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Abstract

Support vector machines can be regarded as algorithms for compressing infor-
mation about class membership into a few support vectors with clear geometric
interpretation. It is tempting to use this compressed information to select the
most relevant input features. In this paper we present a method for doing so and
provide evidence that it selects high-quality feature sets at a fraction of the costs
of classical methods.
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1 Introduction

The feature subset selection problem is an old problem studied in machine learning,
statistics and pattern recognition [1]. For classification purposes, the problem can be
stated as follows: Given a data set with features Xi, Xs,..., X,, and labels Y, select
a feature subset such that a machine learning algorithm trained on it achieves good
performance.

John et al. helped structuring the field by distinguishing filter methods, which select
feature subsets based on general criteria independent of any specific learning algorithm,
from wrapper methods, which tailor feature subsets to suite the inductive bias of a
given learning algorithm [2]. The wrapper method treats feature selection as a search
problem in the space of all possible feature subsets. It is well-known that exhaustive
search through all possible feature subsets is the only way for selecting the optimal
features [3, 4]. However, when there are n features this space has obviously 2" elements
which is generally too large to be searched exhaustively. Thus, numerous heuristic
search algorithms have been proposed for determining a suboptimal feature subset in a
computationally efficient way (e.g., [1, 5, 6]).

In this paper, we focus on a specific learning algorithm for classification, the support
vector machine. In this context, application of the wrapper method has one severe
disadvantage: It can be computationally expensive. This is due to the fact that to
assess the quality of each feature subset the machine learning algorithm must be trained



and evaluated on it. Unfortunately, training SVMs can be slow rendering the wrapper
method a costly procedure for feature selection, especially on large multiclass data sets.

To overcome this difficulty, we present a novel strategy for feature subset selection
which is directly based on the support vector architecture and the representation of deci-
sion functions in terms of support vectors. The general idea is to train a support vector
machine once on a data set containing all features, extract some relevance measure from
the trained machine, and use this information to lead a hill-climbing search directly
toward a good feature subset. Since the number of reiterations of the training proce-
dure increases only linearly with the number of selected features, this algorithm can be
orders of magnitudes faster than the wrapper method. Furthermore, we show that this
computational efficiency can be obtained without sacrificing classification accuracy.

After completion of this work [7], the authors became aware of similar ideas reported
in [8]. Whereas the latter work is applied in the context of visual object recognition [9],
we focus directly on the feature selection problem and present here for the first time
extensive numerical results which reveal the performance of our approach for established
benchmark data sets [10].

2 SVM-based Feature Selection

Let us motivate the feature selection algorithm with a simple example: Assume we are
given a two dimensional binary classification problem where only one input feature is
relevant for classification. The other input feature contains noise. We train a SVM with
linear kernel on this problem and find a separating hyperplane with maximal margin
(Figure 1).

Now the key observation is that the normal « of the separating hyperplane will point
in the relevant direction, i.e., it will be approximately colinear with the basis vector €;
that is used for the relevant feature and approximately orthogonal to the other one.
This holds for any n-dimensional SVM with linear kernel: If we take away all the basis
vectors which are orthogonal to @ we will loose no information about class membership
as the corresponding features have no influence on the SVM decision. Accordingly, we
can define the importance of each feature X by its amount of colinearity with :

dy = ((w0, €))*. (1)

In the nonlinear case the SVM decision function [11] reads
f(@) = Z%%‘(ﬁb@), o(Z7)) + b, (2)

with a set of given training vectors 7;, corresponding class labels y;, Lagrange multipliers
a; associated with the SVM optimization problem, and some offset from the origin b.
As the nonlinear mapping ¢ appears only inside the scalar product (¢(Z), ¢(Z;)) it is
usually expressed in terms of a kernel function.

Compared to the linear case the influence of a feature X on the decision boundary
is no longer independent from the other features. It varies depending on where in the
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Figure 1: Separating hyperplane for feature selection. Circles indicate the support
vectors.

input space it is determined. However, for a given point in input space, Z, we can define
the influence of X}, as the squared partial derivative with respect to Xj:

Note that for SVMs with linear kernel this definition reduces to the measure of colinearity
defined in (1).

In order to evaluate (3), we have to select meaningful points Z. To this end, we
can take advantage of the information-compressing capabilities of the support vector
machine: The SVM decision function (2) essentially is linear in the mapped input vectors
o(Z;). More precisely, it is linear in the mapped input vectors for which the SVM
optimization process yields non-zero Lagrange parameters a; > 0. These input vectors
are the support vectors SV = {Z; : a; > 0}, and in practice their number is often small
compared to the number of all input vectors [11, p. 135]. It is clear that the features
which have little influence on the support vectors also have small effect on the SVM
decision. Thus, a good measure of the importance of a feature is its average influence



evaluated at the support vectors:
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Note that the denominator ), djz ensures that each support vector’s contribution
sums to one. This is to avoid that outliers and support vectors located at very narrow
margins dominate the overall result too much. Or, equivalently, it increases the influence
of support vectors at clear, well-separated margins.

Once we have calculated the importance measure {d}r—1..,, we use a simple hill-
climbing search to determine the optimal number of relevant features. Specifically, we
rank the features according to their dy values and, starting from an empty feature set,
subsequently add features with highest rank until the accuracy of a SVM trained on the
selected features stops increasing.

3 Experiments

To evaluate the performance of the SVM feature selection method we ran it on a number
of data sets from the UCI machine learning repository [10]. For comparison, we also ran
the wrapper method with hill-climbing search. Note that overfitting is a general problem
with feature selection on small data sets [12, 13]. We tried to avoid it by using 10-fold
crossvalidation during the feature selection process, as well as on a completely separate
test set for assessing the quality of the selected features. For the hill-climbing search
we used the stopping criterion proposed by Kohavi et al. [12]. For all experiments we
employed the LIBSVM package with default parameters set [14].

Table 1 summarizes the results of our experiments. For each of the data sets exam-
ined we could reduce the number of features used for classification without sacrificing
accuracy. More precisely speaking, a one-tailed t-test revealed at the 5% level no sta-
tistically significant decrease in classification performance after feature selection. On
the contrary, for the chess, the led and the optidigit data sets we found our feature se-
lection to significantly increase classification accuracy. Note that the t-test revealed no
difference in performance between the wrapper and the SVM-based selection method.

The led data benefitted very much from feature selection. This is not surprising as
led is a synthetic data set consisting of 7 relevant features and 17 features containing
random noise. Both feature selection algorithms reliably extract the 7 relevant features,
however some irrelevant features, which appear to be predictive on the given data, are
also included. As this data set contains binary features only, we could easily estimate
the Shannon entropy h, compute the information gain h(y)—h(y|Xx) for each individual
feature X}, [15], and compare it to our relevance measure di. Figure 2 visualizes both rel-
evance measures: The strong correlation (r = 0.99) between them is apparent as well as
the clear distinction between the 7 relevant features on the left and the random features
on the right. Note that for experiments comprising continuous features computing the
information gain is often not straightforward while evaluating the SVM-based relevance
measure is.



Table 1: Performance of different feature selection methods on a test set. Feature
selection significantly reduces the number of features without sacrificing classification

accuracy.
No Selection Wrapper SVM Selection
Data set Features Accuracy Features Accuracy Features Accuracy
breast cancer 9 95.71 5) 95.42 6 95.71
chess 35 33.33 5 86.67 4 86.67
crx 43 83.73 5 85.15 5 86.03
diabetes 8 74.13 4 75.19 5 74.91
led 24 66.27 11 73.10 10 74.70
mfeat 649 97.60 n.a n.a. 31 97.50
glass 9 60.63 4 61.36 5 60.54
mushroom 125 99.95 8 99.95 14 100.00
optidigit 64 97.68 36 98.32 36 98.39
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Figure 2: Feature selection on the led data set.



Table 2: CPU time used for the feature selection process. SVM selection is much faster
than the wrapper method as less classifiers must be trained.

Data set Wrapper SVM Selection
breast cancer 19.29 4.073
chess 45.03 1.48

crx 355.74 17.92
diabetes 45.15 19.35
glass 13.87 3.46

led 253.25 23.04
mfeat n.a. 59162.13
mushroom 27518.39 2977.34
optidigit T7742.152 2843.34

Our results show that the wrapper and the SVM method selected features of equal
quality in all cases examined. Consequently, it is interesting to compare the methods in
terms of speed. Table 2 shows the CPU time in seconds used by each method for the
different data sets. We can see that especially for the larger data sets the SVM-based
feature selection has a clear advantage over the wrapper. This is not surprising as the
wrapper needs to train a larger number of SVMs. Specifically, to select a subset of d
features from a set of n given features the wrapper methods examines (d? +d(2r+1))/2
SVMs, where r = (n — d) denotes the number of removed features, while the method
we propose examines (d + 1) SVMs only — one for computing the relevance measure d,
and r during hill-climbing. Thus, incorporating the information collected from the SVM
reduces the run-time complexity from quadratic to linear.

4 Conclusion

We propose a method that utilizes the information-compressing capabilities of the sup-
port vector machine for feature selection. It is easy to understand, simple to implement,
fast to execute, and it performs as accurately as the wrapper method on a number of
real-world data sets.

Software

For our experiments we used the LIBSVM package by [14].



References

1]

2]

(6]

[7]

[10]
[11]

[12]

P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-
Hall International, 1982.

George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset
selection problem. In Proceedings of ICML-94, 11th International Conference on
Machine Learning, pages 121-129, New Brunswick, NJ, 1994.

T. Cover and J. van Campenhout. On the possible orderings in the measurement
selection problem. IEFEE Trans. on Systems, Man, and Cybernetics, 7:657-661,
1977.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, 1996.

Ron Kohavi and George H. John. Wrappers for feature subset selection. In Pro-

ceedings of the Tenth International Conference on Computational Learning Theory,
pages 245271, 1997.

P. Somol, P. Pudil, J. Novovicova, and P. Paclik. Adaptive floating search methods
in feature selection. Patt. Recog. Letters, 20(11):1157-1163, 1999.

Matthias Heiler. Optimization criteria and learning algorithms for large mar-
gin classifiers. Master’s thesis, University of Mannheim, Germany, Department
of Mathematics and Computer Science, Computer Vision, Graphics, and Pattern
Recognition Group, D-68131 Mannheim, Germany, 2001.

Theodoros Evgeniou. Learning with kernel machine architectures. PhD thesis,
Massachusetts Institute of Technology, 6 2000.

T. Evgeniou, M. Pontil, C. Papageorgiou, and T. Poggio. Image representations
for object detection using kernel classifiers. Asian Conference on Computer Vision,
pages 687-692, 2000.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y.,
1995.

Ron Kohavi and Sommerfield Dan. Feature subset selection using the wrapper
method: Overfitting and dynamic search space topology. In Usama M Fayyad
and Ramasamy Uthurusamy, editors, First International Conference on Knowledge
Discovery and Data Mining (KDD-95), 1995.

T. Scheffer and R. Herbrich. Unbiased assessment of learning algorithms. In IJCAI-
97, pages 798-803, 1997.



and  Chih-Jen  Lin. LIBSVM: a  library

[14] Chih-Chung  Chang
2001. Software  available at

for  support  wvector  machines,
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

[15] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., New York, 1991.



