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Solving QVIs for Image Restoration with Adaptive Constraint Sets

F. Lenzen†, J. Lellmann‡§, F. Becker†, and C. Schnörr†

Abstract. We consider a class of quasi-variational inequalities (QVIs) for adaptive image restoration,
where the adaptivity is described via solution-dependent constraint sets. In previous work
we studied both theoretical and numerical issues. While we were able to show the existence
of solutions for a relatively broad class of problems, we encountered problems concerning
uniqueness of the solution as well as convergence of existing algorithms for solving QVIs.
In particular, it seemed that with increasing image size the growing condition number of the
involved differential operator poses severe problems. In the present paper we prove uniqueness
for a larger class of problems and in particular independent of the image size. Moreover, we
provide a numerical algorithm with proved convergence. Experimental results support our
theoretical findings.
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1. Introduction. When solving inverse problems in image processing in a variational
framework, one faces the issue of selecting a regularizer, which on the one hand should
provide suitable reconstruction quality and on the other hand should have sufficient
theoretical properties to guarantee existence and uniqueness of a solution.

A common choice is to rely on convex regularizers, which in combination with a
convex data fidelity term has the advantage that theory and numerics of convex opti-
mization have been intensively studied in literature and are well understood [33]. A
prominent example for a convex regularizer with suitable theoretical properties is the
total variation (TV) semi-norm [32, 33].

On the other hand, acknowledging the fact that we are reconstructing images, an
investigation of the empirical distribution of typical images (Zhu & Mumford [43]) shows,
that non-convex regularization terms are more appropriate to choose. Using such non-
convex regularizers comes with the challenge to prove existence and uniqueness for the
resulting variational problem.

In our work ([19, 23, 24] and the present paper), we follow a strategy which com-
bines elements of convex and non-convex formulations. We start with a convex problem
using discrete TV regularization and consider its dual formulation, which is given as a
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constrained quadratic optimization problem

min
p∈D

F (p) (1.1)

with a convex constraint set D. The next step is to make the constraint set D depending
on a fixed element, say p0, i.e. we consider D = D(p0). This generalization makes the
regularization approach an adaptive one. Since the optimization problem is still convex,
existence of a solution p is guaranteed. Finally, we consider the problem of finding a
fixed-point p∗ of the mapping

p0 → p := argmin
p∈D(p0)

F (p). (1.2)

We refer to the convex problem in (1.2), where p0 is fixed, as the inner problem.
The overall problem of finding a fixed-point p∗ is equivalent to solving a quasi-

variational inequality (QVI) [10], thus we can make use of available theory on existence.
Uniqueness of such a fixed-point, however, in general is an open issue, when the under-
lying dual functional (p0 fixed) is not strictly convex. To tackle this uniqueness issue
under suitable conditions is one of the main contributions of this paper. In particular,
it turns out that under the assumption that the mapping p0 → p is a contraction w.r.t.
a suitable semi-norm, the corresponding primal solution is unique. Having found the
fixed-point p∗, this fixed-point defines the adaptivity of the regularizer via the constraint
set D(p∗), while also being the solution of the convex inner problem. As a consequence,
our approach implements a solution-driven adaptivity instead of a data-driven one. Fur-
thermore, we can investigate the behavior of the regularizer at the given fixed-point and
find that it mimics the behavior of a non-convex regularizer.

Related work: As exemplary applications for our regularization approach we consider
total variation based image denoising and non-blind image deblurring. We start with
related work concerning image denoising. For the task of denoising total variation regu-
larization was introduced by Rudin, Osher and Fatemi in [32]. Various modifications have
been proposed to make this functional adaptive to the input data [2, 4, 14, 18, 34, 36, 42].
The approaches in [2, 4, 14, 36] can be described by means of locally dependent constraint
sets (data-driven), i.e. a fixed p0 in our formulation.

Another important class of approaches are the non-local methods [7, 17, 20, 31]
including non-local variants of TV. These non-local variants can also be regarded as
adaptive, since their local weights are depending on the input. On the other hand,
adaptive methods which steer adaptivity by locally averaging the input data over a
neighborhood, e.g. using the structure tensor [16], can be interpreted as non-local.

Another commonly used modification of the ROF functional is to replace the L2

norm of the data fidelity term by an L1 norm [1]. We remark that, by using a standard
splitting of variables, the approach presented here can also be formulated with such an
L1 data term.

Recent developments in the field of TV regularization focus also on extending TV
to second- or higher-order [6, 35]. In [22] we have proposed an anisotropic approach of
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first- and second-order TV, which due to its formulation by varying constraint sets also
fits into the concept of solution-driven adaptivity presented here.

The regularization approaches considered above can also be used for the task of
deblurring, see e.g. [8, 11, 12]. In [29] an TV based deblurring approach with adap-
tive choice of the regularization parameter has been proposed. Similar to the task of
denoising, non-local operators have being also considered for TV deblurring, see e.g.
[20, 38].

Besides for image restoration tasks, TV-based regularization approaches are widely
used for other inverse problems in computer vision, e.g. for optical flow [41, 40] and
multi-labeling [21, 37].

Concerning image restoration with non-convex regularization, in addition to Zhu &
Mumford [43] we want to mention here the work by Charbonnier and co-workers [13, 5]
and by Levin [25].

As already mentioned, the fixed-point problem (1.2), which is the core problem in our
considerations, is equivalent to a quasi-variational inequality. We make use of the work
on QVIs presented in [10, 27, 28]. While theory on existence can be directly utilized,
uniqueness results do not apply due to the non-strict convexity of the inner problem.
We discuss these issues in detail in the main part of this paper.

Contribution: In our previous work [23, 24] we sketched the proposed framework and
provided existence theory. In [24] we showed uniqueness for a very narrow class of
problems, which also scaled unfavorably with the image size.

In the present paper, we show uniqueness of a fixed-point for a broad class of QVIs
for image denoising, namely those, for which the underlying solution operator is a con-
traction. In particular, this condition is not depending on the image size. Thus, our
theoretical results significantly generalize our previous work in [24].

Moreover, we give a detailed discussion why classical results (Noor et al. [28] and
Nesterov & Scrimali [27]) on the uniqueness of solutions of QVIs can not directly be
applied to our framework. However, there is a strong relationship between our theoretical
considerations and the work of [27, 28].

Finally, we propose an algorithm for solving the considered QVIs and prove conver-
gence. We support our theoretical results by numerical experiments.

Paper organization: Our paper is organized as follows. We start with a review of three
case examples of TV regularization for image denoising and non-blind image deblurring
in Sect. 2. In Sect. 3 we recall our model of solution-driven adaptivity described by
means of quasi variational inequalities. We consider theoretical results in Sect. 4, where
we firstly recall theory on existence (Sect. 4.1), then discuss the impact of existing
work on uniqueness (Sect. 4.2.1) and finally prove uniqueness for the considered QVIs
under suitable conditions (Sect. 4.2.2). In Sect. 5 we provide an algorithm and prove
its convergence. We present numerical experiments supporting our theoretical results in
Sect. 6.
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2. TV-Regularization and Data-Driven Adaptivity. In the following, we recall sev-
eral variational approaches for image denoising and non-blind image deblurring that are
based on total variation (TV) regularization. These approaches will be the starting point
for our generalizations in Section 3.

We use the following general notations. Firstly, let Ω ⊂ Rd be a d-dimensional open,
bounded domain with Lipschitz boundary. Secondly, in Rn, n arbitrary, we denote the
closed ball with radius α centered at 0 by Bα(0).

2.1. Image Denoising. We consider the standard noise model, where some noise-
free image u is distorted by additive i.i.d. Gaussian noise with zero mean. For the noisy
image we use the notation f and assume f ∈ L2(Ω). We refer to u as the original or
ground truth image.

2.1.1. The Classical ROF Model. We start with the total variation denoising ap-
proach by Rudin, Osher & Fatemi (ROF) [32],

min
u∈BV (Ω)

E(u), E(u) :=
1

2
∥u− f∥2L2 + αTV(u), α > 0, (2.1)

where BV (Ω),Ω ⊂ Rd is the space of functions of bounded total variation and

TV(u) := sup

{∫
Ω
u(x) div p(x) dx | p ∈ C∞

c (Ω;Rd) : ∥p(x)∥2 ≤ 1

}
. (2.2)

is the total variation semi-norm. We rewrite αTV(u) in terms of constraint sets:

αTV(u) = sup{⟨u, v⟩L2 | v ∈ C},
C := divD,

D := {p ∈ C∞
c (Ω;Rd) : ∥p(x)∥2 ≤ α

}
,

(2.3)

where div is applied element-wise on D. The dual problem of (2.1) (cf. [8]) can be
formulated as

min
p∈D

1

2
∥f − div p∥2L2 , (2.4)

where D is the closure of D.
Let us now consider a discretization of (2.1). To this end, we consider an equi-

distant grid on Ω with n grid points. The grid values of the dual variable p(x) ∈ Rd are
interpreted as a vector p ∈ Rnd. The dual problem (2.4) in the discrete formulation then
becomes

min
p∈D

F (p), F (p) :=
1

2
∥L p− f∥22, (2.5)

where L : Rnd → Rn is a discretization of the divergence operator div. The constraint
set in (2.4) becomes

D = Dloc
1 ×Dloc

2 × · · · × Dloc
n , (2.6)

where each local constraint set Dloc
i , i = 1, . . . , n is a d-dimensional closed ball Bα(0)

of radius α. The dual problem (2.5) will be the starting point for our generalization in
Sect. 3.
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2.1.2. Higher Order Total Variation. Analogously to TV regularization of first-
order, higher-order models can be considered. We exemplarily focus on the second order
total variation in the case d = 2:

TV2(u) := sup

{∫
Ω
u(x) div2 p(x) dx | p ∈ C∞

c (Ω;R4) : ∥p(x)∥2 ≤ 1

}
, (2.7)

where div2 p := ∂xxp1 + ∂xyp2 + ∂yxp3 + ∂yyp4. Typically first- and second-order TV are
used jointly for regularization, e.g., for the task of denoising, one could solve

min
u∈BV 2(Ω)

E(u), E(u) := ∥u− f∥2L2 + αTV(u) + β TV2(u), α > 0, β > 0, (2.8)

where BV 2(Ω) is the space of functions with bounded total variation of first- and second-
order (see [33, Section 9.8] for details).

Proceeding analogously to the case of first-order TV, we can derive a dual formulation
of (2.8), which after discretization reads similar to (2.5):

min
p∈D

F (p), F (p) :=
1

2
∥A p− f∥22, (2.9)

where A : R6n → Rn is a operator discretizing div p1 + div2 p2 with p = (p1, p2) ∈
R2n×R4n. The constraint set D in (2.9) is given by a product set of local constraint sets
Dloc

i , where each set Dloc
i is again a product of a two-dimensional ball Bα(0) of radius α

and a four-dimensional ball Bβ(0) of radius β.

We refer to [6] for the alternative model of Total Generalized Variation (TGV), which
is based on a different operator A and a different constraint set D.

2.2. Image Deblurring. In this section we consider the task of image deblurring/
deconvolution. For the sake of simplicity, we focus on non-blind deconvolution, where
the convolution kernel is known a-priori. The problem formulation is as follows. Let
f be some observed data, which are obtained from a noise-free image u by convolution
with a kernel M(x) : Ω → R, followed by an addition of Gaussian noise, i.e.

f = M ∗ u+ δ, (2.10)

where δ is a realization of a Gaussian random variable with zero mean.

In order to recover u from f , assuming that u 7→ M ∗u is an operator mapping from
L2(Ω) → L2(Ω), we aim at minimizing

argmin
u∈L2(Ω)∩BV (Ω)

1
2∥M ∗ u− f∥2L2 + αTV(u). (2.11)

Moving to a discrete formulation of the problem, we now assume that u, f ∈ Rn are
the function values at the n nodes of an equidistant two-dimensional grid. Moreover,
we replace the continuous convolution M ∗ u by a matrix-vector-product Mu, where M
now denotes a n × n matrix. In what follows we assume that M is invertible. As in
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the previous examples, we denote by L the discretization of the divergence operator div.
The optimization problem we consider is given as

argmin
u∈Rn

E(u) = 1
2∥Mu− f∥22 + sup

p∈D
(L p)⊤u, (2.12)

where
D = {p ∈ Rnd, pi ∈ Bα(0), i = 1, . . . , n} (2.13)

for p = (p1, p2, . . . , pn)
⊤ with pi ∈ R2. We derive the corresponding dual problem as

follows. The optimality condition for u reads

M⊤(Mu− f) + L p = 0. (2.14)

We deduce from (2.14) that

u = (M−1M−⊤)(M⊤f − L p) = M−1(f −M−⊤ L p),

Mu = f −M−⊤ L p,
(2.15)

where M−⊤ := (M⊤)−1. Inserting (2.15) in (2.12) and using the abbreviation A :=
(M−⊤ L), we obtain

E∗(p) = 1
2∥Mu− f∥22 + (L p)⊤u (2.16)

= 1
2∥M

−⊤ L p∥22 + (M−1f)⊤ L p− (M−1M−⊤ L p)⊤ L p (2.17)

= 1
2∥M

−⊤ L p∥22 + f⊤M−⊤ L p− (M−1M−⊤ L p)⊤ L p (2.18)

= −1
2∥A p∥22 + f A p− (A p)⊤A p (2.19)

= −1
2∥A p− f∥22 + 1

2∥f∥
2
2. (2.20)

When maximizing E∗(p) over D = {p ∈ Rnd, pi ∈ Bα(0)}, the constant term 1
2∥f∥

2
2 can

be omitted without changing the optimum. Moreover, switching from the maximization
of E∗ to the minimization of F (p) := −E∗(p), we can formulate the dual problem of
(2.12) as

argmin
p∈D

F (p), F (p) = 1
2∥A p− f∥22. (2.21)

From a solution p of the dual problem we can retrieve the solution u of the primal
problem by by u = M−1(f −A p).

We observe that the dual problem attains the same form as in the examples before
(cf. Eqns. (2.5) and (2.9)).

2.3. Adaptive Regularization. In the literature various adaptive TV approaches
have been proposed. They can generally be divided into two classes, namely, approaches
with locally varying regularization strength and anisotropic TV approaches. Both con-
cepts are covered by the formulation via constraint sets as follows. Starting with the
general form

argmin
p∈D

F (p), F (p) = 1
2∥A p− f∥22, (2.22)

where D is the product set of the local constraint sets Dloc
1 , . . . ,Dloc

n as in (2.6), we now
allow the sets Dloc

i to vary locally:
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• By individually changing the size of Dloc
i , e.g. depending on the noise or image

content, the regularization strength changes locally.
• By choosing anisotropic shapes for Dloc

i , e.g. rectangles [4], parallelograms [36],
and ellipses [2, 19, 22], a directionally dependent regularization is introduced.

In both cases, the introduced adaptivity has to be steered by additional information,
e.g. about noise level, edge position and edge orientation. The standard way is to either
estimate the required properties as additional unknowns in the optimization process,
or to examining a pre-smoothed version of the data f . The later case formally can be
regarded as introducing a dependency of D on f , i.e. D = D(f).

We pick up three different examples of adaptive/anisotropic TV regularization which
follow the latter concept. The first is obtained from the standard ROF model by locally
varying parameter α.

Example 2.1 (Data-driven adaptivity). Let us consider the following generalization of
the optimization problems (2.1) and (2.11), where the parameter α is allowed to change
locally:

E(u) =

∫
Ω

1

2
(M ∗u− f)2 dx+sup{

∫
Ω
u div p dx | p ∈ C1

c (Ω,Rd), |p(x)| ≤ α(x)}, (2.23)

where we assume α(x) ≥ c > 0. Our aim is to reduce the local regularization parameter
α(x) at edges. A simple way to find such edges would be to consider the gradient mag-
nitude of the input data f and to set α(x) := max(α0(1− κ|∇f(x)|), ε) with a constant
α0 determining the maximal regularization strength and some small ε > 0 to ensure
boundedness of α from below by a positive constant, which ensures existence [22].

However, since the approach should be robust against the noise contained in f , a pre-
smoothing of f before evaluating the gradient is inevitable.To this end, let fσ := Kσ ∗ f
be the convolution of fwith a Gaussian kernel Kσ with standard deviation σ > 0. An
adaptive choice of α(x) is

α(x) := max{α0(1− κ|(∇fσ(x))|), ε}. (2.24)

There exist alternative choices for varying the regularization strength, such as the g-
function from the Perona-Malik model [30], or models utilizing the structure tensor [16].

Considering again the dual formulation of (2.23) in a discrete setting, we retain the
form (2.5), with the only difference that the local constraint sets become dependent on
the spatial location and the input data f ,

Dloc
i := Bαi(0), αi := max{α0(1− κ|(L⊤ fσ)i|), ε}, (2.25)

where i = 1, . . . , n are the indices of the grid nodes. Note that in the discrete setting,
where L is a discretization of div, the discrete pendant of ∇ is −L⊤. Recall that the
dual problem reads

argmin
p∈D

1
2∥Au− f∥22 (2.26)

with
D := Dloc

1 × · · · × Dloc
n (2.27)



8 F. Lenzen et al.

and A = L in the case of denoising and A = (M−⊤) L in the case of deblurring.

The key observation in this example is that we formally introduced a dependency of D
on f via α. We denote this dependency by D(f). We refer to this concept as data-driven
adaptivity. ♦

Our second example generalizes the ROF model by considering a directionally de-
pendent regularization, which results in an anisotropic shape of the local constraint sets.

Example 2.2 (Anisotropic first-order TV). We consider an anisotropic TV regulariza-
tion with a strong penalization of the image gradient in homogeneous regions (isotropic)
and, at edges, a weak penalization in normal direction and a strong penalization in tan-
gential direction to the edge (anisotropic).

To this end we require information about the location and orientation of edges in
terms of an edge indicator function χe : Ω → [0, 1] and a vector field ve : Ω → R2 of
edge normals, which both can be obtained from the standard structure tensor [16] of f
by setting

χe(x; f) = min{κ(λ1(x)− λ2(x)), 1}, (2.28)

ve(x; f) = w1(x), (2.29)

where λ1 ≥ λ2 ≥ 0 are the ordered eigenvalues of the structure tensor, w1 is the eigen-
vector to eigenvalue λ1 and κ > 0 is a parameter controlling the edge sensitivity. We
refer to [24] for exact definitions and further details.

With this edge information, we choose Dloc
i = Dloc(xi) at grid node xi to be an ellipse

with one half axis parallel to ve(xi, f) of length χe(xi)α + (1− χe(xi))β, with constants
0 ≤ α ≤ β, and the perpendicular half axis of length β.

The cross product of the local constraint sets Dloc
i as in (2.27) defines our (global)

constraint set D(f). ♦
Finally, let us consider an example of adaptive higher-order TV regularization.

Example 2.3 (Adaptive first- and second-order TV). We revisit the first- and second-
order TV regularization models from Sect. 2.1.2 with the discretized dual problem

min
p∈D

F (p), F (p) :=
1

2
∥A p− f∥22, (2.30)

where the operator A : R6n → Rn discretizes div p1+div2 p2 with p = (p1, p2) ∈ R2n×R4n.

We are aiming at a regularization with locally varying regularization strengths αi for
first- and βi for second-order. Analogously to Example 2.1, we choose

αi := max{α0(1− κ|(L⊤ fσ)i|), ε}, (2.31)

βi := max{β0(1− κ|(L⊤ fσ)i|), ε}, (2.32)

with constants α0, β0 > 0, i.e. in homogeneous regions (vanishing gradient ∇f = 0)
we penalize the first- and second-order TV with factor α0 and β0, respectively, while we



Solving QVIs for Image Restoration with Adaptive Constraint Sets 9

reduce the regularization strength at edges (|∇f | ≫ 0). As local constraint sets we then
choose

Dloc
i := Bαi(0)×Bβi

(0) ⊂ R2 × R4. (2.33)

♦

The above examples show, that many popular variational approaches conform to
the generic model (2.22). A limitation of the above adaptive approaches is, that the
adaptivity is determined by the noisy input data f (data-driven adaptivity), rather than
by the noise-free solution u. In the next section, we show how we can switch from a
data-driven to a solution-driven adaptivity.

3. Solution-driven Adaptivity. In [24] we have proposed a new kind of adaptivity,
where the constraint set D depends on the unknown solution of the problem. We recall
this approach below.

Our approach generalizes the examples of Section 2 with respect to the operator A
and the form of the constraint set D.

We describe this generalization in a discrete setting, where we consider again an
equi-distant grid on Ω with n grid points. We start with a dual problem of the form

min
p∈D

F (p), F (p) :=
1

2
∥A p− f∥22, (3.1)

where A : Rmn → Rn now is a general discrete operator. We assume that the constraint
set D takes the form

D = Dloc
1 ×Dloc

2 × · · · × Dloc
n , (3.2)

where each Dloc
i is a local m-dimensional closed convex constraint set at the i-th grid

point. We stress that the shape of Dloc can be arbitrary. The solution of the primal
problem can be retrieved by u := M−1(f −A p) from the solution p of the dual problem
(3.1).

We remark that the dual problem (3.1) can be equivalently formulated based on a
variational inequality (VI)

find p ∈ D such that ⟨∇F (p), p− p⟩ ≥ 0 ∀p ∈ D. (3.3)

In our case, the gradient of F (p) is an affine function of p:

∇F (p) = A⊤(A p− f). (3.4)

We will make use of this specific form in the following section.

We now generalize the problem (2.5) by introducing a dependency of D on the dual
variable, i.e. D = D(p0) for some p0 ∈ Rmn and search for a fixed-point p∗ of the mapping

p0 7→ p := argmin
p∈D(p0)

F (p). (3.5)
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Please note that we have to distinguish between a fixed-point of (3.5), denoted by p∗,
and a minimizer p of the convex dual problem argminp∈D(p0) F (p) for fixed p0. Both
coincide only if p0 = p∗.

Having found a fixed point p∗, the corresponding constraint set is D(p∗), i.e. the
adaptivity becomes solution-driven.

Moreover, we can interpret p∗ as the solution of a convex problem with fixed con-
straint set D = D(p∗) and can consider the solution u∗ of the corresponding primal
problem, which can be retrieved by u∗ = M−1(f − A p∗) (with M := Id in the case of
denoising).

Introducing the fixed-point problem (3.5) has several advantages:

1. The inner problem, i.e. the problem of finding argminp∈D(p0) F (p) for a fixed p0
is a convex problem. Theoretical and numerical issues of this problem have been
intensively studied.

2. Also for the outer fixed-point problem, theory on existence is at hand.
3. Concerning the inner problem, our ansatz allows us to switch between primal,

dual and the saddle-point formulation

min
u∈Rn

{
1

2
∥Mu− f∥22 + sup

p∈D(p0)
⟨u,L p⟩L2

}
, (3.6)

for fixed p0. In particular, after having found the fixed-point p∗, we can retrieve
the primal solution u∗ as the solution of (3.6) with fixed p0 = p∗.

Remark 3.1.The concept of a solution-driven adaptivity also covers the case that the
adaptivity is determined based on the primal variable u, since we can express D(u) by
D(p) using the relationship u = M−1(f − A p). However, the fixed-point problem (3.5)
in general is not equivalent to the non-convex problem

argmin
u∈Rn

∥Mu− f∥2L2 + sup
p∈D(u)

(L p)⊤u. (3.7)

Let us illustrate the considerations made so far by an example:

Example 3.2. We compare the two conceptually different ways of implementing adap-
tivity – data-driven adaptivity, where D depends solely on the input data f , and solution-
driven adaptivity, where the constraint set D depends on the unknown u (or, equivalently,
p).

Firstly, we recall the data-driven adaptive TV regularization from Example 2.1, where
the regularization parameter α was chosen locally at grid node i to be

αi := max{α0(1− κ|(L⊤ fσ)i|), ε}. (3.8)

Our proposed generalized approach permits to make the constraint set depending on u.
To this end, let

αi(u) := max{α0(1− κ|(L⊤ u)i|), ε} (3.9)
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(assuming that u is noise-free, we omit the Gaussian pre-smoothing), and

D(u) = Dloc
1 ×Dloc

2 × · · · × Dloc
n , where Dloc

i (u) := Bαi(u)(0). (3.10)

Considering alternatively the dual problem (2.5), we can by means of the relationship
u = M−⊤(f −A p) instead assume that D depends on p, or, more precisely, on A p:

D = D(p) = D(A p). (3.11)

Although there is also a formal dependency on f , we omit this in our notation to em-
phasize the different models D(f) (adaptive to data f , but fixed) and D(p) (adaptive to
the unknown p).

We will compare both models experimentally in Section 6. ♦

As already mentioned before, alternative choices for varying the regularization strength
α, such as using the function g(|∇u|) from the Perona-Malik diffusion model [30], exist.
In view of the theory provided in the next section, such an α(u) should at least be
Lipschitz-continuous w.r.t. u.

Moreover, we stress that besides the examples discussed in Sect. 2.3 various other
models of adaptive/anisotropic regularization exists, which are covered by the above
general model (3.5), see e.g. [4, 22, 23, 24, 36].

Finally, we remark that the generalized problem of finding a fixed-point of (3.5) is
equivalent to solving a quasi-variational inequality problem (QVIP) (cf. [10])

find p∗ ∈ D(p∗) such that ⟨∇F (p∗), p− p∗⟩ ≥ 0 ∀p ∈ D(p∗) (3.12)

with F (p) = 1
2∥A p − f∥2. When reformulating the proposed fixed-point problem as a

QVIP, we can make use of the theory existing in literature [10, 27].

We will provide existence and uniqueness results for the QVIP (3.12) in detail in the
subsequent section.

4. Theory. The key issue of this section is to prove uniqueness for the problem (3.12)
under sufficient conditions. A prerequisite for uniqueness is the existence of a solution.
We therefore briefly recall existence results from literature in the next section, before
turning to uniqueness results in Section 4.2.

4.1. Existence. We recall existence results from [24] for problem (3.12) together
with the necessary assumptions. These assumptions will also be required for uniqueness
results provided in second part of this section.

Assumption 4.1 (for existence). Assume that

D : p ⇒ D(p) := {p ∈ Rmn :pi ∈ Di
loc(p) ⊂ Rmn, i = 1, . . . , n

}
, (4.1)

where each Di
loc : Rmn ⇒ Rmn, i = 1, . . . , n has the following properties:

(i) For fixed p the set Di
loc(p) is a closed convex subset of Rmn.
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(ii) There exists C > 0, such that for all i, p: Di
loc(p) ⊂ BC(0) (closed ball with radius

C).
(iii) There exists c > 0, such that for every p and every i we have Bc(0) ⊂ Di

loc(p). In
particular, Di

loc(p) is non-empty.
(iv) The projection ΠDi

loc(p)
(q) of q onto Di

loc(p) for a fixed q is continuous w.r.t. p.

Proposition 4.2. Let F (p) := 1
2∥f − A p∥22, where A : Rmn → Rn is a linear oper-

ator. Moreover, let D(p) be defined as in (4.1), such that Di
loc(p), i = 1, . . . , n satisfy

Assumption 4.1. Then the problem (3.12) has a solution.
Proof. See [24, Prop. 1].
The proof in [24] utilizes a general existence result for QVIs presented in [10], whose

core ingredient is Brouwer’s fixed-point theorem and which makes use of the continuity
of the mapping p → ΠD(p)(q) (guaranteed by Assumption 4.1(iii)). We will see that for
uniqueness results, a higher regularity of p → ΠD(p)(q), namely a Lipschitz-continuity is
required.

Remark 4.3 (A-priori bounds). From Assumption 4.1 (ii) we derive an a-priori bound
for D(p) independent from p:

D(p) ⊂ (BC(0))
n ⊂ B√

nC(0) ∀p ∈ Rmn. (4.2)

We define R :=
√
nC. In particular, (4.2) provides a bound for a solution p∗ of (3.12):

p∗ ∈ D(p∗) ⊂ BR(0), i.e. ∥p∗∥2 ≤ R =
√
nC. (4.3)

4.2. Uniqueness. Let us now consider uniqueness results for the QVI (3.12). This
part comprises the main contribution of this paper.

We start with a discussion on related work in Sect. 4.2.1, in particular the paper
by Nesterov & Scrimali [27], which provides existence results for strongly monotone
gradients ∇F under certain conditions. We will see that this theory is only partially
applicable in our context, since ∇F in our case is strongly monotone only on a subspace
of Rmn. Consequently, we will be able to show uniqueness of p only with respect to its
component in that subspace. The final uniqueness result is provided in Sect. 4.2.2.

4.2.1. Existing Theory. We recall QVI (3.12), which is of the form

⟨g(p∗), p− p∗⟩ ≥ 0 ∀p ∈ D(p∗), (4.4)

with g(p) = ∇F (p) = A⊤(A p− f).
Theory on existence of a unique solution p∗ ∈ D(p∗) to (4.4) under certain conditions

has been shown by Noor & Oettli [28, Thm. 9] and Nesterov & Scrimali [27, Cor. 2]. We
focus on the latter as their results are more general.

We briefly recall the required conditions below. It is of particular importance that
these conditions have to hold for an arbitrary norm ∥x∥B :=

√
x⊤Bx for a positive

definite matrix B. Note that the scalar product in (3.12) is the standard product inde-
pendent from B.
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Firstly, operator g : Rmn → Rmn is assumed to be Lipschitz-continuous with param-
eter µB > 0, i.e.

∥g(x)− g(y)∥B∗ ≤ µB∥x− y∥B ∀x, y ∈ Rmn, (4.5)

where ∥.∥B∗ is the norm in the dual space of Rmn equipped with ∥.∥B. Note that constant
µB depends on the chosen norm B. We indicate this dependency by the subscript B.

Secondly, g is assumed to be strongly monotone with parameter νB, again depending
on B, i.e.,

⟨g(x)− g(y), x− y⟩ ≥ νB∥x− y∥2B ∀x, y ∈ Rmn. (4.6)

Both constants µB and νB define the condition number γB := µB
νB

, which in our case is

the condition number of A⊤A.
Finally, it is assumed that the projection ΠD(p)(q) is Lipschitz-continuous w.r.t. p,

i.e. for arbitrary q ∈ Rmn,

∥ΠD(p)(q)−ΠD(p̃)(q)∥B ≤ ηB∥p− p̃∥B. (4.7)

We refer to ηB as the variation rate of D(p).
In the following, we use the notation µ2, ν2 and η2 whenever we are considering the

standard Euclidean norm ∥ · ∥B = ∥ · ∥2 (B = Id).
Under the above assumptions, Cor. 2 in [27] provides uniqueness in the case that

ηBγB < 1. (4.8)

One immediately observes that two open issues preclude the direct application of the
theory in [27, 28] to our problem:

• Operator ∇F in (3.12) has a non-trivial null space N (A) and thus is not strongly
monotone.

• On the complement N⊥(A) of the null space, the condition number γ2 w.r.t. the
standard Euclidean norm tends to infinity with increasing problem size. As a
consequence, assuming that η2 is fixed, (4.8) can not be satisfied for arbitrary
large image. Alternatively, in order to guarantee (4.8), η2 has to be reduced with
increasing problem size, which is unfavorable since it would mean to restrict the
variability of the adaptive constraint set.

Both issues in theory can be tackled by restricting the original QVI to the subspace
N⊥(A) and switching from the standard Euclidean norm ∥ · ∥B := ∥ · ∥2 to the problem-

specific norm ∥x∥B :=
√
x⊤A⊤Ax. We describe this approach in detail below. For

practical applications this approach would require a singular value decomposition (SVD)
of the operator A⊤A, which is intractable for large problem sizes.

Restriction to N⊥(A) . In order to deal with the missing strong monotonicity of
operator ∇F , we restrict the problem (3.12) to the complement N⊥(A) of the null space
N (A) of operator A:

Find p∗ ∈ ΠN⊥(A)(D(p∗)) such that

⟨∇F (p∗), p− p∗⟩ ≥ 0, ∀p ∈ ΠN⊥(A)(D(p∗)).
(4.9)
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This restriction is justified by the following proposition.

Proposition 4.4. Assume that the set D(p) depends only on pres := ΠN⊥(A)(p).

(i) Let p∗res be a solution to the restricted problem (4.9). Then, any p∗ ∈ Π−1
N⊥(pres) ∩

D(pres) is a solution to the original problem (3.12).
(ii) If p∗ is a solution of the unrestricted problem, then p∗res := ΠN⊥(A)(p

∗) is a solution
of the restricted problem. Thus, we can express any solution p∗ of the unrestricted
problem (3.12) as p∗ = p∗res + p∗N with p∗N = ΠN (A)(p

∗).
The proof of Prop. 4.4 can be found in the Appendix A.
We remark that in our applications D(p) depends on L⊤u = L⊤M−1(f −A p), thus

the assumption of Prop. 4.4 is satisfied.

Choosing a Problem Specific Norm. We now address the issue, that the condition
number γ2 of ∇F w.r.t. the standard Euclidean norm increases with the problem size.

In order to show uniqueness of a solution to (4.9), we consider the space Rmn∩N⊥(A)
equipped with the norm

∥x∥B :=
√

x⊤A⊤Ax, (4.10)

which indeed is a norm on N⊥(A).
Standard calculus then shows that on the subspace N⊥(A) equipped with norm ∥·∥B

the Lipschitz constant µB and monotonicity constant νB become 1 and uniqueness is
obtained if ηB < 1.

Two open problems remain, rendering the above approach, the restriction to N⊥(A)
together with a problem specific norm, a purely academic one:

• The condition ηB < 1 is hard to verify in practice, since the projection ΠD(p)

is defined w.r.t. the specific norm ∥ · ∥B and a closed form for this projection
in general is not at hand, even if it is available for the Euclidean norm (as for
example for the standard TV semi-norm).

• Restriction to the space N⊥(A) requires the SVD of A, which, for larger images
numerically is intractable.

As a consequence of these two open problems, we follow an alternative ansatz. We
will see that in this ansatz the subspace N⊥(A) and the norm ∥.∥B will play also an
important role.

4.2.2. Uniqueness Results for the Proposed Approach. We recall that the theory
from Sect. 4.1 provides existence of a solution p∗ to the problem (3.12) under Assump-
tion 4.1. Our considerations in the previous subsection showed that we cannot expect
uniqueness of the component p∗N of p∗ in the null space N of operator A. On the other
hand, we are mainly interested in u∗ = M−1(f −A p∗) (M = Id in the case of denoising
and M being the blur operator in the case of deblurring), which does not depend on p∗N .
We therefore focus on v∗ := A p∗, for which we will show uniqueness, and on the standard
Euclidean norm of v∗. Note that the mapping p 7→ v := A p implicitly depends only on
the component of p in N⊥(A) and that ∥v∥2 = ∥p∥B holds, showing the relationship to
the previous section.

We prove uniqueness of v∗ under the following assumption:
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Assumption 4.5 (for uniqueness).

(i) F (p) = 1
2∥Ap − f∥2. In particular, ∇F (p) = A⊤(Ap − f) is Lipschitz-continuous

with Lipschitz-constant µ2 := ∥A⊤A∥2.
(ii) The set D(p) depends only on v = A p, i.e. there exists D̃(·) such that D(p) =

D̃(v) = D̃(A p). In particular, instead of the variation rate of p ⇒ D(p), we
consider the variation rate η̃ of v → D̃(v), i.e. the smallest number, such that

∥ΠD̃(v)q −ΠD̃(v′)q∥2 ≤ η̃∥v − v′∥2, ∀q ∈ Rmn. (4.11)

(iii) The variation rate η̃ is less than 1√
µ
2
.

Before showing uniqueness, let us first define the operator T (v) : Rn ⇒ Rmn as
follows: Let p ∈ T (v) if and only if p ∈ D̃(v) and it is a solution to the VI

⟨∇F (p), p− p⟩ ≥ 0 ∀p ∈ D̃(v). (4.12)

We remark that due to our special choice of F , for D̃(v) being convex, closed and non-
empty, the operator A ◦T is single-valued due to the strict convexity of minṽ∈A D̃(v)

1
2∥ṽ−

f∥22. We find that for any solution p∗ to QVI (3.12) v∗ = A p∗ is a fixed-point of A ◦T .

Theorem 4.6 (Uniqueness).

1. Under Assumptions 4.1 and 4.5 (i)-(ii), the mapping A ◦T is Lipschitz-continu-
ous with constant λ2 := η̃

√
µ2.

2. Let p∗ be a solution of the QVI (3.12) (cf. Prop. 4.2). If in addition Assumption
4.5 (iii) holds, then v∗ := A p∗ is unique.

The proof of Thm. 4.6 can be found in the Appendix B.

Remark 4.7.

• An equivalent condition to Assumption 4.5 (iii) is that the Lipschitz-constant of
v → A ◦ΠD(v)(q) is less than 1 for all q (cf. condition on ηB in Sect. 4.2.1).

• ∥A ◦T (v1)−A ◦T (v2)∥2 is equal to ∥T (v1)−T (v2)∥B, where ∥.∥B with B = A⊤A
is the special norm on N⊥(A) considered before. Thus Theorem 4.6 provides
that operator T under the said conditions is a contraction in the norm ∥ · ∥B
(B = A⊤A).

We recall that in the considered applications for image restoration (cf. Sect. 6 and
previous work [23, 24]), we are actually interested in the variable u := M−1(f −A p). It
follows from Theorem 4.6 that this variable is unique under Assumptions 4.1 and 4.5.

For specific examples of adaptive TV denoising, to guarantee uniqueness of the fixed-
point problem, it remains provide a sufficiently small variation rate. The variation rate,
on the other hand, is typically related to the regularization strength, as in Example 3.2
considered above. We revisit this example in the following:

Example 4.8. We revisit the adaptive TV regularization in Example 3.2, where the
local constraint set Dloc

i is given as

Dloc
i = Bαi(0), αi := max{α0(1− κ(|(L⊤ u)i|), ε}. (4.13)
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Due to the relation u = M−1(f − v), each αi depends on v by

αi(v) = max
{
α0(1− κ(|(L⊤M−1(f − v))i|), ε

}
(4.14)

= max
{
α0(1− κ(|(A⊤(f − v))i|), ε

}
, (4.15)

where we used A = M−⊤ L. We calculate the variation rate η̃ of D̃(v). Let v, ṽ ∈ Rn, q ∈
Rmn be arbitrary. Since the projection of q onto D̃(v) is a scaling of the n components
qi ∈ Rmn to at most length αi(v), we find

∥ΠD̃(v)q −ΠD̃(v)q∥
2
2 ≤

n∑
i=1

|αi(v)− αi(ṽ)|2 (4.16)

≤ α2
0κ

2
n∑

i=1

∣∣|(A⊤(f − v))i| − |(A⊤(f − ṽ))i|
∣∣2 (4.17)

≤ α2
0κ

2
n∑

i=1

|(A⊤(f − v)−A⊤(f − ṽ))i|2 (4.18)

= α2
0κ

2∥A⊤(v − ṽ)∥22 (4.19)

≤ α2
0κ

2∥A ∥22 ∥v − ṽ∥22. (4.20)

Thus η̃ = α0κ∥A ∥2 = α0κ
√
µ
2
. Theorem 4.6 therefore guarantees a unique solution if

α0κµ2 < 1. (4.21)

Considering the task of denoising, where M = Id, A = L and ∥L∥22 = µ2 = 8, condi-
tion (4.21) becomes α0κ < 1

8 . Given a fixed maximal regularization strength α0 we thus
can determine feasible values for κ to guarantee uniqueness of the solution.

For the task of deblurring, where A = M−⊤ L, we expect that in practical applications
µ2 = ∥M−⊤L∥22 ≫ 1 due to small eigenvalues of M and thus that uniqueness can be
guaranteed only for very small α0 (weak smoothing) or κ (weak adaptivity). ♦

5. Numerics. Throughout this section, we assume that Assumptions 4.1 and 4.5 are
satisfied.

In particular, we assume that the dependency of D(p) on p is actually a dependency
on v := A p. We change the notation accordingly by writing D(v) instead of D(p).

5.1. Proposed Algorithm. In the following, we propose an algorithm to solve the
QVI (3.12). This algorithm builds on the ideas already presented in [24]. However, we
now provide convergence results for the more general case η̃γ2 < 1 and, in particular,
for arbitrary image sizes.

As already proposed in [24, 27], we consider an outer and an inner loop. In the
outer loop we update the value v which defines the constraint set D(v). The inner step
consists in solving the variational inequality

Find p ∈ D(v) such that (5.1)

⟨∇F (p), p− p⟩ ≥ 0, ∀p ∈ D(v)
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with fixed constraint set D(v). Recall that the operator which maps v to an exact
solution p of (5.1) is denoted by T (v).

Several methods have been proposed to numerically solve (5.1). At this point, we
consider some arbitrary method and denote its numerical result by sol(D, p0, N), where
D is the current constraint set, p0 is an initial value and N is the number of inner
iteration steps. We assume that an a-priori error bound for this method is available: for
any ε > 0 we can find N large enough and independent of p0 and D, such that the inner
problem can be solved up to an error

∥A
(
sol(D(v), p0, N)− T (v)

)
∥2 ≤ ε, ∀p0 ∈ BR(0), v ∈ Rmn, (5.2)

where R is the a-priori bound on p (cf. Remark 4.3). Exemplary methods fulfilling these
requirements are discussed in Sect. 5.1.2.

Algorithm 1: Outer Iteration

Output: Sequence (p[k])k converging to a solution p∗ of (3.12).
Choose arbitrary p[0] ∈ BR(0) ⊂ Rmn, v[0] = A p[0]. // initialization

begin
for k = 0, . . . ,K − 1 do

p[k+1] = sol(D(v[k]), p[k], N) // → Algorithm solving VI (5.1)

v[k+1] = A p[k+1]

5.1.1. The Outer Iteration. In Algorithm 1 we outline the outer iteration, which
provides a sequence p[k] converging to a fixed-point p∗ of (3.12). For each iterate p[k]

we set v[k] := A p[k] and fix the constraint set D(v[k]). The corresponding inner problem
(5.1) is solved in an inner iteration to obtain p[k+1].

5.1.2. Solving the Inner Problem. In order to solve the inner problem (5.1) or its
equivalent saddle point formulation, several approaches providing the required error es-
timate (5.2) have been proposed in literature. Among them are, e.g., Nesterov’s method
in [26], FISTA [3], and the primal-dual algorithms proposed by Chambolle & Pock [9].
Out of these candidates we exemplarily pick FISTA (with constant step size), see Algo-
rithm 2. We refer to the iteration within the FISTA algorithm as the inner iteration. In
order to distinguish the inner iterates from the outer ones, i.e. p[k] and v[k], we use the
notation p(k) with parentheses.

We briefly recall the convergence results for FISTA [3], for which an error bound of
the form (5.2) is available. We remark that similar estimates hold for the primal-dual
algorithms.
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Algorithm 2: FISTA.

Input: N ≥ 1, constraint set D(v[k]), initial guess p(0) ∈ BR(0) ⊂ Rmn

Output: p = p(N)

Let τ (0) = 1, q(1) = p(0)

begin
for l = 0, . . . , N − 1 do

p(l) := ΠD(v[k])

(
q(l) − 1

µ2
(A⊤A q(l) −A⊤ f)

)
τ (l+1) := 1

2(1 +
√

1 + 4(τ (l))2)

q(l+1) := p(l) + τ (l)−1
τ (l+1) (p

(l) − p(l−1))

Lemma 5.1. For the result obtained by FISTA applied to the problem (5.1), we have
the following error estimate:

∥A p(N) −AT (v[k])∥2 ≤
2
√
2µ2

N + 1
∥p(0) − T (v[k])∥2. (5.3)

Using the boundedness of p(0) and T (v[k]) (cf. Remark 4.3), it follows that

∥A p(N) −AT (v[k])∥2 ≤
4R

√
2µ2

(N + 1)
. (5.4)

Proof. Recall that the inner problem (5.1) is equivalent to

min
p∈D(v[k])

F (p), (5.5)

where F (p) = 1
2∥A p − f∥22. Let p = T (v[k]) denote a solution to (5.5). The inequality

(5.3) is obtained from the error estimate

F (p(N))− F (p) ≤ 2µ2

(N + 1)2
∥p(0) − T (v[k])∥22, (5.6)

cf. Beck & Teboulle’s Thm. 4.4. in [3], and

1

2
∥A p(N) −A p∥22 ≤ F (p(N))− F (p), (5.7)

cf. Lemma C.1 in the Appendix. Combining (5.6) and (5.7) then shows (5.3). The
inequality (5.4) follows from (5.3) using

∥p(0) − T (v[k])∥2 ≤ ∥p(0)∥2 + ∥T (v[k])∥2 ≤ 2R. (5.8)

In view of the next subsection, we consider the following special case.
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Remark 5.2. Assume that T (v[k]) ∈ N⊥(A) and that starting with a value p(0) ∈
N⊥(A) the sequence p(k) stays in this subspace. Using the basic fact that ∥x∥2 ≤
1√
ν2
∥Ax∥2 for x ∈ N⊥(A), where ν2 is the smallest positive eigenvalue of A⊤A, it

follows from (5.3), that

∥A p(N) −AT (v[k])∥2 ≤
2
√
2γ2

N + 1
∥A p(0) −AT (v[k])∥2, (5.9)

where γ2 =
µ2

ν2
is the condition number of A⊤A restricted to N⊥(A).

5.2. Convergence. In the following, we show convergence of the proposed Algo-
rithm 1 and provide convergence rates for a special case.

Proposition 5.3 (Convergence). Let Assumptions 4.1 and 4.5 be satisfied. Moreover,
assume that sol(D(v), p,N) provides an approximate solution of (5.1) with an error less
than ε > 0 (independent from p ∈ BR(0)), i.e.

∥A sol(D(v), p,N)−AT (v)∥2 ≤ ε ∀p ∈ BR(0). (5.10)

Then, the following holds:
(i) for the solution v[k] of Algorithm 1 we have

∥v[k] − v∗∥2 ≤ ε
1

1− λ2
+ λk

2∥v0 − v∗∥2, (5.11)

where v∗ is the unique fixed-point of A ◦T and λ2 is the Lipschitz-constant of A ◦T .
(ii) {v[k]}k converges to the fixed-point v∗ for ε → 0 and k → ∞.

Proof. We have

∥v[k] − v∗∥2 = ∥A p[k] −A p∗∥2 = ∥A p[k] −AT (v∗)∥2 (5.12)

≤ ∥A p[k] −AT (v[k−1])∥2 + ∥AT (v[k−1])−AT (v∗)∥2 (5.13)

≤ ∥A sol(v[k−1])−AT (v[k−1])∥2 + λ2∥v[k−1] − v∗∥2 (5.14)

≤ ε+ (λ2ε+ λ2
2∥2v[k−2] − v∗∥2) (5.15)

≤ ε(1 + λ2 + λ2
2 + · · ·+ λk−1

2 ) + λk
2∥v[0] − v∗∥2. (5.16)

Using the limit of the geometric series, we deduce claim (i). Claim (ii) follows from (i)
under Assumption 4.5 (iii), since then λ2 < 1 and thus λk

2 → 0 for k → ∞.

Proposition 5.4 (Convergence rates). Let Assumptions 4.1 and 4.5 be satisfied. More-
over, assume that the inner problem (5.1) can be solved with an error bound

∥A p(N) −AT (v[k])∥2 ≤
δ

4
∥A p(0) −AT (v[k])∥2, (5.17)

where δ := 1− η̃
√
µ2 is the contraction gap of the problem (3.12). (Recall that T (v[k]) is

the exact solution of the inner problem.) Consider a solution p∗ of (3.12) and v∗ := A p∗.
Then, Algorithm 1 converges according to

∥v[K] − v∗∥2 ≤
1

δ
exp

(
−δ

2
K

)
∥v[0] −AT (v[0])∥2, (5.18)



20 F. Lenzen et al.

where K is the number of outer iterations. Proof. see Appendix D.

Remark 5.5.

1D case: In the one-dimensional case the null space N (A) of A is spanned by the vector
(0, . . . , 0, 1)⊤. When considering Example 4.8 and Algorithm 2 (FISTA), we can
guarantee that the sequence {p(k)}k stays in N (A)⊥, provided that the initial value
p(0) is chosen in N (A)⊥. This is due to the fact that the projection onto D(v[k])
decouples into independent projections to 1D intervals for each coordinate. In

particular, if p
(0)
n = 0, the constraint p

(0)
n ∈ [−αn, αn] is fulfilled and thus p

(0)
n

is not changed by the projection ΠD(v[k])(p), i.e. p
(0)
n = p

(1)
n = · · · = p

(N)
n = 0.

The sequence p(k) then converges to the solution p ∈ T (v[k]) ∩ N (A)⊥, which
is unique in this subspace. As a consequence, starting with p[0] ∈ N (A)⊥ for
the outer iteration, we can guarantee also p[k] ∈ N (A)⊥, such that the initial
value of every subsequent inner problem is again in N⊥(A). The error estimates
for FISTA (cf. Remark (5.2)) then provide the necessary conditions to apply
Prop. 5.4.

2D case: In the two-dimensional case there exist counter examples indicating that (5.17)
does not hold in general. The reason is that the convergence depends on the com-
ponent ∥p(0) − p∥N (A) of the initial error ∥p(0) − p∥2 ( p ∈ T (v[k]) fixed).

6. Experiments.

(a) Cameraman (b) Peppers (c) Lena (d) Boat

(e) Cameraman (f) Peppers (g) Lena (h) Boat

Figure 1. Test images used for evaluation. Top row: images with Gaussian noise (zero mean,
standard deviation 0.1) to evaluate denoising. Bottom row: blurred images with Gaussian noise (zero
mean, standard deviation 0.01) to evaluate deblurring.
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(a) Adaptive first-order (b) Anisotropic first-order (c) Adaptive 1st & 2nd order

Figure 2. Image denoising. (Best viewed in color.) Evolution of the similarity measure
MSSIM [39] between the current iterate and the ground truth image during the outer iteration
of our approach with three different regularization terms. Test images: cameraman (purple),
peppers (blue), Lena (green) and boat (brown). In most cases, the similarity increases during the
outer iteration. This shows that the adaptivity improves by switching from a data-driven to a
solution-driven model.

6.1. Improvement by Solution-Driven Adaptivity. In the following, we demonstrate
the benefits of applying our solution-driven adaptivity compared to the data-driven vari-
ant. To this end, we consider four different standard test images, the cameraman, pep-
pers, Lena and the boat image, which are scaled to the range [0, 1]. From each image,
we generate test data for the denoising problem by adding Gaussian noise with zero
mean and standard deviation 0.1, and for the deblurring problem by applying a blur-
ring operation and adding Gaussian noise with zero mean and standard deviation 0.01.
The resulting images are show in Fig. 1. On these test images we evaluate the three
different adaptive regularizations presented in Sect. 2.3, namely adaptive first-order TV
regularization (Example 2.1), anisotropic first-order TV regularization (Example 2.2)
and adaptive first- and second-order regularization (Example 2.3).

For denoising, we use the input data to initialize the constraint set D(v[0]), v[0] := f .
Therefore, running the algorithm with only one outer iteration implements a data-driven
adaptivity, while running it with more than one outer iteration gives a solution-driven
adaptivity. We set the required parameters to obtain a suitable result for the data
driven approach and apply the solution driven variants with five outer iterations. To
quantitatively evaluate the results, we make use of the similarity measure MSSIM(a, b)
for two images a and b proposed by Wang et al. [39]. This measure is well suited in
particular to compare restored images with their ground truth, since it is sensitive to
remaining distortions.

The evolution of MSSIM(u
[k]
sd , uorig), where k is the index for the outer iteration,

for the three kinds of adaptive regularization and each test image is depicted in Fig. 2.
Except for two cases, the solution-adaptive regularization improves the similarity from
the first to the second outer iteration (recall that k = 1 provides the data-driven result).
In most cases the similarity stays constant or is even further improved in the subsequent
iteration steps. To also give a visual impression of this improvement, we depict the
respective results for the cameraman image in Fig. 3. Since the differences are best
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(a) Noisy input data (0.327) (b) Standard TV (0.804)

(c) Data-driven adaptive TV (0.751) (d) Solution-driven adaptive TV (0.812)

(e) Data-driven anisotropic TV (0.748) (f) Solution-driven anisotropic TV (0.815)

(g) Data-driven adaptive TV2 (0.766) (h) Solution-driven adaptive TV2 (0.820)

Figure 3. Close-up of the results of denoising the cameraman image with different regular-
ization approaches. The similarity values (cf. [39]) to the ground truth are given in parentheses.
They correspond to those plotted in Fig. 2. The solution-driven approaches enhance the re-
construction compared to the data-driven ones and standard TV regularization. In particular,
artifacts from noise are reduced.
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(a) Input data (0.032) (b) Data-driven adaptive TV (0.807)

(c) Standard TV (0.801) (d) Solution-driven adaptive TV (0.866)

(e) Solution-driven anisotropic TV (0.867) (f) Solution-driven adaptive TV2 (0.864)

Figure 4. Close-up of the results of deblurring the cameraman image with different regular-
ization approaches. Given in parentheses is the similarity to the ground truth. The data-driven
approaches suffer from artifacts (e.g., in the adaptive first-order TV case (b)). We therefore
compare our methods to standard TV (c). The solution-driven approaches enhance the recon-
struction in terms of similarity to the original data compared to standard TV. Anisotropic TV
regularization gives the best result.

visible in full resolution, we focus on a close-up of the head region of the cameraman.
The improvement of the similarity after five outer iterations compared to the similarity
of the data-driven results are shown in Table 1 with the values in percent and averaged
over the four test images. We found that using the peak-signal-to-noise-ratio (PSNR)
instead of MSSIM shows a similar trend.

The theory presented in Sect. 4.2 allows us to check for each method, if the obtained
result is unique and in particular independent from the initialization of the algorithm.
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(a) Adaptive first-order (b) Anisotropic first-order (c) Adaptive 1st & 2nd order

Figure 5. Image deblurring.(Best viewed in color.) Evolution of the similarity to the ground
truth during the outer iteration of our approach with three different regularization terms. Test
images: cameraman (purple), peppers (blue), Lena (green) and boat (brown). We observe a
strong increase in similarity between the first two iteration steps. After these two steps the
similarity stays almost constant, with a slight decrease in some cases. Inspecting the results
visually, we observe that the results still get sharper during the later steps, which probably leads
to an over-sharpening compared to the original images.

problem method gain in similarity guaranteed uniqueness

denoising adaptive first-order 6.8 % yes
anisotropic first-order 4.0 % ?

adaptive 1st & 2nd order 3.5 % yes

deblurring adaptive first-order 7.2 % no
anisotropic first-order 8.8 % no

adaptive 1st & 2nd order 4.8 % no
Table 1

Gain in similarity to the ground truth by introducing solution-driven adaptivity for three different
regularizations. We compare to the data-driven variants for denoising and to standard TV for deblurring.
The values are averaged over the four test images. The theory presented in Sect. 4 allows to check for
each case, if uniqueness of the result can be guaranteed, see the right column.

Uniqueness is guaranteed for the adaptive TV regularization for first- and second-order,
where the parameters α0 and κ where chosen small enough to assert α0κµ2 < 1 (cf. Ex-
ample 4.8). In the case of anisotropic TV regularization, it can be shown that the
projection ΠD̃(v)(q) of q onto the constraint set D̃(v) is Lipschitz-continuous w.r.t. v

(we refer to [24] for details). However, an analytic estimate of the Lipschitz constant
η̃ is not at hand. Experiments indicate that η̃ < 0.06 for our particular parameter set-
ting. Assuming that this estimate is correct, our theoretical results therefore guarantee
uniqueness, since η̃ < 1

8 .

In the case of deblurring, it turns out that applying the data-driven approaches
does not provide satisfactory results since spurious structures occur independent from
method and input image (see e.g. Fig. 4(b)). Similarly, applying the solution-driven
approaches using the input data as initialization results in the same artifacts. However,
solution-driven approaches which start with a constant image as initialization provide
satisfactory results (see Fig. 4(d)-(e)). This already indicates that uniqueness of the
underlying QVIP can not be expected in the case of deblurring. We further comment
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on this below.
Evaluating with the similarity measure, see Fig. 5, we observe a substantial increase

of the similarity to the ground truth during the first two outer iterations of our approach.
After the second outer iteration only a slight further improvement or, in rare cases, a
decrease occurs. The same effect can be also observed with the PSNR. Inspecting the
results visually shows that the results actually do not become worse in terms of visual
appearance, but that the image sharpness further increases, which we interpret as a
slight over-sharpening of the result.

Since the data-driven approaches do not provide accurate results, we refrain from
using them to compare with the solution-driven approaches. Instead, we compare to
standard TV regularization with the same regularization parameter. The average im-
provement by solution-driven adaptivity in percent are shown in Table 1.

Concerning uniqueness of the results in the case of deblurring, we remark that, since
the smallest eigenvalue of operator M becomes very small (cf. Example 4.8), uniqueness
can not be guaranteed for the values of α0, β0, and κ used in our experiments.

(a) Standard TV (b) Data-driven (c) Solution-driven

Figure 6. Dependence on the input data f . (Best viewed in color.) We consider denoising
of the cameraman image with the adaptive first-order TV regularization, where we denoise 100
versions with different realizations of additive Gaussian noise with zero mean and standard de-
viation 0.1 and calculate the pixel-wise standard deviation of the results. The maximal values
attained are 0.095 for the standard TV approach, 0.092 for the data-driven and 0.133 for the
solution-driven approach. We conclude that the sensitivity of the proposed solution-driven ap-
proach against variations in the input data is slightly higher, but of the same order of magnitude
compared to non-adaptive (standard TV) and data-driven approaches.

6.2. Dependence on Input, Initialization and Parameters. In the following, we
discuss the dependence of the proposed algorithm on input, initialization and parameters.
We focus on the adaptive TV regularization proposed in Example 2.1 in the context of
image denoising.

In order to experimentally evaluate the dependence of our solution-driven approach
on the input data f , we sample 100 noisy variants of the cameraman image with additive
Gaussian noise with zero mean and standard deviation 0.1. After denoising each image,
we determine the pixel-wise standard deviation over all 100 output images and compare
our method to the data-driven variant and to standard TV. It turns out that high
standard deviations for each method occur mainly along dominant edges in the image,
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Figure 7. Error histogram of 100 runs with random initialization, showing the errors after
7 outer iteration steps. The errors cannot be decreased further by increasing the number of
iterations. The errors are smaller than 3·10−14 and are fairly independent from the initialization.

(a) (b) (c)

Figure 8. Dependence on the parameters α0 and κ of the similarity to the ground truth
image when denoising the cameraman image with adaptive TV regularization. (a) visualization
as surface MSSIM(α0, β). (b) cross-section through maximum along α0-axis. (c) cross-section
through maximum along κ-axis. We observe a smooth dependence. One flat maximum (optimal
parameter settings) occurs.

e.g. along the silhouette of the cameraman, see Fig. 6. The maximal standard deviation
attained is 0.095 for the standard TV approach, 0.092 for the data-driven and 0.133 for
the solution-driven approach. We conclude for this example, that the sensitivity of our
approach to variations of the input data is slightly higher, but in the same range as for
the other methods.

Concerning initialization, our theoretical findings guarantee uniqueness of the result
as long as α0κ < 1

µ2
, where µ2 = 8 in the case that A = L is a discrete divergence

operator. In particular, the numerical solution is independent from the initialization
of the constraint set D(v[0]). However, we check this experimentally. Fig. 7 shows the
distribution of the numerical error after 7 outer iterations of the proposed algorithm
for 100 randomly chosen initializations v[0]. It turns out that the error to the analytic
solution is in the range of 10−14 and cannot be further decreased by additional outer
iterations. Moreover, it is fairly independent from the initialization. This supports our
theoretical result on uniqueness of the fixed-point.
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A third issue is the dependence on the parameters α0 and κ. To evaluate this
dependence, we run our denoising algorithm on the cameraman test image with different
parameter settings (α0, κ) taken from a grid {0, 0.002, . . . , 0.15}×{0, 0.05, . . . , 2.5}. Since
the algorithm has to be run for a large number of times, to reduce the computational
effort, we restrict this experiment to the head region of the cameraman image. For
each result, we evaluate its similarity to the ground truth. The resulting 2D surface
MSSIM(α0, κ) is depicted in Fig. 8(a). One relatively flat maximum occurs at (α0, κ) =
(0.12, 1.7). Figs. 8(b) and (c) show cross-sections through this maximum along the α0-
and κ-axis, respectively. Unfortunately, in this case, the optimal parameters lie outside
the region where uniqueness is guaranteed. Fixing α0 = 0.12, the parameter κ would
need to be less than 1.08 to assert uniqueness.

From the results shown in Fig. 8 we conclude a smooth dependence on both param-
eters. Moreover, the flatness of the maximum guarantees robustness w.r.t. parameter
variations. In practice, choosing parameters in a relatively broad neighborhood to the
unknown optimal values already provides satisfactory results.

6.3. Relation to Non-Convex Regularization. Introducing adaptivity in TV regu-
larization locally changes the way how the gradient (or higher derivatives) of the final so-
lution is penalized. To gain insight into this effect, with a given solution u∗, one can study
the empirical distribution of |∇u∗(xi)| versus ⟨∇u∗(xi), p(xi)⟩ (borrowing the notation
from the continuous setting). We do this exemplarily for the case of denoising the cam-
eraman image and adaptive TV regularization, where ⟨∇u∗(xi), p(xi)⟩ = αi∥∇u∗(xi)∥.

Studying the distribution of the norm of the discrete gradients, |∇u∗(xi)|, versus
their penalization in the regularization term, αi|∇u∗(xi)|)i, see Fig. 9, one recognizes
that our fixed-point based approach mimics a non-convex regularizer. For the other
three test images, we observe similar distributions.

(a) Data-driven (b) Solution-driven

Figure 9. A-posteriori distribution of (|∇u∗(xi)|, αi · |∇u∗(xi)|)i (black dots) of (a) the data-
driven (α = α(f)) and (b) the solution-driven result (α = α(u∗)) for the cameraman image, cf.
Fig. 3(c) and (d), respectively. We compare these distributions to (|∇u∗(xi)|, α0|∇u∗(xi)|) (gray
line), where α0 = 0.1 is the maximum value of the regularization strength. We observe that the
solution driven approach mimics a non-convex regularizer.
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6.4. Convergence. In order to verify the convergence of our algorithm, we consider
the example of an one-dimensional adaptive TV regularization, where an analytic solu-
tion can be provided. We remark that there is only a limited number of examples, for
which an analytic solution for the ROF model is available. In such cases the problem
(2.23) can be reformulated to a fixed-point problem in α.

Example 6.1. We study a discrete variant of the continuous functional in Example
3.2 with one-dimensional data. Consider a equi-distant grid of n grid points. W.l.o.g.
we assume the grid size to be 1. For u, f ∈ Rn let

E(u) := 1
2

n∑
i=1

|ui − fi|2 +
n−1∑
i=1

αi|ui+1 − ui|, (6.1)

where we define α ∈ Rn−1 by

αi = max(α0(1− κ|u0i+1 − u0i |), ε) (6.2)

for a fixed u0 ∈ Rn. Recall that we are searching for a fixed-point of u0 → argminuE(u).

We consider data f to be given as follows: We assume n = 3N for some N > 0,
such that the grid nodes can be divided into three disjoint sets I1 := {1, . . . , N}, I2 :=
{N + 1, . . . , 2N} and I3 := {2N + 1, . . . , 3N}. Now let

fi =

{
0 if i ∈ I1 ∪ I3,

1 if i ∈ I2.
(6.3)

It can be shown that any solution of the inner problem asserts ui ∈ [0, 1]. We make the
ansatz

ui =

{
a if i ∈ I1 ∪ I3,

b if i ∈ I2.
(6.4)

for 0 ≤ a ≤ b ≤ 1. We show below that a fixed-point of this form exists. Assuming this
form of u and analogously for u0 in (6.1), the objective function simplifies to

E(u) = E(a, b) = Na2 +
N

2
(b− 1)2 + 2α̃(a0, b0)(b− a), (6.5)

where

α̃(a0, b0) := max{α0(1− κ(b0 − a0), ε}. (6.6)

Standard calculus (see Appendix E) then shows, that, as long as κ ≤ 1 − ε
α0

and

κα0 <
N
3 , a fixed-point u∗ of u0 → argminuE(u) of the form (6.4) is given by

a∗ :=
α̃

N
, b∗ := 1− 2α̃

N
, (6.7)

where α̃ = α̃(a∗, b∗) = α0(1−κ)

1− 3α0κ
N

.
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(a) data (b) ROF and solution-driven adap-
tive solution

Figure 10. 1D example with analytic solution (cf. Example 6.1). (Best viewed in color.) Left:
data f . Right: solution u∗ of (6.1) (zoom, red line) for 150 grid nodes and parameters α0 = 0.2,
κ = 0.6 compared to the solution of the standard ROF model (blue line) with α = 0.2. Smoothing
with the proposed approach provides a result with higher contrast compared to the standard ROF
model.

Figure 11. Convergence rates. (Best viewed in color.) Plot of logarithmic numerical error
(solid lines) to analytic solution over outer iteration steps for different contraction gaps δ =
1 − κα0µ2 ≈ 0.1, 0.3, 0.5, 0.9 given by α0 = 2, κ = t

4α0
and t ∈ {0.9, 0.7, 0.5, 0.1} (black, blue,

green, red). The plot shows an exponential error decay, which stays well below the theoretical
bound (dashed lines). The bending between step 6 and 7 is caused by the fact that the point-wise
errors reach machine accuracy.

Note that in the one-dimensional case four is a tight upper bound for µ2. Thus, the
condition κα0 < 1

4 to assert Assumption 4.5 (iii) independent from the problem size is
sufficient to guarantee κα0 < N

3 . Moreover, our theoretical findings show that u∗ given
by (6.7) is the unique fixed-point. ♦

By means of Example 6.1, we experimentally verify the convergence rate provided by
Prop. 5.4. To this end, we solve the corresponding QVI numerically with the proposed
algorithm. Fig. 11 shows the theoretical and experimental convergence rates (logarithmic
error over time steps) for this example and different contraction gaps δ = 1 − λ2 =
1 − α0κµ2. The experimental errors ∥u[K] − u∗∥2 = ∥L p[K] − L p∗∥2 stay significantly
below the theoretical bound and also show an exponential decay.
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7. Conclusion. In the present paper, we studied quasi-variational inequalities for
solution-driven adaptive image denoising and non-blind image deblurring. Our general
approach covers various adaptive and anisotropic types of TV regularization of first- and
higher-order.

We provided theory for uniqueness and showed convergence of suitable algorithms
for a broad sub-class of the considered QVIs, namely those, for which the operator
corresponding to the fixed-point problem of the QVI is a contraction. Moreover, we
provided convergence results, which we verified in the experimental part.

Our experiments show, that solution-driven adaptivity is able to improve the restora-
tion results compared to its data-driven pendant.

Future work will focus on extensions to non-local regularization.

Appendix A. Proof of Proposition 4.4.

Claim (i): Let p∗res ∈ ΠN⊥(A)D(p∗res) be a solution to the restricted problem (4.9),
i.e.,

⟨∇F (p∗res), p− p∗res⟩ ≥ 0, ∀p ∈ ΠN⊥(A)(D(p∗res)). (A.1)

For any p∗ ∈ D(p∗res) such that p∗res = ΠN⊥(A)p
∗, it holds that p∗ ∈ D(p∗) = D(p∗res).

Note that at least one such p∗ exists. We show that any such p∗ is a solution to the
unrestricted problem (3.12).

Now let p ∈ D(p∗res) = D(p∗) be arbitrary. We decompose p into p = pres+pN , where
pres := ΠN⊥(A)(p), pN := ΠN (A)(p). Then it follows from A p = A pres and A p∗ = A p∗res
that

⟨∇F (p∗), p− p∗⟩ (A.2)

= ⟨A⊤(A p∗ − f), p− p∗⟩ (A.3)

= ⟨A p∗ −A,A(p− p∗)⟩ (A.4)

= ⟨A p∗res − f,A(pres − p∗res)⟩
(A.1)

≥ 0. (A.5)

Thus p∗ is a solution of (3.12).

Claim (ii): Let p∗ be a solution to the problem (3.12). In particular, p∗ ∈ D(p∗).
We consider the decomposition p∗ = p∗res + p∗N , p∗res := ΠN⊥(A)(p

∗), p∗N := ΠN (A)(p
∗).

Then, by our assumption,

p∗res ∈ ΠN⊥(A)(D(p∗)) = ΠN⊥(A)(D(p∗res)).

It remains to show, that p∗res solves the restricted problem (4.9). To this end, let pres ∈
ΠN⊥(A)(D(p∗res)) be arbitrary. There exists p ∈ D(p∗res) such that

pres = ΠN⊥(A)p = p−ΠN (A)p. (A.6)
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Then,

⟨∇F (p∗res), pres − p∗res⟩ (A.7)

= ⟨A p∗res − f,A(pres − p∗res)⟩ (A.8)

= ⟨A p∗ − f,A(pres − p∗)⟩ (A.9)

(A.6)
= ⟨A p∗ − f,A(p−ΠN (A)p− p∗)⟩ (A.10)

= ⟨A p∗ − f,A(p− p∗)⟩ (A.11)

= ⟨∇F (p∗), p− p∗⟩ ≥ 0, (A.12)

where the last inequality holds, since p ∈ D(p∗) due to D(p∗) = D(p∗res) and p∗ solves
QVI (3.12). Thus p∗res is a solution to the restricted problem (4.9).

Appendix B. Proof of Theorem 4.6.

The proof follows the proof of Thm. 6 in Nesterov’s paper with B = Id, but uses the
specific form of g(p) = ∇F (p) = A⊤(A p− f). In particular we do not require g to be a
strongly monotone operator.

We fix two different points v1, v2 ∈ im(A). Let Di := D̃(vi), pi ∈ T (vi) and gi =
∇F (pi) = A⊤(A pi − f).

If A(p1 − p2) = 0, we immediately find

∥AT (v1)−AT (v2)∥2 = ∥A p1 −A p2∥2 = 0 < ∥v1 − v2∥2. (B.1)

Let us now assume A(p1−p2) ̸= 0. Since pi, i = 1, 2 solve argminp∈D(vi)
1
2∥A p−f∥2,

the VI

⟨∇F (pi), q − pi⟩ = ⟨gi, q − pi⟩ ≥ 0 ∀q ∈ Di (B.2)

holds, and, for arbitrary large τ ≥ 0,

pi = ΠDi(pi − τgi). (B.3)

For the particular choice q := ΠD2(p1 − τg1), we find from (B.3) and the variation rate
condition (4.11) that

∥p1 − q∥2 = ∥ΠD1(p1 − τg1)−ΠD2(p1 − τg1)∥2 ≤ η̃∥v1 − v2∥2. (B.4)

On the other hand, since q minimizes the distance to p1 − τg1 within D2, and p2 ∈ D2,
it follows from the corresponding VI that

⟨q − (p1 − τg1), p2 − q⟩ ≥ 0 (B.5)
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holds. Therefore,

⟨q − p1, p2 − q⟩ ≥ τ⟨g1, q − p2⟩ (B.6)

= τ⟨g1, q − p1⟩+ τ⟨g2, p1 − q⟩︸ ︷︷ ︸
≥0

+τ⟨g2, q − p2⟩+ τ⟨g1 − g2, p1 − p2⟩ (B.7)

(B.2),q∈D2

≥ τ⟨g1 − g2, q − p1⟩+ τ⟨g1 − g2, p1 − p2⟩ (B.8)

= τ⟨A⊤A(p1 − p2), q − p1⟩+ τ⟨A p1 −A p2,A p1 −A p2⟩ (B.9)

= τ⟨A⊤A(p1 − p2), q − p1⟩+ τ∥A p1 −A p2∥22. (B.10)

Rearranging the terms, we find

τ∥A p1 −A p2∥22 ≤ ⟨q − p1, p2 − q⟩+ τ⟨Op⊤A(p1 − p2), p1 − q⟩ (B.11)

≤ ∥q − p1∥2 · ∥q − p2∥2 + τ∥A p1 −A p2∥2 · ∥A p1 −A q∥2, (B.12)

and, by dividing by τ∥A p1 −A p2∥2 > 0,

∥A p1 −A p2∥2 ≤
∥q − p1∥2 · ∥q − p2∥2
τ∥A p1 −A p2∥2

+ ∥A p1 −A q∥2. (B.13)

Since τ can be chosen arbitrarily large, we find

∥A p1 −A p2∥2 ≤ ∥A p1 −A q∥2. (B.14)

Moreover, by (B.4) and Assumption 4.5 (i) we have

∥A p1 −A q∥2 ≤
√
µ2∥p1 − q∥2

(B.4)

≤ √
µ2η̃∥v1 − v2∥2. (B.15)

Combining (B.14) and (B.15), we find

∥AT (v1)−AT (v2)∥2 = ∥A p1 −A p2∥2 ≤
√
µ2∥p1 − q∥2 ≤

√
µ2η̃∥v1 − v2∥2. (B.16)

Appendix C. Lemma C.1.
The proof of Lemma 5.1 (error bounds) requires the following additional lemma.

Lemma C.1. Let F (p) := 1
2∥A p− f∥22 and D be a non-empty, closed and convex set.

The minimizer p of the constrained problem minp∈D F (p) satisfies

1

2
∥A p−A p∥22 ≤ F (p)− F (p), for every p ∈ D. (C.1)

Proof. The proof follows [15, Eqn. (20)-(25)]. We consider the decomposition of the
primal functional E(u) = H(u) +G(−A⊤ u) (cf. (3.6)), with

H(u) = 1
2∥u− f∥22, (C.2)

G(u) = sup
p∈D

⟨u, p⟩. (C.3)
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For the Fenchel-dual E∗(p) of E, we have E∗(p) = H∗(A p) +G∗(p), where

H∗(v) = 1
2∥f − v∥22 − 1

2∥f∥
2
2, (C.4)

G∗(p) =

{
0 if p ∈ D,

∞ else.
(C.5)

We note that for every p ∈ D we have E∗(p) = F (p) − 1
2∥f∥

2
2. Therefore, it suffices to

show (C.1) for E∗ instead of F . Now, let

I(p) := H∗(A p)−H∗(A p)− ⟨A⊤(DvH
∗(A p)), p− p⟩ (C.6)

J(p) := G∗(p)−G∗(p) + ⟨A⊤(DvH
∗(A p)), p− p⟩. (C.7)

Then, by definition

I(p) + J(p) = E∗(p)− E∗(p). (C.8)

Since H∗(v) = 1
2∥v − f∥22 is strongly convex with parameter 1, i.e., H∗(v) − H∗(v′) −

⟨DvH
∗(v′), v − v′⟩ ≥ 1

2∥v − v′∥22 , we find

H∗(A p)−H∗(A p)− ⟨DvH
∗(A p),A p−A p⟩ ≥ 1

2
∥A p−A p∥22 (C.9)

⇔ H∗(A p)−H∗(A p)− ⟨A⊤(DvH
∗(A p)), p− p⟩ ≥ 1

2
∥A p−A p∥22 (C.10)

⇔ I(p) ≥ ∥A p−A p∥22. (C.11)

Now we show that J(p) ≥ 0. Since p is the minimizer of E∗, we have

0 ∈ ∂(H∗ ◦A)(p) + ∂G∗(p) (C.12)

⇔ −A⊤(DvH
∗(A p)) ∈ ∂G∗(p), (C.13)

where ∂H∗ = {A⊤(DvH
∗(A p))} and ∂G∗ are the sub-differentials (cf. [33]) of H∗ and

G∗, respectively. By definition of the sub-differential,

−A⊤(DpH
∗(A p)) ∈ ∂G∗(p) (C.14)

⇔ G∗(p) ≥ G∗(p) + ⟨−A⊤(DpH
∗(A p)), p− p⟩, ∀p, (C.15)

⇔ J(p) ≥ 0, ∀p. (C.16)

Using (C.11) and (C.16) in (C.8) shows the claim.

Appendix D. Proof of Prop. 5.4.
Recall that in the k-th outer iteration we solve the inner problem (5.1) with initial

value p(0) = p[k]. The numerical solution p(N) of this inner problem is denoted as p[k+1].
Thus, the required error bound (5.17) can be rewritten as

∥A p[k+1] −AT (v[k])∥2 ≤
δ

4
∥A p[k] −AT (v[k])∥2, (D.1)
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or equivalently, with v[k] := A p[k],

∥v[k+1] −AT (v[k])∥2 ≤
δ

4
∥v[k] −AT (v[k])∥2 = δ

4rk, (D.2)

where rk := ∥v[k]−AT (v[k])∥2 = ∥A p[k]−AT (v[k])∥2. The proof of Prop. 5.4 follows the
lines of the proof of Thm. 4.4 by Nesterov & Scrimali. Let v∗ be the unique fixed-point
of AT (v) provided by Thm. 4.6 (2). We have

rk ≥ ∥v[k] − v∗∥2 − ∥AT (v∗)−AT (v[k])∥2
Thm.4.6(1)

≥ ∥v[k] − v∗∥2 − η̃
√
µ2∥v[k] − v∗∥2 = δ∥v[k] − v∗∥2.

(D.3)

Now we show rk ≤ exp(−1
2k)r0:

rk+1 = ∥v[k+1] −AT (v[k+1])∥2 (D.4)

≤ ∥v[k+1] −AT (v[k])∥2 + ∥AT (v[k+1] −AT (v[k])∥2 (D.5)

(D.2)

≤ δ
4∥v

[k] −AT (v[k])∥2 + η̃
√
µ2∥v[k+1] − v[k]∥2 (D.6)

≤ δ
4∥v

[k] −AT (v[k])∥2 + η̃
√
µ2∥v[k+1] −AT (v[k])∥2 + η̃

√
µ2∥v[k] −AT (v[k])∥2

(D.7)

(D.2)

≤ ( δ4 + δ
4 η̃

√
µ2 + η̃

√
µ2)rk. (D.8)

Inserting η̃
√
µ2 = 1− δ we derive

rk+1 ≤ ( δ4 + 1− δ + δ
4(1− δ))rk

= (1− δ
2 − δ2

4 )rk
(D.9)

Applying (D.9) recursively and using (1− s)n ≤ exp(−sn), we find

rk ≤ exp(−( δ2 + δ2

4 )k)r0. (D.10)

Combining (D.3) and (D.10), we finally obtain

δ∥v[k] − v∗∥2 ≤ exp(−( δ2 + δ2

4 )k)r0 ≤ exp(− δ
2k)r0 = exp(− δ

2k)∥v
[0] − v∗∥2. (D.11)

Note that by Assumption 4.5(iii), we have η̃
√
µ < 1 and consequently δ = 1− η̃

√
µ > 0.

Dividing (D.11) by δ gives the claimed error estimate.

Appendix E. Analytic Solution for Example 6.1.
Let X = {(a, b) | 0 ≤ a ≤ b ≤ 1}. We calculate the unique fixed-point of (a0, b0) ∈

X → argmin(a,b)∈X E(a, b), where

E(a, b) = Na2 +
N

2
(b− 1)2 + 2α̃(a0, b0)(b− a) (E.1)
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and
α̃(a0, b0) = max{α0(1− κ(b0 − a0)|), ε}. (E.2)

Recall that we assume 0 ≤ a ≤ b ≤ 1. With the assumption that κ ≤ 1 − ε
α0
, (E.2)

simplifies to
α̃(a0, b0) = α0(1− κ(b0 − a0)). (E.3)

For a fixed α̃(a0, b0), we find

∂E(a, b)

∂a
= 2Na− 2α̃(a0, b0), (E.4)

∂E(a, b)

∂b
= N(b− 1) + 2α̃(a0, b0). (E.5)

(E.6)

From ∇E(ā, b̄) = 0 for optimal ā, b̄ it follows

ā =
α̃(a0, b0)

N
, b̄ = 1− 2α̃(a0, b0)

N
(E.7)

and α̃(ā, b̄) = α0(1−κ(1− 3α̃(a0,b0)
N )). Thus, for a fixed-point (a∗, b∗) := (ā, b̄) = (a0, b0):

α̃(a∗, b∗) = α0

(
1− κ

(
1− 3α̃(a∗, b∗)

N

))
(E.8)

⇔ (E.9)

α̃(a∗, b∗) = α0
1− κ

1− 3α0κ
N

. (E.10)

In order to guarantee 0 ≤ α̃(a∗, b∗) < ∞, it suffices to show that κ ≤ 1 and α0κ < N
3 .

The first condition is already covered by our assumption κ ≤ 1 − ε
α0
. We note that

the second condition is weaker that the condition κα0 < 1
µ2

≈ 1
4 (µ2 ≈ 4 for d = 1

and n = 150), which we found to guarantee uniqueness for the more general fixed-point
problem in Example 4.8.
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age labeling by simplex-constrained total variation, Scale Space and Variational Methods in
Computer Vision, (2009), pp. 150–162.

[22] F. Lenzen, F. Becker, and J. Lellmann, Adaptive second-order total variation: An approach
aware of slope discontinuities, in Proceedings of the 4th International Conference on Scale
Space and Variational Methods in Computer Vision (SSVM) 2013, LNCS, Springer, 2013.

[23] F. Lenzen, F. Becker, J. Lellmann, S. Petra, and C. Schnörr, Variational image denoising
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