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Abstract. Hybrid wavelet – large margin classifiers have recently prov-
en to solve difficult signal classification problems in cases where merely
using a large margin classifier like, e.g., the Support Vector Machine may
fail. The features for our hybrid classifier are selected from the outputs
of all orthonormal filter banks of fixed length with respect to criteria
measuring class separability and generalisation error.
In this paper, we evaluate a range of such adaptation criteria to perform
feature selection for hybrid wavelet – large margin classifiers. The two
main points we focus on are (i) approximation of the radius – margin
error bound as the ultimate criterion for the target classifier, and (ii)
computational costs of the approximating criterion for feature selection
relative to those for the classifier design.
We show that by virtue of the adaptivity of the filter bank, criteria which
are more efficient than computing the radius – margin are sufficient for
wavelet adaptation and, hence, feature selection. Our results are relevant
for image– and arbitrary–dimensional signal classification by utilising the
standard tensor product design of wavelets.

1 Introduction

Motivation. A persistent problem in signal and image classification concerns
filter design for feature extraction and selection [6, 7, 11]. In most cases, this
problem is addressed irrespective of the subsequent classification stage. How-
ever, using ’off–the–shelf’ filters like Daubechies’ wavelets [2] may result in an
unacceptably large classification error. Fig. 1 shows a typical example for a dif-
ficult signal classification problem.

In this context, our approach is to take the target classifier and data into
consideration for filter design and the selection of appropriate features. Given a
sample set of labelled patterns, the main idea is to adapt the filter bank based
on a criterion measuring class separability and generalisation error to obtain the
optimal features for the particular problem under consideration.

It has recently been shown for a number of difficult applications that jointly

designing both the filter stage and the classifier in this way may considerably
outperform standard approaches based on a separate design of both stages [10].
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Fig. 1. Two–class problem (heart beats: sinus rhythm (SR) and ventricular tachycar-
dia(VT)): Choosing standard wavelets for feature extraction may result in a classifica-
tion error up to 31%!

This motivates the investigation of suitable adaptation criteria which is sum-
marised in the present paper.
Problem statement. The target classifier in our hybrid approach is the Sup-
port Vector Machine (SVM) which is well known to belong to the most compet-
itive approaches and has favourable properties from the perspective of optimisa-
tion during the learning stage [12]. Accordingly, a suitable criterion for feature
selection is the radius – margin bound which captures the generalisation error
[12]. The direct application of this criterion to feature selection has been studied
in [13].

In the hybrid approach studied here, however, the objective function with
respect to the filters is quite complex and can be minimised by exhaustive search
only. In contrast to related work [3], this is nevertheless computationally feasible
and efficient in our case, due to the lattice factorisation of orthonormal filter
banks (see Sec. 2 and [5, Sec. 5.3]).

On the other hand, determining the optimally adapted filter bank requires
many evaluations of the objective function. This is no longer computationally
feasible if the objective function is based on a criterion the evaluation of which
is as time consuming as the design of the classifier itself! Since this holds for
the radius – margin bound as criterion of our target classifier – each evaluation
requires to solve two quadratic programs! –, approximations of this criterion
have to be investigated which are suitable for the overall design of the hybrid
approach.
Organisation of the paper. We summarise the hybrid architecture in Sec. 2.
Next, in Sec. 3, we discuss a range of criteria in view of the problems stated
above, along with a confirmation and illustrations by numerical evaluations in
Sec. 4.

2 Hybrid Wavelet – SVM Architecture

In this section we briefly introduce our hybrid architecture for feature extraction
and subsequent classification of the resulting feature vectors.



Feature extraction. Our feature extraction process consists of two steps, name-
ly filtering by an orthogonal two-channel octave band filter bank, and energy
computation of the resulting coefficients in the different frequency bands.

We deal with input signals s ∈ R
N , where N is a power of 2. Fundamental for

our filter adaptation process is that any orthogonal two-channel filter bank with
filters of length 2L + 2 is determined by L angles θ = (θ0, . . . , θL−1) ∈ [0, π)L

by the so–called lattice decomposition of the corresponding polyphase matrix [9,
Theorems 4.6 and 4.9]. Filtering by the d-level octave band filter bank given by
θ can then be considered as orthogonal discrete wavelet transform

Fθ : R
N → R

N , s 7→
(

cd,dd, . . . ,d1
)

,

which maps the input signal s to its wavelet coefficients dj = (dj
1, . . . , d

j
N/2j ) in

the jth frequency band, j = 1, . . . , d. The mapping Fθ is norm preserving with
respect to the Euclidean norm ‖ · ‖2, i.e., ‖Fθs‖2 = ‖s‖2.

To generate a handy number of features that still make the signals well
distinguishable, we introduce the energy operator

E‖ ‖ : R
N → R

d ,
(

cd,dd, . . . ,d1
)

7→
(

‖dd‖, . . . , ‖d1‖
)

.

As possible norms for E‖ ‖ we consider besides the Euclidean norm the weighted

Euclidean norm
√

1

n

∑n
i=1

c2
i , which was proposed by Unser [11] to represent the

channel variance. Other Hölder norms may be used as well.
In summary our feature extraction process produces the feature vectors

x := E‖ ‖Fθs. For later considerations it is important that the norm preserv-
ing property of the orthogonal wavelet transform implies

‖E‖ ‖Fθs‖2 ≤ ‖s‖2 . (1)

In our experiments we deal w.l.o.g. with input signals s with fixed Euclidean
norm and average value zero and apply the full wavelet decomposition, i.e.,
N/2d = 1. Then it is easy to check that cd = 0. Now (1) implies that the feature
vectors lie within a sphere in R

d centred at the origin. Moreover, if we use the
Euclidean norm in E‖ ‖, then we have equality in (1).

Classification. To rate a set of feature vectors according to their classification
ability, it is essential to take into account the classifier in use. We intend to apply
a SVM as classifier. Let X be a compact subset of R

d containing the feature vec-
tors. Given a training set Z := {(xi, yi) ∈ X ×{−1, 1} : i = 1, . . . , n} of n associ-
ations, we are interested in the construction of a real valued function f defined on
X such that sgn(f) well predicts the class labels y. Let y := (y1, . . . , yn) denote
the vector of class labels and let Y := diagy. We introduce a so–called kernel

function K : X×X → R which is square integrable, positive definite and symmet-

ric. In our applications we will use Gaussian kernels K(x,y) := e−
||x−y||2

2

2σ2 where
σ > 0. With the kernel K we associate the kernel matrix K := (K(xi,xj))

n
i,j=1.

Then the standard SVM finds f as linear combination

f(x) =

n
∑

i=1

yiαiK(xi,x) , (2)



where the coefficients α = (α1, . . . , αn) are given by the solution of the quadratic
optimisation problem (QP)

max
α

−
1

2
αT YKYα + eT α subject to 0 ≤ α ≤ Ce . (3)

For C = ∞ the resulting classifier is called hard margin SVM, otherwise soft

margin SVM. The support vectors (SVs) are those training patterns xi for which
the coefficients αi in the solution of (3) do not vanish. Then the sum (2) involves

only SVs. The margin separating the classes is defined by ρ := (αT YKYα)−
1

2 .
Note that (3) originates from the unconstrained optimisation problem

min
f∈HK

C

n
∑

i=1

(1 − yif(xi))+ +
1

2
||f ||2HK

, (τ)+ :=

{

τ if τ ≥ 0,

0 otherwise,

where HK denotes the reproducing kernel Hilbert space associated with K. For
details see [12].

3 Criteria for Feature Adaptation

To steer the parameters θ in our feature extraction process according to the sub-
sequent SVM classifier we want to find a measure that allows for fast comparison
of different sets of feature vectors based on maximising the SVM performance.
In this paper, we restrict our attention to hard margin SVMs for simplicity. All
results can be formulated for soft margin SVMs as well [4]. Possible criteria for
adaptation are obtained by bounds for the generalisation error, i.e., the proba-
bility that sgnf(x) 6= y for a randomly chosen example (x, y) ∈ X × {−1, 1}. In
our experiments we investigate five criteria:

Radius – Margin. Since the expectation of the quotient

C1 :=
1

n

R2

ρ2
(4)

forms an upper bound on the SVM generalisation error [12, Theorem 10.6] we
consider a minimal value C1 as the ultimate criterion for the SVM classifier.
Here R is the radius of the smallest sphere in HK enclosing all K(·,xj), i.e., the
solution of

min
a∈HK ,R∈R

R2 subject to ‖K(·,xj) − a‖2
HK

≤ R2 , j = 1, . . . , n . (5)

In [4] we proved that (5) can be also solved by the QP (3):

Proposition 1. Let K be a kernel with K(x,x) = κ ∀x ∈ X . Then the optimal

radius R in (5) can be obtained by solving (3) with Y = I. If α is the solution of

(3) and j an index of a SV, then R2 = κ + βT Kβ − 2(Kβ)j , where β := α

eT α
.



However, the computation of ρ and R in (4) still requires the solution of two
QPs for each parameter vector θ.

Margin. Due to (1), the radius R is bounded. This motivates to consider only
the denominator of (4), i.e., to use a maximal C2 = ρ as objective criterion.
Indeed, our experiments indicate that if training and test data have the same
underlying distribution, the margin behaves much like the classification error.

Alignment. As a measure of classification ability for kernel problems, the align-
ment

C3 :=
yT Ky

n‖K‖F
(6)

with Frobenius norm ‖ · ‖F was proposed in [1]. By [1, Theorem 4], the gener-
alisation accuracy of the expected Parzen window estimator which is related to
an SVM is bounded by a function of the alignment.

Class Centre Distance. In all our experiments, the denominator in (6) doesn’t
influence the alignment much. Furthermore, supposing normed training vectors
‖xi‖2 = c and a Gaussian kernel with large deviation σ, the numerator in (6) is
approximately proportional to yT (〈xi,xj〉)

n
i,j=1 y. Introducing the class means

µi := 1

ni

∑

yj=i xj with class cardinalities ni (i = ±1), for n1 = n−1 this can

be rewritten as ‖µ1 − µ−1‖
2
2. The criterion C4 := ‖µ1 − µ−1‖2 can be simply

evaluated and is also easily differentiable. It was successfully applied in [10].

Scatter Measures. While C4 only takes into account the mean values of the
classes we are now looking for classes that are distant from each other and at the
same time concentrated around their means. A generalisation of C4 are measures
using scatter matrices. We consider the generalised Fisher criterion

C5 :=
tr(Sb)

tr(Sw)
=

n1

n ‖µ1 − µ‖2 + n−1

n ‖µ−1 − µ‖2

n1

n

∑d
k=1

σ2
1k + n−1

n

∑d
k=1

σ2
−1k

, µ :=
∑

i∈{−1,1}

ni

n
µi

where σ2
ik is the marginal variance of class i along dimension k and

Sw :=
1

n

∑

i∈{−1,1}

∑

yj=i

(xj − µi)(xj − µi)
T , Sb :=

∑

i∈{−1,1}

ni

n
(µi − µ)(µi − µ)T

denote the within–class scatter matrix and the between–class scatter matrix, re-
spectively. For equiprobable classes, C5 is proportional to C2

4/
∑d

k=1
(σ2

1k +σ2
−1k).

4 Numerical Evaluation

So far we have proposed several criteria for judging the discrimination ability of
a set of feature vectors and have shown some connections between the criteria.
We now want to see how these links show up when analysing real data.

We use two structurally different real data sets: The first electro–physiological
data set originates from the detection of ventricular tachycardia as in [10]. For
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Fig. 2. texture sample: linearly rescaled images

each patient, eight beats from a single episode are used for classifier training.
Some exemplary beats for a sample patient are shown in Fig. 1. The second
group of data are the texture images from the MeasTex collection [8]. We use
single rows of the corrugated iron images ’Misc.0002’ and ’Misc.0003’ shown in
Fig. 2 to have one–dimensional data as in the first data set. Here, the first 32
rows of each texture are used for classifier training. We normalised all samples
by ‖si‖2 = 1000 and set their average value to zero.

We apply orthogonal filter banks with filters of length ≤ 6 which can be
parameterised by two angles θ = (θ0, θ1) ∈ [0, π)2. The parameter space was
discretised with 128 angles per dimension. For the classification, a hard–margin
SVM with Gaussian kernel of width σ = 100 is used. The highest alignment C3 is
achieved with σ ≈ 150 and σ ≈ 80 for the Euclidean and the weighted Euclidean
norm, respectively.

To control the filter design, we generate plots that show the values of the five
criteria subject to the two–dimensional parameter space. The values are plotted
using a linear grey scale except for the radius – margin bound which is plotted on
a logarithmic scale due to its large variation. Additionally, the larger values are
clipped to the trivial error bound 1 to enhance the contrast. To assess the effect
of the clipping, the distribution of the logarithm of the bound is indicated by a
histogram. The resulting images are shown in Fig. 3, where the plots (a) – (e)
are ordered from the simplest and computationally most efficient criterion to the
most expensive one.

For all three problems, the overall impression is that all shown criteria are
alike. Moreover, all criteria show a detailed structure for the parameter space.
This indicates that effectively finding the optimal wavelet according to the cho-
sen criterion is not easy even for the simple criteria. The class centre distance
and particularly the alignment resemble the margin. That is, the wavelets that
generate a high class centre distance or alignment also guarantee a large margin.
Although the scatter criterion C5 also takes into account the variances, it doesn’t
seem to be superior to the simplest criterion C4.

The radius – margin bound C1 covers a large range of values from 10 resp.
3% to 100%. This indicates the significance of the wavelet choice which is also
emphasised in Fig. 4. Apart from the different distribution of the values, the
radius – margin bound rates the features mostly like the margin.

For specific signals there may be an important difference between using the
Euclidean and the weighted Euclidean norm as exhibited by Fig. 3–2 and 3–3.



1)
(a) C4 (b) C5 (c) C3

(d) C2 (e) − log
2
(1 + C1) (f) histogram of (e)

2)
(a) C4 (b) C5 (c) C3

(d) C2 (e) − log
2
(1 + C1) (f) histogram of (e)

3)
(a) C4 (b) C5 (c) C3

(d) C2 (e) − log
2
(1 + C1) (f) histogram of (e)

Fig. 3. Criteria values for 1) heartbeat classification with weighted Euclidean norm
in E‖ ‖, 2) texture row classification with weighted Euclidean norm in E‖‖, 3) texture
row classification with Euclidean norm in E‖ ‖; light spots represent favourable criterion
values and, hence, beneficial filter banks



−400 −300 −200 −100 0 100 200 300
−150

−100

−50

0

50

100

150

200

250

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

−200 −150 −100 −50 0 50 100 150 200
−100

−50

0

50

100

150

200

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

(a) (b) (c)

Fig. 4. Principal components of training vectors for heartbeat classification with Eu-
clidean norm in E‖ ‖: (a) for the Haar wavelet, (b) for the Daubechies wavelet with
three vanishing moments, (c) for the optimally aligned wavelet (C3); these results show
that wavelet adaptation may considerably improve class separability

The plots show that simple adaptation criteria suffice to promisingly design
filters for hybrid wavelet – large margin classifiers with Gaussian kernels.
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4. J. Neumann, C. Schnörr, and G. Steidl. Feasible adaptation criteria for hybrid

wavelet – large margin classifiers. Technical Report TR-02-015, Dept. of Mathe-
matics and Computer Science, University of Mannheim, 2002.
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