, which leads to a small number of
projections and hence to a severely ill–posed reconstruction problem.

To cope with such problems, a common assumption in the field of discrete to-
mography [8] concerns knowledge of a finite range of u ∈ LN , L := {c1, ..., cK} ⊂
[0, 1], that is, u represents a piecewise constant function. Our main concern in
this paper is to effectively exploit the additional prior knowledge in terms of L,
besides the projection constraints, in order to solve the discrete reconstruction
problem

Au = b s.t. ui ∈ L, ∀ i = 1, . . . , N, (1)

which generally is a NP-hard problem.
Related work on discrete tomography considers either binary or non-binary

(multivalued) problems. The latter ones are considerably more involved.
Regarding binary discrete tomography, Weber et al. [29, 21] proposed to com-

bine a quadratic program with a non-convex penalty which gradually enforces
binary constraints. More recently, Kappes et al. [9] showed how a binary discrete
graphical model and a sequence of s-t graph-cuts can be used to take into account
the affine projection constraints and to recover high-quality reconstructions.
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Regarding non-binary discrete tomography, an extension of the latter ap-
proach is not straightforward due to the nonlocal projection constraints. We-
ber [27, Chapter 6] proposed a non-convex term for non-binary discrete tomog-
raphy that we derive in a natural way in the present work. However, Weber’s
approach differs with respect to the data term for the projection constraints,
regularization and optimization, and additionally requires parameter tuning.

Because u is assumed to be piecewise constant, an obvious approach is to
consider sparsity promoting priors. The authors of [23] proposed a dynamic pro-
gramming approach for minimizing the `0-norm of the gradient. However, the
set L of feasble intensities is not exploited. In the convex setting, the integrality
constraints are dropped and priors like the `1-norm or the total variation (TV)
are used [22, 6, 5], with a postprocessing step to round the continuous solution
to a piecewise constant one. This approach connects discrete tomography and
the fast evolving field of compressive sensing with corresponding recovery guar-
antees [5]. Again, however, the prior information of the range of the image to
be reconstructed is not involved in the optimization process. We focus next on
methods that make use of the set L during the reconstruction process.

Tuysuzoglu et al. [25] casted the non-binary discrete reconstruction problem
into a series of submodular binary problems within an α-expansion approach
by linearizing the `2-fidelity term around an iteratively updated working point.
This local approximation discards a lot of information, and a significantly larger
number of projections is required to get reasonable reconstructions. Maeda et
al. [12] suggested a probabilistic formulation which couples a continuous recon-
struction with the Potts model. Alternating optimization is applied to maximize
the a posteriori probability locally. However, there is no guarantee that these
alternating continuous and discrete block coordinate steps converge.

Ramlau et al. [10] investigated the theoretical regularization properties of
the piecewise constant Mumford-Shah functional [13] applied to linear ill-posed
problems. In earlier work [19], they considered discrete tomography reconstruc-
tion using this framework. The difficult geometric optimization of the partition
is carried out by a level-set approach and additionally the intensities L were
estimated in an alternating fashion. By contrast, our approach is based on a
convex relaxation of the perimeter regularization and the set L is assumed to be
known beforehand.

Varga et al. [26] suggested a heuristic algorithm which is adaptively comb-
ing an energy formulation with a non-convex polynomial in order to steer the
reconstruction towards the feasible values. Batenburg et al. [2] proposed the Dis-
crete Algebraic Reconstruction Technique (DART) algorithm which starts with a
continuous reconstruction by a basic algebraic reconstruction method, followed
by thresholding to ensure a piecewise constant function. These steps interleaved
with smoothing are iteratively repeated to refine the locations where u jumps.
This heuristic approach yields good reconstructions in practice but cannot be
characterized by an objective function that is optimized.

We regard [2, 26] as state-of-the-art approaches for the experimental compar-
ison.
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Contributions. We present a novel variational approach to the discrete
tomography reconstruction problem in the general non-binary case. Contrary
to existing work, we utilize both the non-local projection constraints and the
feasible set of intensities L in connection with an established convex relaxation
of the multilabeling approach with a Potts prior. We show how the resulting
non-convex overall energy can be optimized efficiently by a fixed-point iteration
which requires to solve a convex problem at each step. In this way, the derivation
of our non-convex data and its local updates arise naturally. We also propose
a suitable rounding procedure as post-processing step, because the integrality
constraints are relaxed. A comprehensive numerical evaluation demonstrates the
superior reconstruction performance of our approach compared to related work.

2 Reconstruction by Constrained Multilabeling

In this section, we first reformulate the discrete reconstruction problem (1) as
a constraint combinatorial multilabeling problem. Then we derive a tractable
variational approximation and suggest a proper rounding procedure.

2.1 Constrained Multilabeling Problem

We assume that there are less measurements than pixels m� N and hence that
the discrete reconstruction problem (1) is ill-posed and requires regularization.
A common choice is the Potts model [18], R(u) = ‖∇u‖0 := |{i | (∇u)i 6= 0}|
for sparse gradient regularization which favours piecewise constant images. In
presence of noisy measurements b, we use the more general constraints b(ε) ≤
Au ≤ b(ε) instead of Au = b, where ε is an upper bound of the noise level. As a
result, the discrete reconstruction problem can be rewritten as

E(u) = λ · ‖∇u‖0 s.t. b(ε) ≤ Au ≤ b(ε) ∧ ui ∈ L ∀ i = 1...N. (2)

We refer to problem (2) as a constrained multilabeling problem with Potts regu-
larization but point out that, from the viewpoint of graphical models, the system
of affine inequalities induces (very) high-order potentials. This high-order inter-
action induced by the non-local constraints results in a non-standard labeling
problem which becomes intractable for discrete approaches and larger problem
sizes. We adopt, therefore, the strategy of solving a sequence of convex relax-
ations in order to minimize a non-convex energy, which properly approximates
the original problem.

2.2 Approximate Variational Problem

Our starting point is the established convex relaxation of the multilabeling prob-
lem [30, 11, 17]. Minimizing the energy in (3a) below with respect to z over the
set of relaxed indicator vectors (3b) assigns to each given image pixel from u0

a label of the set L = {c1, . . . , cK}. The discretized total variation, weighted
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by λ, and the simplex constraints G constitute a basic convex relaxation of the
integrality constraints with respect to z.

E(z, u0) =

N∑
i=1

K∑
k=1

zik
(
u0i − ck

)2
+ λ

K∑
k=1

‖∇zk‖1 (3a)

s.t. z ∈ G :=

{
z ∈ [0, 1]N×K :

K∑
k=1

zik = 1, ∀ i = 1, . . . , N

}
. (3b)

Regarding the notation, we denote by zk, k ∈ {1, . . . ,K} the k-th column vector
of z and by zik = (zk)i the entries of the matrix z.

Next, we add the projection constraints b ≤ Au ≤ b to the relaxed energy (3a)
by transforming the indicator variables z back to their corresponding intensities
with the linear operator W : G→ RN , z 7→

∑K
l=1 clzl which preserves convexity

of the resulting energy

E(z, u0) =

N∑
i=1

K∑
k=1

zik
(
u0i − ck

)2
+ λ

K∑
k=1

‖∇zk‖1

+ δRm
+

(AWz − b) + δRm
−

(AWz − b) + δG(z).

(4)

Note that the constraints b ≤ AWz ≤ b and z ∈ G are implemented by indicator
functions δRm

+
and δRm

−
.

In tomography, no image u0 is given, however. Therefore, we cannot drop
the unary data term in Eq. (4), since the constraints are feasible for all convex
combinations of prototypes ck. In other words, the constraints only constrain the
value of a pixel but do not indicate how the indicator variables should realize
this value (similar to estimating a vector given only its magnitude).

A straightforward approach would be to start with some initial guess u0, e.g.
computed using some another reconstruction method, followed by iteratively
applying this approach above. This gives the fixed point iteration

zn+1 = arg min
z

E(z,Wzn). (5)

At every iteration a convex problem has to be solved whose solution updates the
unary data term. This raises the question whether the iteration converges and
which overall energy is actually optimized?

To address these questions, we first eliminate u0 in a principled way. Note
that E(z, ·) in (4) is differentiable with respect to the second argument. We
invoke Fermat’s (first order) optimality condition u∗ = Wz which says that the
optimal u∗ must be equal to the weighted average of the labels ck. Substituting
this optimality condition back into the energy (4) results in the final version of
the proposed energy which only depends on z,

E(z) =

N∑
i=1

K∑
k=1

zik ((Wz)i − ck)
2

+ λ

K∑
k=1

‖∇zk‖1

+ δRm
+

(AWz − b) + δRm
−

(AWz − b) + δG(z).

(6)
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This new energy function, Eq. (6), is non-convex because of the products in the
first term which measures the discreteness of z. We call this term phase data
term and denote it by

D(z) :=

N∑
i=1

K∑
k=1

zik ((Wz)i − ck)2. (7)

Fig. 1. Visualization of the phase data term D(z)
for N = 1 over the probability simplex G, the ver-
tices correspond to the values L = {0.0, 0.4, 1.0}.
Note that the minimum is attained at the vertices
of the simplex which correspond to unit vectors.

Using the notation introduced after Eq. (3), the i-th summand of (7) reads

K∑
k=1

zik

( K∑
l=1

zilcl − ck
)2

=

K∑
k=1

zikc
2
k −

( K∑
k=1

zikck

)2
(8)

which is concave with respect to the vector zi. Consequently, D(z) given by (7)
is concave as well. Figure 1 shows a plot of D(z). Weber [27, Chapter 6] proposed
this term for discrete tomography which arises here in a natural way, whereas his
overall approach differs with respect to data term for the projection constraints,
regularization and optimization.

3 Optimization

In this section, we reformulate the objective function (6) as a DC program [15]
and work out a corresponding optimization algorithm.

DC Programming. A large subclass of non-convex optimization problems
are DC functions (difference of convex functions) which can be solved by DC
Programming [15]. This generalizes subgradient optimization of convex functions
to local optimization of DC functions. Accordingly, basic concepts of convex op-
timization like duality and KKT conditions were extended to DC functions [24].
The basic form of a DC program is given by

z∗ = arg min
z

g(z)− h(z), (9)

where g(z) and h(x) are proper, lower semicontinuous, convex functions. There
exists a simplified version of the DC algorithm [16] for minimizing (9) which
guarantees convergence to a critical point by starting with z0 ∈ dom(g) and
then alternatingly applying the updates

vn ∈ ∂h(zn) and zn+1 ∈ ∂g∗(vn) (10)
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until a termination criterion is reached, where g∗ denotes the Legendre-Fenchel
conjugate [20] of g. To apply the DC algorithm to our non-convex energy E(z) in
(6), we rewrite E(z) = g(z)−h(z) as a DC function. We set h(z) = −D(z) since
the phase data term (7) is concave by (8), and we denote by g(z) the remaining
convex terms from Eq. (6).

In order to make the step zn+1 ∈ ∂g∗(vn) explicit, we apply the subgradient
inversion rule of convex analysis to obtain

zn+1 ∈ ∂g∗(vn) ⇔ vn ∈ ∂g(zn+1) ⇔ 0 ∈ ∂g(zn+1)− vn (11)

which is equivalent to the convex optimization problem

zn+1 = arg min
z

g(z)− 〈vn, z〉. (12)

Because h is differentiable, the first step of (10) reads

vn ∈ ∂h(zn) ⇔ vn = −∇D(zn), (13)

where the gradient of D at z for pixel i and label ck is given by (see Lemma 1
from the supplementary material)

(∇D(z))ik =
∂D(z)

∂zik
= ((Wz)i − ck)2, i = 1, . . . , N, k = 1, . . . ,K. (14)

Combining equations (13) and (14) and inserting into equation (12) yields

zn+1 = arg min
z

E(z,Wzn) = arg min
z

g(z) +

N∑
i=1

K∑
k=1

zik ((Wzn)i − ck)
2
. (15)

We notice that the DC algorithm, summarized as Algorithm 1 below, agrees
with the iteration (5), and hence proves its convergence. We apply the primal

Algorithm 1: DC Fixed Point Algorithm

1. Initialization: choose any z0 ∈ Rn×k

2. Generate a sequence (zn)n∈N by solving the convex problems

zn+1 = arg min
z

E(z,Wzn) (16)

until a termination criterion is met.

dual (PD) algorithm proposed by [4] to solve each convex subproblem (16).
Rounding Step. Recall that the data term D(z) of (6) only steers the

solution to the finite set of feasible values L. As a consequence, for vanishing
regularization parameter λ, the minimizer z will correspond to indicator vectors
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zi that assign a unique label to each pixel i. For larger values of λ which are more
common in practice, however, the minimizing vectors zi will not be integral in
general. Therefore, a post-processing step for rounding the solution is required.

Given the minimizer z∗ of (6), we propose to select a label for each pixel i
as a post-processing step by solving the local problems

û∗i = arg min
c∈L

|(Wz∗)i − c|, i = 1, . . . , N. (17)

Note that this method differs from the common rounding procedure of multi-
labeling approaches which select the label ck if zik = max{zi1, . . . , ziK}.

4 Numerical Experiments

Set-up. In this section, we compare our approach to state-of-the-art approaches
for non-binary discrete tomography in limited angles scenarios. Specifically, we
considered the Discrete Algebraic Reconstruction Technique (DART ) [2] and
the energy minimization method from Varga et al. [26] (Varga). As multivalued

Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5

Fig. 2. The 5 different phantoms used for the numerical evaluation.

test-datasets we adapted the binary phantoms from Weber et al. [28] to more
labels, shown as phantom 1,2 and 3 by Figure 2. Phantom 5 in Figure 2 was
taken from [2] and phantom 4 is the well-known Shepp-Logan phantom. We
created noisy scenarios by applying Poisson noise to the measurements b with a
signal-to-noise ratio of SNR = 20 db. The geometrical setup was created by the
ASTRA-toolbox [1], where we used parallel projections along equidistant angles
between 0 and 180 degrees. Each entry aij of the matrix A corresponds to the
length of the line segment of the i-th projection ray passing through the j-th
pixel in the image domain. The width of the sensor-array was set 1.5 times the
image size, so that every pixel intersects with a least a single projection ray.

Implementation details. Each subproblem of Algorithm 1 was approxi-
mately solved using the primal dual (PD) algorithm [4] limited to 1000 iterations
or until the primal dual gap drops below 0.1. The outer iteration was terminated
if the change of the energy between two subsequent iterations, normalized by the
number of pixels, was smaller than 10−5 in the noiseless case and 10−4 in the
noisy case. Additionally, we limited the number of outer iterations to 20. For
DART we used the publicly available implementation included in the ASTRA-
toolbox [1] and for the method of Varga [26] we used our own implementation
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Proposed
noiseless

Proposed
noise case

DART[2]
noiseless

DART[2]
noise case

Varga[26]
noiseless

Varga[26]
noise case

2

3

7

10

Fig. 3. Visual results of experiment phantom 1.

in MATLAB since no public code was available. We tried to use the default
parameters of the competing approaches as proposed by their authors. However,
since the test-datasets differ in size, we slightly adjusted the parameters in order
to get best results for every algorithm and problem instance.

Performance measure. For the evaluation we measured the relative pixel
error, that is the relative number of erroneously reconstructed pixels as compared
to the groundtruth.

Results. Figure 4 shows all results of the numerical evaluation. For each
test-datasets (phantoms 1 - 5), the left plot displays the relative pixel error
for increasing numbers of projection angles. On the right, the corresponding
runtime is shown as log-scaled plot. For each algorithm two curves are drawn:
filled markers correspond to the noiseless case and non-filled markers correspond
to the noisy case. The results show that the proposed approach returns a perfect
reconstruction with the least number of projection angles in the noiseless case
among all approaches. In the scenarios, the proposed algorithm is performing
better, too. In the noiseless case phantom 1 can be almost perfectly reconstructed
from only 3 projection angles and fully from 4 by the proposed approach whereas
DART needs 7 projection to get an almost perfect reconstruction and the method
of Varga needs at least 7 projections to get a reasonable reconstruction. These
visual differences can be seen in Figure 3. This ranking of the performance of
the approaches is similar for phantoms 2,3 and 5, except for the phantom 5 in
the noiseless case where the approach of Varga performs better than DART.
Figure 5 shows the results for phantom 4, where our approach is able to fully
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(a) Phantom 1
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(b) Phantom 2
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(c) Phantom 3
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(d) Phantom 4
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(e) Phantom 5

Proposed with noise | DART with noise | Varga with noise

Fig. 4. Numerical evaluation of the approaches for the different test-datasets and in-
creasing (but small) numbers of projections, in the noiseless case (filled markers) and
in the noisy case (non-filled markers), with noise level SNR = 20 db. The relative
pixel error is shown. The proposed approach gives perfect reconstructions with the
least number of projection angles in the noiseless case and also returns high-quality
reconstructions in the presence of noise, compared to the other approaches.
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Proposed
noiseless

Proposed
noise case

DART[2]
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noiseless
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Fig. 5. Visual results of experiment phantom 4.

reconstruct from merely 7 projections in the noiseless case and returns a good
piecewise-constant result in the noisy case. Due to a lack of space, we refer to
Appendix B of the supplementary material for the visualization of the results
for all test-datasets.

Regarding the runtime (right plots from figure 4), DART is the fastest ap-
proach, Varga is in between DART and the proposed approach, which is clearly
consuming more runtime to return more accurate solutions. However, if com-
putational performance is important, the proposed approach could be easily
parallelized and implemented e.g. in CUDA to run on modern graphics cards.

5 Conclusion and Future Work

We presented a novel non-convex variational approach for solving the discrete
tomography reconstruction in the general non-binary case. The approach com-
bines a convex relaxation of the multilabeling problem with Potts prior and the
non-local tomographic projection constraints. The feasible set of labels is taken
into account by a non-convex data term which naturally emerges when the func-
tion to be reconstructed is represented as a convex combination of these values.
A DC algorithm reliably minimizes the overall objective function and provably
converges. The reconstruction performance turned out to be superior to the state
of the art.

In future work, we plan to improve the running time and focus on the theo-
retical aspects of this approach. The proposed data term (7), in particular, fits
nicely into spatially continuous variational formulations and thus may indicate
ways for further improvement.
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