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Abstract

We present a convex programming approach to the problem of matching subgraphs
which represent object views against larger graphs which represent scenes. Start-
ing from a linear programming formulation for computing optimal matchings in
bipartite graphs, we extend the linear objective function in order to take into ac-
count the relational constraints given by both graphs. The resulting combinatorial
optimization problem is approximately solved by a semidefinite program. Prelimi-
nary results are promising with respect to view-based object recognition subject to
relational constraints.

Key words: subgraph matching, combinatorial optimization, semidefinite
programming, object recognition

1 Introduction

Object recognition is a key problem in computer vision. Among the various
representations of objects [1], view- or appearance-based representations play
an important role. This fact is also consistent with psychophysics.

A common and powerful structure for representing views of objects is to define
a set of local image features V' along with pairwise relations £ C V x V
(encoding spatial proximity and a (dis)similarity measure) in terms of a weight
function w : E — R,, that is an undirected weighted graph G = (V| E).
Graphs representing object views are called model graphs in this paper. In
the same way as model graphs, scene graphs are computed by extracting local
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image features and spatial relationships in a preprocessing step. Thus, in order
to localize and recognize objects in an image, model graphs have to be matched
against scene graphs.

In this paper, we focus on the combinatorial problem to match model graphs
against scene graphs. We do not discuss image preprocessing but assume the
model and scene graphs to be given. Work on graph-matching includes a wide
range of algorithmic approaches like neural networks [3], probabilistic relax-
ation [4], genetic search [5], error-correcting matching [6] or two-step iterative
approaches [7], and also more specialized work like, for example, simultaneous
estimation of transformation geometry [8], or matching trees in terms of the
maximum clique of the association graph [9].

The primary motivation for our work is the design of algorithms for which the
performance does not critically depend on the choice of tuning parameters,
since the automatic choice of suitable parameter values is rather difficult in the
context of computer vision systems. To this end, in previous work [11,12] we
studied a semidefinite programming approach [10] to the quadratic assignment
problem. In our context, the quadratic assignment problem [13] corresponds
to the relational matching of two graphs with an equal number of vertices.
A global solution to the semidefinite relaxation can be computed by interior
point methods [14] which in turn leads to a good local minimum by solving an
additional linear program. Thus overall approach does not involve any tuning
parameter.

The competitive performance with respect to deterministic annealing approaches
[15,16], the performance of which does depend on the choice of various pa-
rameter values, motivates to investigate a convex programming approach for
the more involved subgraph matching problem as well. Unfortunately, the
semidefinite relaxation introduced in [10] is no longer applicable in this case.
Therefore, we present a novel approach to subgraph matching based on convex
programming.

Starting from bipartite graph matching (Section 2.2), we complement the ob-
jective criterion with quadratic terms favouring bipartite matchings which
respect the relational structure in both the model graph and the scene graph
(Section 3). In Section 4, a semidefinite relaxation is developed. Numerical
experiments are discussed in Section 5. We point out again that our focus is
on the development of a subgraph matching algorithm on the basis of convex
programming techniques in this paper. Therefore, we do not consider any is-
sues related to image preprocessing and assume the model and scene graphs
to be given like depicted in figure 1.



Fig. 1. Model and scene graph with K =5 and L = 13 vertices respectively.
2 Notation and Bipartite Matching

In this section, we list some basic notation and provide the starting point of
our approach, the matching problem in bipartite graphs.

2.1 Notation

We will use the following notation throughout this paper:

x' transpose of

I, n X n unit matrix

e vector of all ones: e; =1, 1=1,...,n
E,, Matrix of all ones: E,,, = ee

Tr[X] trace of the matrix X
A® B Kronecker product of A and B

2.2  Matching in Bipartite Graphs

In this paper, we consider undirected graphs G = (V, E) with nodes V =
{1,...,n} and edges E C V x V. We denote the model graph with G, and
the scene graph with G . The corresponding sets Vi and V7, contain K = |Vi|
and L = |V7,| vertices respectively. We assume L > K. Furthermore, we assume
a distance function w(, j) to be given which measures the similarity of each
pair of vertices 1 € Vx and j € V.

If we ignore the structure in both the model graph and the scene graph, then an
optimal assignment of the K vertices of the model graph can be easily found
as a matching in the bipartite graph (Vx U V7, E), with edges (i,j) € FE,



defined for all pairs i € Vi, j € V, with corresponding weights w(3, j).

Let z € {0, 1}*% denote the indicator vector of the edges, with its components
arranged as follows:

T = ($11, Ty, To1ccXor, UKL '-TKL)T- (1)

Thus x starts with L edges connecting some fixed vertex of Vi with all ver-
tices in V7, followed by K edges with respect to a second vertex in Vi, etc.
With a slight abuse of notation we denote the corresponding weight vector
(w(1,1),...,w(K,L))T again with w. According to this order, the incidence
matrix of G has the block structure A = (A}, A])T. Then an optimal match-
ing can be found by solving the linear program:

mlianx , v €{0,1}5F (2)

AKJI:€K, ALJI §€L

It is well known that the incidence matrix of a bipartite graph is totally uni-
modular [17]. As a consequence, solving the linear program (2) for x € REL
gives a globally optimal integer solution z € {0,1}**. As mentioned above,
however, this particular situation has been achieved by ignoring the relational
structures in both the object representation (model graph) and the image
(scene graph).

In the next section, we extend the approach (2) to include relational con-
straints, and propose a convex programming approach which is favourable
from the computational viewpoint, too.

3 A Quadratic Integer Program for Subgraph Matching

To incorporate the relational structure of both the model graph and the scene
graph, we complement the linear objective function in (2) with a quadratic
term:

n%vin w'r +ax'Qr ,x € {0, 1} (3)

The parameter o € R controls the influence of these additional costs.

The quadratic term in (3) involves the adjacency matrices Ng, Ny, of the model
graph and the scene graph, respectively, which encode the neighbourhood
structure in these two graphs. For example, the adjacency matrix Ng for the



model graph depicted in figure 1 is given by:

01011
10110
Nk=101010
11101
10010

We also define the complementary adjacency matrices:

]_VL:ELL_NL_[L
Nk = Exkg — Nk — I

With this notation and referring to the order of the set of edges defined in (1),
the matrix @ in (3) is given by:

Q= Nk ® Ny + N ® Np, (4)
We next explain in turn the two terms on the right handside in (4).

The first term can be written as:

) KL KL B
Z‘T(NK X NL)l' = Z Z(NK)ab(NL)rsxarl'bs

ar bs

The interpretation of this term is that if two vertices a and b in the model
graph are neighbors, (Ng)a = 1, then a good assignment (no costs) involves
corresponding vertices r and s in the scene graph which are neighbors, too:
(N1,)rs = 0. This is visualized in figure 2.

model graph scene graph model graph scene graph
r
Topr =1 —
a —
8/
D ——
— Ty =1
b
Example: Good assignment Example: Bad assignment

Fig. 2. Left: Adjacent vertices a and b in the model graph are assigned to adjacent
vertices r and s in the scene graph. Right. Adjacent model vertices a and b are no
longer adjacent in the scene graph after the assignment.



Analogously, the second part of ) gives:

KL KL
(NK ®NL T = ZZ ab NL rsLTarLbs

ar bs

This term penalizes assignments where pairs of vertices become neighbors
which weren’t adjacent before. Figure 3 illustrates this possibilities in detail.

model graph scene graph model graph scene graph
; } \ xa, =1 -
xbs’
T
Example: Good assignment Example: Bad assignment

Fig. 3. Left: Vertices ¢ and b which are not adjacent are assigned to vertices which
are not adjacent, too. Right: A pair of vertices a and b become neighbors r and s’
after assignment.

4 Optimization and Semidefinite Programming

In contrast to (2), computation of the global optimum of (3) is intrinsically
difficult. We next derive a convex programming approach to compute a “good”
local minimum. For more information on semidefinite programming we refer

o [18].

First, we reformulate the objective criterion (3) as a homogeneous quadratic
form:

0 Iw' 1z’ ~
w'z +ar Qv — Tr 2 — Tr [QX] ,
%w a) x xx'
—f_/
L Q d

Thus, the unknown variables are replaced by a matrix X which is symmetric,
positive definite, and has rank 1. Dropping this last constraint makes the set
of feasible matrices X convex!

Furthermore, we incorporate the following linear constraints which still lead
to a convex optimization problem:



e Integer constraint x; € {0,1},Vi: This constraint is weakly enforced by
constraining the first column and row of X to be equal to its diagonal
(since z? = x;, Vi).

e Sum constraint: According to the ordering introduced in (1), we translate
the constraints E]L:lxij = 1,Vi, into the corresponding constraints with
respect to the diagonal elements of X.

e Matching constraints: The constraints in (2) are translated to constraints
with respect to X by inspecting the following two terms:

KL KL

' (Ix @ (Bpr, —Ip)xe = > (Ix)a(Brr — 1) rsTarTos

ar  bs
KL KL

e (Exx — Ix) @ I)x = (Exx — Ix)ab(IL)rsTaros

ar bs

The first of these two terms penalizes non-unique assignments of model ver-
tices to scene vertices. Analogously, the second term penalizes assignments
where model vertices are mapped to the same vertex in the scene graph.
Thus, in summary, the two terms penalize all assignments which do no lead
to a matching, i.e. a subset of non-incident edges. Figure 4 illustrates such
configurations in detail. Conversely, all vectors = representing a matching
result in the value zero of the above two quadratic forms. Accordingly, we
constrain the corresponding entries in X to be zero.

model graph scene graph model graph scene graph
r=s

Lar = 1~

a — -/

/
gre=1  U—
b
Example: Bad assignment Example: Bad assignment

Fig. 4. Assignments which do not lead to matchings are penalized by the quadratic
optimization criterion.

The linear objective function and the linear constraints described above lead



to a semidefinite program of the following form:

min Tr [QX} (5)
S.t. TI'[AlX] =C

TI'[AZX] = Co

Tr[A,X] = cm

X >0

The last constraint in (5) says that X has to be positive semidefinite. We wish
to emphasize once more that (5) is a convex optimization problem.

Once the global optimum of (5) is computed with an interior point solver,
the diagonal elements of the solution X can be interpreted as a non-integer
solution x4, to (3). To obtain a 0,1-integer solution representing an admissible
matching we solve the following linear programming in a postprocessing step:

max xlw,w e {0,1}5F (6)

s.t. AKib' =€k,
ALIL' S €r,

5 Preliminary Experimental Results

In this section we present a promising preliminary result of the convex sub-
graph matching approach. Figure 1 depicts the graph structure used in the
experiment: The object consists of 5 vertices which are the corners of a sim-
ple house (see figure 1, left). Then the full scene with L = 13 vertices was
obtained by adding 8 background vertices (figure 1, right). The structure of
the graphs is the result of two Delauney triangulations of the model vertices
and the scene vertices. We defined three different cost ranges for the possible
assignments of the model vertices to the scene vertices:

expensive 1.0 — 1.25
cheap 0.5-0.75
very cheap 0.5

For the experiment all assignment costs w(i,j) of the vector w are selected
randomly within the cheap range or within the expensive range, depending
on the fact whether the model vertex ¢ fits to the scene vertex j or not. In
our example the following assignments are chosen to be cheap: 1 +— 9, 2 —
10, 3 — 11, 4 — 12, 5 — 13. All other assignments are defined to be expen-



sive. Additionally, some assignments from model vertices to the background
are made very cheap artificially: 2+— 1, 3+— 8, 4+ 4, 5 — 2.

The linear optimization for the problem (2) leads to a 0,1-solution = which
assigns the model vertices to the locally best fitting scene vertices without con-
sidering the structure of the graphs. As shown in figure 5 the linear approach
results in a non-desired matching.

Fig. 5. Linear solution

In contrast to that the desired matching can be obtained by the semidefinite
programming approach. The result is shown in figure 7. Figure 6 shows the non
integer solution x4, which is equal to the diagonal (without the first element)
of the solution X of (5), plotted against the index. The plot is subdivided into
five segments, with each segment representing all possible matchings from one
vertex of the model graph to all L vertices in the scene graph. In the first
segment only the assignment from model vertex 1 to scene vertex 9 has a
value of nearly 1 and is therefore selected (219 = 1) in the integer solution.
The important observation in figure 6 is that for each segment, only a small
number of candidates for a matching has a larger value. One can also see that
each segment sums up to 1, according to the constraint Az = ex. With (6)
the integer solution = which represents a bipartite matching is calculated.

Figure 7 also shows the candidate matchings for the last three vertices of the
model graph, by dotted lines.

6 Conclusion and Further Work

In this paper we presented a convex programming approach for the problem
of subgraph matching. For this purpose we extended the linear programming
formulation for computing optimal matchings in bipartite graphs by adding
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Fig. 7. solution

a quadratic term which comprises the relational constraints given by both
graphs. The advantage of the convex approach is that it does not need any
additional tuning parameters. As first experimental results are promising, a
more detailed investigation of this approach will be beneficial.
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