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Abstract. This work presents a non-convex variational approach to
joint image reconstruction and labeling. Our regularization strategy,
based on the KL-divergence, takes into account the smooth geometry on
the space of discrete probability distributions. The proposed objective
function is efficiently minimized via DC programming which amounts to
solving a sequence of convex programs, with guaranteed convergence to
a critical point. Each convex program is solved by a generalized primal
dual algorithm. This entails the evaluation of a proximal mapping, eval-
uated efficiently by a fixed point iteration. We illustrate our approach on
few key scenarios in discrete tomography and image deblurring.

1 Introduction

Optimal partition of image data into multiple discrete classes, each represent-
ing some semantic information is a relevant problem not only in visual scene
understanding but also in, e.g., discrete tomography. A class, or label, in these
examples may include sky, road, person and various tissue types such as bone
or soft tissue. In addition to be defined from a finite set of image labels, discrete
tomography data must first be reconstructed from few discrete projections (data
measurements) which constitutes a highly ill-posed problem.

In this work, we propose to jointly solve the labeling problem while enforcing
a linear constraint systems, such as the one stemming from discrete tomogra-
phy. Our smooth variational formulation enables efficient inference of the oth-
erwise NP-hard constrained multilabeling problem. We formulate the objective
in a general setting and propose a regularization strategy taking into account
the smooth geometry on the space of discrete probability distributions, induced
by the Fisher-Rao metric. We focus on the key applications of non-binary dis-
crete tomography (e.g., non-destructive material testing [1]) and deblurring and
denoising with joint labeling. As illustrated in Fig. 1 our framework can accu-
rately reconstruct and label severely blurred and noisy data.

Related Work. To avoid the combinatorial nature of discrete optimization
problems, it is common to use convex relaxations to approximate the integrality
constraints [2–5]. However, convex relaxation is loose in connection with a weak
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original blurred (+noise) λ = 1.0, α = 0.01 λ = 0.1, α = 0.01

Fig. 1. Reconstruction and labeling with our proposed model (3) of a severely blurred
and noisy image of an insect with discrete label set L = { , , , , , }. In both
cases our model can reconstruct fine details present in the original image (see [8]). For
the experimental setup we refer to Sect. 4. (Color figure online)

data term, and the performance of the required rounding step (post-processing),
projecting the solution of the relaxed problem to the set of feasible solutions,
is hard to control. Non-convex approaches perform rounding or discretization
already during optimization. On the other hand, these formulations are sensi-
tive to initialization. Recently, a continuous, smooth non-convex approach to
image labeling was introduced in [6] which avoids many of the aforementioned
drawbacks (see also [7]). In particular, the labeling is initialized with the unin-
formative barycentric coordinates of the probability simplex but still avoid poor
local minima. The underlying mechanism, which governs the inference process,
is the evolution of a Riemannian gradient flow defined on the manifold of row-
stochastic matrices which terminates at a labeling. Inspired from this work we
formulate our constrained labeling problem as an optimization problem enforcing
spatial consistency via discrete probability distributions, which entail the joint
reconstruction and labeling. The ability of the present approach to simultane-
ously perform rounding and optimization is a significant conceptual difference
to all approaches based on convex relaxations.

Constraining the solution of an inverse problem to piece-wise constant regions
motivates the use of sparsifying priors, such as total variation (TV) based energy
formulations [9]. However, applying the TV prior component-wise on the simplex
variables, e.g., as done in [10] does not respect the geometry of the underlying
probability distributions. To overcome this shortcoming, we propose to exploit
the Kullback-Leibler (KL) divergence to enforce spatially consistent assignments.
Our approach is motivated from the fact that the KL-divergence locally approx-
imates the squared geodesic distance when considering the probability simplex
as a Riemanian manifold endowed with the Fisher-Rao metric [11,12]. Note that
we use the same strategy from [10] to obtain a meaningful dataterm for the
constraint labeling problem.

Contributions and Organization. Section 2 gives an overview of the con-
strained multilabeling problem. This section also introduces our non-convex
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approach which reconstructs an image and simultaneously enforces spatially
coherent labeling by our novel regularizer. Our optimization problem is formu-
lated in the framework of difference of convex function (DC) programming in
Sect. 3, which comes along with a convergence guarantee. Furthermore we eval-
uate the generalized proximal mapping of our proposed regularizer by an fixed
point iteration rather then solving a large non-linear system of equations. This
strategy is numerically efficient even for larger problem instances. In Sect. 4 we
compare our approach on few problem instances and Sect. 5 concludes the paper.

Basic Notation. Operations and functions are applied component-wise to vec-
tors v, w ∈ Rn and matrices i.e., vw = (. . . , viwi, . . . ). The KL-divergence
is defined by KL(x, y) = ⟨x, log(x/y)⟩ for stochastic vectors as well as row-
stochastic matrices where ⟨·, ·⟩ denotes the Euclidean scalar product. Moreover
we set 1 = (1, 1, . . . , 1)T .

2 Constrained Multilabeling, Model and Relaxation

Problem Statement. Consider the linear system of equations

Au = b, ui ∈ L ∀ i = 1, . . . , N, (1)

where the solution is constrained to a discrete set L of labels. Note in the general
setting this integer constraint formulation leads to NP hard problems. Further-
more, we assume that there are less measurements b than pixels m ≪ N and
hence the inverse problem is ill-posed and requires prior knowledge (regular-
ization). A common choice is the Potts model [13], ∥∇u∥0 := |{i | (∇u)i ̸= 0}|
for sparse gradient regularization which favours piecewise constant images. This
gives the problem

min
u

λ · ∥∇u∥0 s.t. Au = b ∧ ui ∈ L ∀ i = 1, . . . , N (2)

and we refer to (2) as a constrained multilabeling problem with Potts regulariza-
tion. From the viewpoint of graphical models, the system of affine subspace con-
straints induce (very) high-order potentials. This high-order interaction induced
by the non-local constraints results in a non-standard labeling problem that
is intractable for large problem sizes. Therefore, we instead adopt the strategy
of solving a sequence of convex relaxations in order to minimize a non-convex
energy, which properly approximates the original problem.

Model and Relaxation. We relax the hard assignment of a label from a given
set L := {c1, . . . , cK} of priors to each pixel i ∈ [N ] = {1, 2, . . . , N} to discrete
probability distributions z ∈ G = {z ∈ [0, 1]N×K : ⟨zi,1⟩ = 1, ∀ i ∈ [N ]} and
(zik)Kk=1 is the distribution describing the assignment in pixel i.

Energy. We propose the non-convex energy

min
z∈G

J(z), J(z) = λRG(z) − α⟨z, log(z)⟩ +D(z) (3)
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which consists of three basic building blocks detailed below: (i) regularization for
spatial coherence controlled by parameter λ ≥ 0, (ii) an entropy term enforcing
an unique decision with weight α ≥ 0 and (iii) a dataterm. For convex relaxations
[3–5], a rounding scheme is generally required to obtain an integral solution. In
our case, however, the concave entropy term promotes an integral solution.

Dataterm. We consider two cases of the dataterm: separable and non-separable.
The separable case refers to problem where noisy image data u0

i is directly
observed. We introduce a distance function dL measuring the similarity to the
priors ck ∈ L, k ∈ [K], resulting in the dataterm

Dunary(z, S) = ⟨z, S⟩ where Sik := dL(u0
i , ck). (4)

We introduce the assignment operator PL(z) = zc where c = (c1, . . . , cK)T ,
which assigns to each pixel i a convex combination of labels in terms of the
distribution zi. The non-separable case refers to problems where image data u0

i

cannot be directly observed since it is the solution of the inverse problem (1).
As a consequence, we instead minimize the distance d(APL(z), b), (u = PL(z)
in (1)) between the forward projection A and given measurements b. In [10] it
was shown that if D(z) = D(PL(z)) is defined over the assigned solution PL(z)
one is required to introduce, e.g., a concave self-assignment term. Accordingly,
we define the dataterm

Dinverse(z,A, b) = d(APL(z), b) + ⟨z, (PL(z)1TK − 1NcT )2⟩, (5)

for non-separable inverse labeling problems. Note that when the self-assignment
term in (5) is constrained to the simplex, then the vertices of the simplex become
its minima. The entropy term (3), which has the same minimzers as the self-
assignment term, enforces integral solutions, while the self-assignment term in (5)
has a meaningful descent direction w.r.t. to the labels (pushing the assignment
PL(z) towards the label values ck). Furthermore, the linearization of the self-
assignment term in a point z0 resembles Dunary with u0 = PL(z0) and is the
squared Euclidean norm.

Regularizer. To enforce spatial coherence over pixel-wise probability distribu-
tions Zach et al. [2] regularize each individual layer zk to get a convex relaxation
of the Potts model. A tighter relaxation is obtained by regularizing across the
layers [3,4]. However, these works employ Euclidean norms that disregard the
underlying geometry of the discrete probability distributions and hence necessi-
tate an additional re-projection step onto the simplex.

Instead, we propose a regularizer RG(z) (see (3)) which respects the under-
lying geometry of the probability simplex by coupling probability distributions
across layers via the KL divergence. Our regularizer is defined as

RG(z) :=
N∑

i=1

∑

j∈N (i)

1
Ns

KL(zi, zj) where Ns := |N (i)|. (6)

which enforces spatial coherence by pairwise interactions in neighborhoods N (i)
induced by the underlying grid-graph of the image.
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It is well-known that the KL divergence locally approximates the squared geo-
desic distance on the probability simplex equipped with the Fisher-Rao metric
[11]. In this sense, (6) naturally respects the information geometric properties of
the underlying manifold. Furthermore, for this particular manifold, our formula-
tion without approximation of the quadratic geodesic distance would correspond
to a non-local extension of a quadratic regularizer in the framework of [14]. We
have

Lemma 1 (Basic properties). Let z ∈ G and define RG(z) by (6). Then

1. RG(z) is a convex function
2. RG(z) is the KL-divergence between zi and the geometric mean of the vectors

zj indexed by j ∈ N (i),

RG(z) =
N∑

i=1

KL(zi, gm({zj}j∈N (i))), gm({zj}j∈N (i)) :=
∏

j∈N (i)

z
1

Ns
j . (7)

Proof. Assertion 1 follows from the joint convexity of the KL-divergence [15].
The second claim can be seen by

RG(z) =
N∑

i=1

∑

j∈N (i)

1
Ns

⟨zi, log(
zi
zj

)⟩ =
N∑

i=1

⟨zi, log(
∏

j∈N (i)

(
zi
zj

)
1

Ns )⟩ (8a)

=
N∑

i=1

⟨zi, log(z
Ns

1
Ns

i

∏

j∈N (i)

(z
1

Ns
j )−1)⟩ =

N∑

i=1

KL(zi,
∏

j∈N (i)

z
1

Ns
j ) (8b)

⊓-

Next we reformulate the objective function (3) as a difference of convex (DC)
program [16] and work out a corresponding optimization algorithm.

3 Optimization

DC Programming. A large subclass of non-convex objective functions are DC
functions which can be (locally) minimized by DC Programming [16]. The basic
form of a DC program is given by

z∗ = argmin
z

g(z) − h(z), (9)

where g(z) and h(z) are proper, lower semicontinuous, convex functions. There
exists a simplified version of the DC algorithm [17] for minimizing (9) which
guarantees convergence to a critical point by starting with z0 ∈ dom(g) and
then alternatingly applying the updates vn ∈ ∂h(zn) and zn+1 ∈ ∂g∗(vn) until
a termination criterion is reached, where g∗ denotes the Legendre-Fenchel con-
jugate [18] of g.
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Algorithm 1. Iterated Primal Dual Algorithm
Init: choose the barycenter for z0 ∈ G, q0 ∈ dom(D∗) and τ,σ > 0
while not converged do

Set ẑ = zl

while not converged do

zn+1 = argmin
z∈G

λRG(z) + ⟨z,A∗qn − ∇h(ẑ)⟩ + 1
τ
KL(z, zn) (11)

qn+1 = argmin
q

D∗(q) − ⟨q,A(2zn+1 − zn)⟩ + 1
2σ

∥q − qn∥2
2 (12)

n ← n+ 1
l ← l + 1

Output: z∗ = zl

To apply the DC algorithm to our non-convex energy J(z) in (3), we rewrite
J(z) = g(z)−h(z) as a DC function. We set hunary(z) = α⟨z, log(z)⟩ for the case
of a separable dataterm and hinverse(z) = α⟨z, log(z)⟩ − ⟨z, (PL(z)1TK − 1NcT )2⟩
for the non-separable case since the entropy and the self assignment term are
concave. We denote by g(z) = λRG(z) +D(z) the remaining convex terms from
(3), where D(z) corresponds to the convex part of (5). The DC algorithm results
in the fixed point iteration

zn+1 = argmin
z∈G

λRG(z) +D(z) − ⟨z,∇h(zn)⟩, (10)

where the gradient ∇h(z) for the separable case is given by ∇hunary(z) =
α(log(z) + 1N1TK) and in the non-separable case by ∇hinverse(z) = α(log(z) +
1N1TK) − (PL(z)1TK − 1NcT )2. We refer to [10] for the gradient of the second
term of ∇hinverse(z).

Solving the Fixed Point Iteration. Algorithm1 solves the fixed point itera-
tion (10) iteratively using the generalized primal dual algorithm [19].

Primal Update. The primal update step (11) requires to evaluate the generalized
proximal operator of the regularizer (6). We rewrite (11) as

zn+1 = argmin
z∈G

RG(z) +
1
λτ

KL(z, p), (13)

where the argument p ∈ G is given by the non-linear gradient descent step

p = argmin
z∈G

⟨z,A∗qn − ∇h(ẑ)⟩ + 1
τ
KL(z, zn) (14a)

=
zn exp(−τ(A∗qn − ∇h(ẑ)))

⟨zn, exp(−τ(A∗qn − ∇h(ẑ)))⟩ . (14b)

Note that the argmin induces normalization of p, thus p ∈ G.
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Theorem1 below states that evaluating the proximal mapping (13) can be
done approximately by an efficient fixed point iteration rather then solving a
large non-linear equation system (optimality conditions). Even for larger prob-
lem instances, this fixed point iteration evaluates the proximal mapping very
efficiently. Specifically, in our numerical experiments we observed convergence
within few iterations and we initialize with p for warm start. Due to the fact
that the variation in (7) with respect to geometric averaging is significantly
smaller than in the first argument of the KL-divergence (see [6]), we have

Theorem 1 (Evaluation of the proximal mapping). Let p ∈ G be fixed and
define RG(z) by (6), then the fixed point iteration converges for every z0 ∈ G

zm+1
i = argmin

z∈G
KL(zi, gm({zmj }j∈N (i))) +

1
τλ

KL(zi, pi), ∀ i ∈ [N ]. (15)

Proof. We evaluate the fixed point iteration (15) and obtain

zm+1
i =

(pi)
1

1+τλ gm({zmj }j∈N (i))
τλ

1+τλ

⟨(pi)
1

1+τλ , gm({zmj }j∈N (i))
τλ

1+τλ ⟩
∀ i ∈ [N ], (16)

Without loss of generality we skip the intermediate normalizations and normalize
only the last iterate since the normalization of the intermediate steps cancel out.
This yields the fixed point iteration with p ∈ G fixed and initial point z0 ∈ G

zm+1
i = (pi)

1
1+τλ gm({zmj }j∈N (i))

τλ
1+τλ . (17)

Taking the logarithm of (17), substituting um = log(zm) and r = log(p), gives

um+1
i =

1
1 + τλ

ri +
τλ

1 + τλ

∑

j∈N (i)

1
Ns

um
j . (18)

Rewriting the neighborhood interactions by the associated stochastic matrix Q,
with Qij := 1/Ns for j ∈ N (i) and 0 otherwise, we get the explicit expression

um+1 =
1

1 + τλ
r +

τλ

1 + τλ
Q

︸ ︷︷ ︸
:=P̃

um =
1

1 + τλ

m∑

l=0

P̃ lr + P̃m+1u0. (19)

Since Q, per definition, is a stochastic matrix and τλ(1 + τλ)−1 < 1 it follows
that limm→∞ P̃m = 0 thus |λi| < 1 holds for all eigenvalues from P̃ and (I − P̃ )
is invertible. This implies that the geometric series of the matrix P̃ converges to

u = lim
m→∞

um =
1

1 + τλ
(I − P̃ )−1r. (20)

Resubstitute the continuous functions z = exp(u), r = log(p) into (20) and
normalization finally gives

z∗ =
exp

(
1

1+τλ (I − P̃ )−1 log(p)
)

⟨exp
(

1
1+τλ (I − P̃ )−1 log(p)

)
,1⟩

, (21)

which yields the limit point z∗ independent from the starting point z0. ⊓-
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Dual Update. Due to the convexity of D and the standard Euclidean proximal
mapping, the dual step can be evaluated in a straightforward manner.

Parameter Selection. Following the parameter selection of [19, Example 7.2] we
set τ =

√
K/L2

12 in the primal update and σ = 1/
√
K in the dual update.

Note that this parameter configuration implies that the condition στ ≤ ∥A∥2
holds, where operator norm of A is given by L12 = ∥A∥ = sup∥x∥1≤1 ∥Ax∥2 =
maxj ∥Aj∥2 with respect to the mixed L1 − L2-norm. This stems from the fact
that, in the primal, the negative entropy is 1-strongly convex with respect to the
L1-norm when restricted to the simplex, which induce our KL-divergence.

4 Experiments

In this section we evaluate our proposed model (3) for separable and non-
separable dataterms. We used a 3×3 neighborhood system in all experiments. To
guarantee fully discrete solutions we use only a simple pixelwise maximum like-
lihood (argmax) rounding scheme. We avoid numerical issues when evaluating
the KL-divergences by adopting the renormalization strategy from [6].

Parameter Influence. This experiment shows the influence of the regulariza-
tion parameter λ and discretization parameter α. We generated random color
noise u0 and used the dataterm Dunary(z, S) = ⟨z, S⟩ (4) with Sik = d(u0

i , ck) =
∥u0

i − ck∥22 where the labels ck ∈ L = { , , }. Figure 2 shows that larger λ
acts as a smoothing parameter enforcing larger constant regions, whereas α
favors consistency over the discrete label space, i.e., the data range. The pres-
ence of the entropy term is promoting an integral solution as illustrated in the
left most-column. In this experiment no rounding was applied.

Interface Propagation. In this example we illustrate the information propa-
gation in the case when the dataterm is uninformative. We use the same model
configuration and L as the in previous experiment with λ = 10 and α = 1.

α = 0λ α = 0.1 = 0.2 = 0.4 = 0.6 = 0.8λ α λ α λ α λ α λ α = 1λ

λ = 5

λ = 10

Fig. 2. Random color noise, see top left corner, is labeled with L = { , , } with
varying regularization parameter λ and discretization parameter α. (Color figure
online)
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50 100 200 300 400 500 520 550

Fig. 3. The evolution of the interfaces are shown for increasing iteration number with
the label set ck ∈ L = { , , } . The interfaces are propagated uniformly from the
three seed-pixels into the uninformative image until they meet in a triple junction.
(Color figure online)

We set the input data u0 to a constant gray image with three seed pixels: one
( )-pixel in the top left corner, one ( )-pixel in the bottom left corner and
one ( )-pixel in the middle of the right edge. Figure 3 displays the evolution
of the interfaces for increasing iterations. We see that the information given by
the three seed-pixels is uniformly propagated into the image until the interfaces
meet in a triple junction which demonstrates uniform propagation speeds. In
this experiment no rounding was applied.

Joint Deblurring and Labeling.We used the non-separabel datatermDinverse

(5) implemented by the L1-norm and the self-assignment term was extended
component-wise to each color channel. The label set L = { , , , , , } was
generated by K-means clustering with 6 cluster of the original image seen in
Fig. 1. The same figure shows the reconstruction of a severe blurred picture of
an insect (motion blur of 65 pixel length) and joint labeling with two different
parameter configurations: high regularization and low regularization. In a more
challenging setting we additionally corrupt 50% pixels of the blurred image with
random colors drawn from a uniform distribution. In both cases we reconstruct
fine details of the original image.

Discrete Tomography Reconstruction. The reconstruction problem in dis-
crete tomography aims to recover an image u ∈ RN from a small number of
possibly noisy measurements b = Au + ν ∈ Rm. The latter correspond to line
integrals that sum up all absorptions over each ray transmitted through the
object. A given projection matrix A ∈ Rm×N encodes the imaging geometry,
here we used the parallel beam setup. The width of the sensor-array was set 1.5
times the image size, so that every pixel intersects with a least a single projec-
tion ray. We used the non-separabel dataterm Dinverse (5) implemented by the
indicator function to enforce the constraints (see [10] for details). We compare
our model to state-of-the-art approaches for non-binary discrete tomography
in limited angles scenarios. Specifically, we considered DART [20], the energy
minimization method from Varga et al. [21] (Varga) and [10] (LayerTV) with a
layer-wise total variation regularizer.

Setup. For the evaluation we measured the relative pixel error, that is the relative
number of erroneously reconstructed pixels as compared to the groundtruth. We
tried to use the default parameters of the competing approaches as proposed by
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Fig. 4. Visual results of experiment with ellipses phantom.
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Fig. 5. Visual results of experiment with Shepp-Logan phantom.

their authors. However, the test-datasets differ in size, we slightly adjusted the
parameters to get best results for every algorithm and problem instance.

Results. In Figs. 5 and 4 the proposed approach gives perfect reconstructions
with a low number of projection angles in the noiseless case and also returns
high-quality reconstructions in the presence of noise, only LayerTV needs one
projection less however a non-trivial rounding strategy is used. This is depicted
in Fig. 6 for the Shepp-Logan phantom from 7 projections where LayerTV clearly
gives a non-integral solution and requires a special rounding strategy to obtain
a meaningful reconstruction, further details are given in the caption. Figure 7
shows the numerical evaluation of the approaches for increasing (but small)
numbers of projections, in the noiseless case (filled markers) and in the noisy
case (non-filled markers), with Poisson noise SNR = 20dB.
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Ground truth

Proposed

LayerTV

Fig. 6. Reconstruction of the Shepp-Logan phantom from 7 projections, where the
indicator variables zk are shown for each layer k ∈ [K] from left to right. White
denotes the selected label. The LayerTV produces a non-integral solution with a convex
combination of the labels - illustrating the need for rounding, whereas our proposed
model directly gives an unique labeling.

Ellipses phantom Shepp-Logan phantom
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Proposed with noise | LayerTV with noise

DART with noise | Varga with noise

Fig. 7. Relative pixel error compared to the number of projections. In the Shepp-Logan
phantom LayerTV can reconstruct the phantom with one less projection, however a
special rounding strategy is performed to obtain a meaningful solution.

5 Conclusion

In this work we presented a novel variational approach to joint image reconstruc-
tion and labeling. Opposed to state of the art reconstruction algorithms which
use intra layer coupling strategies, or basic Euclidean inter layer coupling, we
have instead derived the first inter layer coupling which preserves the informa-
tion geometric properties of the underlying statistical manifold. Additionally, we
have shown that the evaluation of a generalized proximal mapping, relying on the
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KL-divergence, can be efficiently evaluated. The numerical evaluation illustrate
the competitiveness of our approach compared to state of the art discrete tomog-
raphy reconstruction and deblurring and denoising with joint labeling.
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