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1 Computer Vision, Graphics, and Pattern Recognition Group,
Department of Mathematics and Computer Science,
University of Mannheim, 68131 Mannheim, Germany

{heiler, schnoerr}@uni-mannheim.de
2 ETH Zurich, Institute of Computational Science,

Hirschengraben 84, CH-8092 Zurich
Jens.Keuchel@inf.ethz.ch

Abstract. Graph-based clustering methods are successfully applied to
computer vision and machine learning problems. In this paper we demon-
strate how to introduce a-priori knowledge on class membership in a
systematic and principled way: starting from a convex relaxation of the
graph-based clustering problem we integrate information about class
membership by adding linear constraints to the resulting semidefinite
program. With our method, there is no need to modify the original op-
timization criterion, ensuring that the algorithm will always converge to
a high quality clustering or image segmentation.

1 Introduction

When working on clustering problems we often have some a-priori knowledge
available: certain samples are known to belong to the same class of objects,
or we can make assumptions on the size of the clusters. Occasionally, multiple
different clusterings are meaningful and we want to target an algorithm toward
one particularly interesting solution. In the extreme case we have a small set of
labeled objects and want to generalize their labels to a larger set of new, unseen
objects. Instead of training a classifier on the labeled objects only we can employ
semi-supervised clustering for this task. This application is usually referred to
as transductive inference.

Fig. 1 visualizes the idea: given a dataset with a number of “sensible looking”
clusterings, find the best (here: binary) clustering consistent with some a-priori
information on common class membership. This information is provided in the
form of equivalence constraints on the class labels of some points. For instance, in
Fig. 1(b) a point from the left-most cluster is linked to a point in the middle clus-
ter by a constraint which forces these points to have equal class labels. Interest-
ingly, our results show that such a constraint does not influence these two points
only, but the information is propagated through their corresponding clusters.

Our work relates to graph-based clustering methods used in machine learning
and computer vision [1,2]. Since the corresponding combinatorial optimization
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(a) no constraints (b) one constraint (c) two constraints (d) three constraints

Fig. 1. Effects of a-priori information: adding constraints (dashed lines) between few
points leads to completely different clusterings

problems are NP-hard, a common approach is to compute approximative solu-
tions using eigenvectors or min-flow calculations [1,3]. In this paper, we use an
alternative technique that is based on a semidefinite programming (SDP) relax-
ation. Besides its conceptual advantages over spectral relaxation, this method
has recently been applied successfully in the context of machine learning [4] and
image partitioning [5].

Concerning a-priori information, most spectral and min-flow methods cur-
rently require to modify the cost function of the original clustering problem
[1,6]. In contrast, the semidefinite relaxation method puts additional constraints
on the set of admissible solutions and finds a high quality solution according to
the original clustering criterion within this restricted set. For the special prob-
lem of semi-supervised image segmentation, besides graph-based optimization
techniques [7,6] various other approaches were also presented recently [8,9].

We introduce the graph-based clustering framework used in Section 2 and
explain how to integrate a-priori knowledge on cluster size and membership.
Section 3 presents our semidefinite relaxation approach along with a geomet-
ric interpretation. Some experiments in Section 4 show that adding very few
constraints already yields appealing results. Section 5 concludes the paper.

2 Graph-Based Clustering

In order to cluster n objects we need to compute a suitable similarity matrix
W ∈ R

n×n with Wij being large when the objects i and j are similar. Interpreting
the objects as vertices of a fully connected graph G(V, E) with edge weights Wij ,
a classical binary partitioning approach from spectral graph theory (see, e.g.,
[10,11]) is based on the following problem formulation:

max
x∈{−1,+1}n

x�Wx ⇐⇒ min
x∈{−1,+1}n

x�Lx (1)

where L = diag(We) − W denotes the Laplacian matrix of the graph (with
e = (1, . . . , 1)� ∈ R

n). Problem (1) has a clear interpretation: find a binary
partitioning with maximum similarity of the objects within each cluster, or,
equivalently, determine a cut through G with minimal weight.
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Unfortunately, problem (1) can result in very imbalanced partitions, espe-
cially when the similarity matrix W contains positive entries only: putting every
object into one cluster produces the optimal cut of weight 0. As a remedy, differ-
ent approaches have been proposed in the literature. Several authors (e.g. [3,12])
suggest to scale the objective function in (1) appropriately in order to favor bal-
anced cuts. Another approach uses an additional balancing constraint,

c�x = a, (2)

where a ≥ 0 specifies the difference between the weighted number of objects in
each cluster. For example, setting c = e, a = 0 requires that G is partitioned into
clusters of identical size (equipartition problem [10]).

As the resulting problems are NP-hard they are often solved approximately
using spectral techniques: dropping the integer constraint, extremal eigenvec-
tors of W or L (or of normalized versions of these matrices) are computed and
thresholded according to some suitable criterion. In Section 3, we propose a dif-
ferent method to relax and solve constrained problems of type (1), which not
only takes the integer constraint on x into account more accurately than spectral
techniques [5], but also permits to include linear and quadratic constraints on x
without changing the original objective function.

Incorporating a-priori knowledge: Aside from similarities of the objects
given by W , we may often know that some objects belong to the same class. For
two objects i and j, this is modeled in our framework by the constraint

xixj = 1. (3)

Conversely, if i and j belong to different classes, we can use the constraint

xixj = −1. (4)

In contrast to other approaches [13], adding such non-equivalent constraints with
our method is not more difficult than adding is-equivalent constraints (3): both
lead to quadratic equalities.

Another example of a-priori information was given above: if the size of a clus-
ter is known in advance we can use the linear constraint (2) with an appropriate
value for a to demand a corresponding partitioning of G.

Note that in contrast to established methods [1], integrating a-priori knowl-
edge into our framework leads to very clear and concise models: entries of the
similarity matrix and the corresponding graph remain unchanged. We do not
alter the original problem more than absolutely necessary to account for the
additional information.

3 Semidefinite Programming (SDP) Relaxation

In [5], an approach to approximately solve the combinatorial problem (1) with an
additional balancing constraint (2) is presented. This method basically consists
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of three steps: first, the decision variables are lifted into a higher-dimensional
space where the corresponding problem is relaxed to a convex optimization prob-
lem [14]. Then, the global optimum of this relaxation is found using interior point
techniques. Finally, the decision variables are recovered from the solution using
a small number of random hyperplanes [15]. Next, we extend this idea to take
a-priori knowledge into account by adding constraints of the form (3) and (4).

The basic lifting step of the SDP relaxation is based on the observation
that the objective function in (1) can be rewritten in the form of a standard
matrix inner product as x�Wx = tr(Wxx�) =: W • xx�. Interpreting this as
an optimization problem in a higher dimensional matrix space, the relaxation
consists of replacing the positive semidefinite rank one matrix xx� ∈ R

n×n by
a positive semidefinite matrix X � 0 of arbitrary rank. Since the combinatorial
constraints on the entries of x in (1) can be lifted easily into this matrix space
by requiring Xii = 1, we obtain the following basic relaxation of (1):

max
X�0

W • X

subject to Xii = 1 ∀i = 1, . . . , n
(5)

While solving this relaxation is trivial in case of a positive matrix W (cf. Section
2), it is also applicable if W contains negative entries. Moreover, note that the
integer constraint on x is still accounted for in (5), which contrasts spectral
relaxation techniques which usually drop it completely [3].

Problem (5) belongs to the class of semidefinite programs, for which the global
optimum can be computed to arbitrary precision in polynomial time (see, e.g.,
[16]). For this problem class, the additional constraints on x which describe the
a-priori knowledge can easily be incorporated by lifting them into the matrix
space: the balancing constraint (2) is squared to become c�xx�c = a2, which
results in the linear constraint cc� • X = a2 after relaxation. Each equivalence
constraint of the form (3) can be transformed directly to Xij = Xji = 1. To
represent this as a linear constraint based on a symmetric matrix, we use the
alternative formulation Xij + Xji = 2. Due to the constraints Xii = 1 and
the fact that X is positive semidefinite, this imposes no additional relaxation
as no entry of X can become larger than 1. Equivalently, the non-equivalence
constraints (4) are represented by Xij + Xji = −2.

Let P1 (P2) denote the set containing the pairs (i, j) of objects that are known
to belong to the same class (different classes). Representing all constraints in
linear form, we finally obtain the following semidefinite program:

max
X�0

W • X

subject to eie
�
i • X = 1 ∀i = 1, . . . , n (6a)

(eie
�
j + eje

�
i ) • X = 2 ∀(i, j) ∈ P1 (6b)

(eie
�
j + eje

�
i ) • X = −2 ∀(i, j) ∈ P2 (6c)

cc� • X = a2 (6d)
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Fig. 2. SDP clustering as matrix approximation. Depicted is the set M�0 of all posi-
tive semidefinite symmetric matrices of dimension 3 × 3 with diagonal fixed to unity
(blue object). For a matrix W with negative eigenvalues (red point) the solution X of
problem (5) (green point) is given by the projection of W onto M�0 (left). Incorpo-
rating a-priori information about relative cluster sizes (2) leads to an additional linear
constraint (right, green plane). The SDP relaxation finds a solution X (white point)
satisfying this linear constraint and approximating W (red point) optimally.

where ei ∈ R
n denotes the ith standard unit vector. Note that the (non-)equi-

valence constraints (3),(4) can also be combined into a single constraint: adding
the matrices from (6b),(6c) as EPk

=
∑

(i,j)∈Pk
(eie

�
j +eje

�
i ) gives the equivalent

constraints EP1 • X = 2|P1| and EP2 • X = −2|P2|, respectively. As already
mentioned above, this results in no further relaxation.

After a solution X of (6) is found we apply the randomized hyperplane tech-
nique [15] to recover a binary solution x. In this step, no adaption is necessary to
enforce the additional (non-)equivalence constraints (3),(4) as the corresponding
constraints (6b),(6c) already do this efficiently. Depending on the application we
also may not enforce the balancing constraint (2): since the a-priori knowledge
on the size of the clusters usually is given only approximately, it merely serves
as a bias to guide the search for convenient clusters than as a strict requirement.
For more details on the SDP relaxation approach, we refer to [5].

Fig. 2 visualizes the geometry of our method: solving (6) corresponds to
projecting the problem matrix W (which is not necessarily positive semidefinite)
onto the set M�0 of all positive semidefinite matrices with diagonal fixed to unity,
which is equivalent to finding the closest approximation of W within M�0.

The resulting solution matrix X ∈ M�0 is, by construction, positive semidefi-
nite and therefore can be interpreted as a matrix whose entries are inner products
of points located on the unit sphere in some Euclidean space. The randomized
hyperplane algorithm then places a cut through this sphere and retrieves a bi-
nary clustering which maximizes the original objective function in (1). Geomet-
rically, this is a projection of X onto the closest vertex of the set M�0 (Fig. 2,
left).

The linear constraints (6b)–(6d) further limit the set of admissible solu-
tions: whereas constraint (6d) represents a plane cutting through M�0 (Fig. 2,
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right), the constraints (6b),(6c) correspond to tangential planes. Together, they
move the solution X toward vertices obeying the a-priori knowledge and repre-
senting a good clustering measured in terms of the original objective function
x�Wx.

4 Experiments

As a proof-of-concept we created a very simple dataset consisting of four clearly
separated clusters of 50 points each distributed according to a Gaussian distri-
bution (Fig. 1(a)). Using a centered Gaussian kernel as similarity measure we
compute multiple clusterings by subsequently adding constraints on the class
labels. Fig. 1 shows that the constraints were met in each case and led to com-
pletely different clusterings. Although we did not provide a-priori information
about the size of the clusters the centered kernel favored balanced solutions and
flipped the unconstrained clusters accordingly.

Following [17] we tested our ap-
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Fig. 3. The soybean experiment

proach on the soybean dataset which
comprises 35 attributes for 47 objects
from four classes. To apply our method
to this multiclass problem we assigned
each class a two bit binary code and
clustered on the corresponding binary
digits using a centered exponential ker-
nel as similarity measure. As in [17]
consistency w.r.t. the known correct
clustering was determined using the
Rand index [18] and 10-fold crossval-
idation. With the class labels as ground

truth we generated random constraints on the training sets, clustered, and mea-
sured accuracies on the corresponding test sets. The mean performance over 10
repeated experiments is visualized in Fig. 3: without any constraints 78% of
the instances are correctly clustered. This is worse than the 87% reported for
kmeans [17]. However, with only 5 constraints this improves to 90% correctly
clustered points (≈ 88% for kmeans), and we need only 15 constraints to achieve
an accuracy of 99% (kmeans needs 100 constraints). Thus, for this dataset adding
a-priori constraints is highly effective, leading to dramatic improvements in
accuracy.

In Fig. 4 we show segmentations obtained for images from the Berkeley seg-
mentation dataset [19] using a similarity measure based on color and spatial
proximity (cf. [21]). In order to reduce the problem size appropriately, the images
were over-segmented in a preprocessing step by applying the mean shift algo-
rithm [20], which results in less than 1000 image patches [21]. These are clustered
by our SDP relaxation with and without additional equivalence constraints. It is
clearly visible that adding very few constraints can lead to dramatically different
and visually more appealing segmentations.
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input image unconstrained result constrained result

Fig. 4. Effects of prior information on image segmentation. An unsupervised segmen-
tation based on color and spatial proximity may not partition the image in a visually
meaningful way (2nd column). Adding only 1–3 equivalence constraints (blue lines in
1st column) can dramatically improve the segmentation (3rd column).

5 Conclusion

We presented a method for clustering and segmentation based on a semidefinite
relaxation of the well-known minimal cut problem on graphs. The advantage
over alternative approaches is that it allows incorporating a-priori knowledge in
the clustering process without changing the target function. Instead, available
equivalence information is modeled by additional constraints on the optimization
problem. This simplifies interpretation of the results and ensures that different
constraints can be combined arbitrarily.
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We gave two examples for a-priori information which lead to linear constraints
on the set of admissible solutions of the semidefinite relaxation and explained
their geometric meaning. In an experimental section we showed that the method
works in practice and can lead to improved image segmentation results.

In the future, we will investigate how to integrate further types of a-priori
information and evaluate the method for constrained multiclass-clustering. Be-
sides using binary codes, binary clustering can be applied hierarchically [21] or
the SDP relaxation can be extended to multiclass settings.
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