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Abstract. We present an integrated two-level approach to computa-
tionally analyzing image sequences of static scenes by variational seg-
mentation. At the top level, estimated models of object appearance and
background are probabilistically fused to obtain an a-posteriori prob-
ability for the occupancy of each pixel. The data-association strategy
handles object occlusions explicitly.
At the lower level, object models are inferred by variational segmentation
based on image data and statistical shape priors. The use of shape priors
allows to distinguish between recognition of known objects and segmen-
tation of unknown objects. The object models are sufficiently flexible to
enable the integration of general cues like advanced shape distances. At
the same time, they are highly constrained from the optimization view-
point: the globally optimal parameters can be computed at each time
instant by dynamic programming.
The novelty of our approach is the integration of state-of-the-art varia-
tional segmentation into a probabilistic framework for static scene anal-
ysis that combines both on-line learning and prior knowledge of various
aspects of object appearance.

1 Introduction

Since the seminal work of Mumford and Shah on variational image segmentation
[13], research has focused on generalizations of the Mumford-Shah functional
along several directions.

A first direction concerns algorithmic schemes and contour representation by
level sets for efficiently computing a good local minimum [3, 18, 19]. A second
line of research investigates probabilistic models of image classes for variational
segmentation that are richer than the piecewise-smooth image model underlying
the original Mumford-Shah functional [22, 14, 12, 11]. Thirdly, statistical shape
priors have been considered recently to complement data-driven variational ap-
proaches with a model-driven component [8, 7, 16, 5, 4, 15, 21].

This work contributes to the latter two directions in a twofold novel way.
Firstly, probabilistic representations for spatially structured intensity distribu-
tions – as opposed to homogeneous textures - like the appearance of clothes,



are learnt on-line. Secondly, statistical shape priors based on a psychophysically
relevant shape distance and prototypical views are learnt off-line from examples
through structure-preserving Euclidean embedding and clustering. Both shape
distance and embedding, as well as the incorporation of this knowledge into
the overall variational approach as a statistical prior, distinguish our work from
related hierarchical shape representations introduced by Gavrila for pedestrian
detection in traffic scenes through template matching ([9, 10]).

Organization. In section 2, we describe the overall probabilistic model for image
intensity, conditioned on estimated models of object appearance. The compo-
nents of this model and the parameters that constitute object appearance in
terms of intensity and shape, are explained in section 3. Section 4 describes the
computation of optimal contours and data association through variational seg-
mentation. We conclude with a discussion of experimental results and pointing
out further work.

2 Probabilistic Image Model

At every time instant t, image intensity I(x, t) depends at each location x ∈ Ω
on the presence of N objects O = {O0; O1, . . . , ON}, where O0 denotes the
background. Each object Ok, k = 1, . . . , N , is specified by parameters, Ok =
{Θk, ck(s)} ∈ O which have the following meaning:

– Θk parametrizes a distribution pΘk
which models object appearance in terms

of intensity. These distributions form the components of the overall image
intensity distribution in eqn. (1). They are described in section 3.2.

– ck(s) denotes the boundary contour of image region Ωk occupied by object
Ok, ck(s) := ∂Ωk

(
Ωk image region of object Ok

)

With each object region Ωk, we associate its characteristic function: χk(x) = 1
if x ∈ Ωk and 0 otherwise.

Given the parameters of all objects O, the probabilistic image model reads:

p
(
I(x) | O)

=
N∑

k=0

πk(x) pΘk

(
I(x) | ck

)
, πk(x) =

χk(x)∑N
j=0 χj(x)

, ∀x ∈ Ω (1)

Parameters πk are deterministically obtained from the object regions, the factors
pΘk

(
I(x) | ck

)
are detailed in section 3.2. This “mixture of objects” model is less

restrictive than partitioning models that divide an image into mutually exclusive
regions, since in our case several objects are allowed to occupy the same image
location (occlusions).

Basically, eqn. (1) models object appearance in terms of both intensity and
shape. For each object Ok (including background), a parameterized intensity
model is learnt and updated from frame to frame. This intensity information is
combined with statistical prior information about possible object shapes, which
has been learnt off-line. Through optimizing the contours ck (see section 4),
object regions Ωk compete with each other in order to provide the “best expla-
nation” of given image data.



3 Object Appearance

3.1 Statistical Shape Priors

We assume that, for each object class, a

Fig. 1. Matching by minimizing
(3) leads to an accurate corre-
spondence of parts of non-rigid
objects.

database is given containing shapes of differ-
ent object views. These data are represented
by a small subset of representative, prototyp-
ical views, obtained by pairwise dissimilarity
clustering.

In order to cope with non-rigid objects
like human shapes, we adopted from [1] the
shape distance:

dE(c1, c2) = min
g

E(g; c1, c2) , (2)

which is computed by minimizing the match-
ing functional:

E(g; c1, c2) =
∮ 1

0

{
[κ2(s)− κ1(g(s))g′(s)]2

|κ2(s)|+ |κ1(g(s))g′(s)| + λ
|g′(s)− 1|2
|g′(s)|+ 1

}
ds (3)

over all smooth reparametrizations g : [0, 1] −→ [0, 1]. Here, κ1, κ2 denote
the curvature functions of the contours c1, c2. Functional (3) involves bend-
ing (change of curvature) and stretching g′(s) of contours, which allows to group
contours that are perceptually close to each other, despite transformed parts
(cf. [1]). The minimization in (2) is carried out by dynamic programming over
all piecewise-linear and strictly monotonously increasing functions g. Figure 1
illustrates the result for two human shapes.

To determine representative shapes by clustering, we compute an Euclidean
embedding {pk}k=1,2,... of the given shape examples such that ‖pi − pj‖ ≈
dE(ci, cj) , ∀i, j [6], followed by k-means clustering [2]. As a result of this pro-
cedure, we obtain for each object class a small set of representative shapes,
henceforth called templates T = {ct

1, . . . , c
t
T }, see figure 2. We assume equal

prior probabilities for the templates.

3.2 Object Intensity

We model the background O0 by Gaussian mixture distributions for each pixel
with - in our implementation - three components [17]. This simple approach
proved to be effective and runs in real-time on current PCs.



Fig. 2. Left, clustering of the views of human shapes, projected to the first two prin-
cipal components. The clusters are indicated by prototypical shapes (cluster centers)
dominating a range of corresponding views. Right, the templates corresponding to the
cluster centers used in our experiments.

For each foreground object O1, . . . , ON , we combine this approach with the
statistical shape information described in the previous section as follows.

Each template ct
j in T is represented in

Fig. 3. A human shape and im-
ages in normalized coordinates.
Note the plausible distortions of
intensity. Also note that some
matchings for perceptually dis-
similar templates are wrong, but
these integrate out over time.

normalized coordinates x′. For the current
contour ck of object Ok in the image, we
compute in parallel the optimal matchings to
all templates ct

j in T through (2), and cor-
responding registrations of the enclosed re-
gions by thin-plate splines [20] using the cor-
respondences on the boundary. This estab-
lishes a one-to-one correspondence between
image and template coordinates x,x′, see fig-
ure 3.

The distribution pΘk

(
I(x) | ck

)
in (1) mod-

eling the intensity of object Ok is then given
by marginalizing out the shape templates:

pΘk

(
I(x) | ck

)
=

T∑

j=1

p
(
I(x) | ct

j

)
p(ct

j | ck) ,

where p
(
I(x) | ct

j

)
records – analogously to

the background – for each template ct
j a pixel-wise Gaussian mixture model in

normalized coordinates x′:

p(I(x) | ct
j) =

3∑

i=1

πj
i (x

′)N (
I(x); µj

i (x
′), Σj

i (x′)
)

, (4)

and where the probability that template ct
j is representative for the current

object contour ck in the image, is given by:

p(ct
j | ck) :=

exp
(− dE(ct

j , ck)
)

∑T
l=1 exp

(− dE(ct
l , ck)

)

Hence, given the current image contour ck, parameters Θk comprise the mixture
parameters for all templates, Θk =

{
πj

i (x
′), µj

i (x
′), Σj

i (x′)
}

i=1,2,3; j=1,...,T
.



4 Variational Inference

Having estimated parameters Θk given

Fig. 4. Optimal updates of im-
age contours are given by a defor-
mation along the normal direc-
tion. We minimize the segmen-
tation functional (5) through dy-
namic programming over a set
of discrete putative contour lo-
cations (top). Intensity informa-
tion is approximated locally by
samples along inner normal di-
rections of the current boundary
(bottom).

the image contour ck for object Ok, we wish
to update ck. This is accomplished by com-
puting in parallel for all templates ct

j the
contour c minimizing the functional:

J(c; ct
j ,O) = Jd(c; ct

j ,O) + α Jp(c; ct
j) (5)

As usual in variational segmentation (cf. sec-
tion 1), this functional comprises a data term
and a prior. The prior is simply the matching
functional (2):

Jp(c; ct
j) = dE(c, ct

j) , (6)

whereas the data term has the form:

Jd(c; ct
j ,O) = −

∮ {
log p

(
I(c) | ct

j

)
+

log p(I(c) | O \Ok) + log p(∇I(c))
} (7)

The first term of the integrand maximizes
the probability that the intensity observed at
c(s) matches the model associated with tem-
plate ct

j – see (4). The second term in (7), on
the other hand, maximizes the probability
that I(c(s)) matches the model of another
object, or the background – see (1). As a re-
sult, both terms together invoke segmenta-
tion through “region competition”. Finally,
the third term in (7) attracts c to edges, as
is common in geodesic snake approaches and
accounts for our prior belief that boundary
contours are more probable at image edges.
It has the form − log p(∇I(c)) = 1

1+|∇I(c)| .
In our implementation, functional (5) is glob-
ally optimized over a region centered around
ck, as indicated in Figure 4.

5 Experiments and Discussion

In order to evaluate our novel combination of on-line object appearance models
and statistical shape priors within the framework of variational segmentation,



we processed an image sequence of 1400 frames containing four different persons
entering and leaving the scene. This was deliberately done without any additional
knowledge about object dynamics or elaborate scheme for tracking, with the
exception of simple first-order Kalman predicting the bounding boxes of current
object contours. Candidate regions were generated for regions which yielded
local minima in the posterior probability of (1). New objects are automatically
instantiated for these regions or existing objects re-instantiated if they have
been absent. In subsequent frames we refine the contours of the objects using
variational segmentation as described in section 4 followed by updates of the
object and background intensity model as described in section 3.2 and [17].

We point out that not any tuning parameters are involved in our approach.
Data-association is entirely accomplished by (1), and decisions are based on
MAP-estimates. The algorithm automatically tracked the four humans in the
sequence and due to the learned appearance information, recovers easily after
occlusions or if an object leaves and reenters the scene. Several images of the
sequence are shown in figure 5.

Fig. 5. Segmentation results. Shown are clipped frames 349, 519, 823, 842, 874, 1076,
and 1091.

After processing the entire sequence we show in figure 6 images sampled from
the learned intensity model for the four objects. The samples are generated by
choosing a template and sampling from the Gaussian mixture model at each
pixel location. Overall we can see that the intensity information was correctly
learned for the objects. A closer look also reveals that the multivariate nature
of the intensity information due to clothes and viewpoint is captured by the
mixture model: e.g. the white stripes on the shoulders of the person in the lower
right appear in the sampled template images. Moreover probable locations for
the hands can also be identified as the flesh-colored areas inside the regions, see
e.g. template 2 of the person in the upper left.



Fig. 6. Samples from the appearance model for four persons. Each triplet is: image
from the sequence, sampled template 2 and 7.

6 Conclusion

We have presented a novel framework for scene analysis by the combination
of offline and online object learning together with variational image segmenta-
tion. As we match shape and intensity information along the boundary we can
efficiently solve for the global minimum of the correspondence problem using
dynamic programming. This is a big advantage of 1D matchings that can not be
transferred to the 2D case. We have found that for the case of human objects,
the 2D problem is sufficiently well approximated by the 1D matching on the
boundary and subsequent transformation to 2D using the correspondences.

In the future we want to augment our shape database to more objects. We
will also investigate how shape information may be learned online.
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