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schnoerr@math.uni-heidelberg.de

June 8, 2016

Abstract

Monocular scene reconstruction is essential for modern applications

such as robotics or autonomous driving. Although stereo methods usu-

ally result in better accuracy than monocular methods, they are more

expensive and more di�cult to calibrate. In this work, we present a

novel second order optimal minimum energy filter that jointly estimates

the camera motion, the disparity map and also higher order kinematics

recursively on a product Lie group containing a novel disparity group.

This mathematical framework enables to cope with non-Euclidean state

spaces, non-linear observations and high dimensions which is infeasible for

most classical filters. To be robust against outliers, we use a generalized

Charbonnier energy function in this framework rather than a quadratic

energy function as proposed in related work. Experiments confirm that

our method enables accurate reconstructions on-par with state-of-the-art.

1 Introduction

1.1 Overview

Reconstruction of the scene structure of images and videos is a fundamental
building block in computer vision and is required for plenty of applications, e.g.
autonomous driving, robot vision and augmented reality. Although stereo meth-
ods usually lead to exact reconstruction and work fast, they require calibration
of the camera setup and, due to the second camera, these systems are more
expensive than single camera systems. Therefore, in this work, we will focus
on the monocular approach that consists of reconstructing the scene structure
based on the data gained by a single moving camera. In contrast to the stereo
setting, this problem is ill-posed because of the unknown motion parallax. On
the other hand, monocular approaches enable cheaper hardware costs.
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To increase accuracy and robustness of the monocular reconstruction, we
want to use temporal information for smoothing and propagation. Thus, we
will introduce a mathematical framework based on non-linear filtering equations
which describe the behavior of latent variables and the dependency between la-
tent variables and observations. Since, in this scenario, the state variables,
e.g. camera motion, do not evolve on an Euclidean space but a more general
Lie group, we cannot use classical filters, such as extended Kalman filters [14].
Moreover, other state-of-the-art non-linear filters, such as particle filters [11],
that can be applied to specific Lie groups [17], cannot be easily extended to
high dimensional problems [8]. Due to these mathematical problems we will
use the novel minimum energy filter on compact Lie groups [25] that minimizes
a quadratic energy function to penalize deviations of the filtering equations
by means of optimal control theory. This filter was shown to be superior to
extended Kalman filters on the low dimensional Lie group SE3 [3]. We will
demonstrate that this approach can also be successfully applied to high dimen-
sional problems, enabling joint optimization of camera motion and disparity
map. As in [3], we will also incorporate higher order kinematics of the camera
motion. To be robust against outliers, we will extend the approach of [25] from
quadratic energy function to a generalized Charbonnier energy function.

1.2 Related Work

Plenty of methods for depth or disparity map estimation were published during
the last decade. We distinguish between stereo methods (that benefit from the
additional information gained from the calibrated camera setup) and monocular
methods. Recognized stereo methods include [16, 22, 27] that use the known dis-
tance of the cameras (baseline) for accurate triangulation of the scene. These
methods also enable reducing the computational e↵ort by using epipolar ge-
ometry and by combining local and global optimization schemes. Monocular
methods [9, 1, 13, 12, 20, 19, 5] benefit from less calibration e↵ort in compari-
son to stereo methods, but su↵er from a peculiarity of the mathematical setup
that prevents to reconstruct the scale of the scene uniquely. To increase the
robustness and the accuracy of the reconstruction, modern methods incorpo-
rate multiple consecutive frames into the optimization procedure. Well-known
is bundle adjustment [26] which optimizes a whole trajectory but cannot be
used in online approaches such as sliding window [2] or filtering methods [1, 5].
Filtering methods usually require a suitable modeling of the unknown a poste-
riori distribution. However, they su↵er from the drawback that the definition
of probability densities on non-Euclidean spaces, such as Lie groups, is com-
plicated, although successful strategies to find a solution to this problem have
been developed [6, 7, 17]. Zamani et al. [29] introduces so-called minimum
energy filters for linear filtering problems for compact Lie groups based on opti-
mal control theory and the recursive filtering principle of Mortensen [18]. This
approach was generalized to (non-)compact Lie groups in [25] and applied to a
non-linear filtering problem on SE3 for camera motion estimation [4].

1.3 Contributions

Our contributions in this paper add up
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• to provide a mathematical filtering framework for joint monocular camera
motion and disparity map estimation including higher order kinematics,

• to introduce a novel disparity Lie group for inverse depth maps which
avoids additional positive depth constraints such as barrier functions,

• to solve the corresponding challenging non-linear and high-dimensional
filtering problem on a product Lie group by using novel minimum energy
filters,

• to provide a generalized Charbonnier energy function instead of a quadratic
energy function [25], which results in robustness against outliers .

1.4 Notation

We use the following spaces: real vector space Rn, special orthogonal/Euclidean
group SO3, SE3, with their corresponding Lie algebras so3, se3, as well as G for
a general Lie group with Lie algebra g. Tangent spaces at a point x of G are de-
noted by T

x

G. A tangent vector ⌘ 2 T
x

G can be expressed in terms of a tangent
vector ⇠ on the Lie algebra g by using the tangent map of the left translation L

x

evaluated at the identity element Id of the Lie group, denoted by ⌘ = TIdLx

⇠.
We also use the shorthand x⇠ := TIdLx

⇠. We use the ⇤�symbol to indicate
dual spaces and operators with respect to the Riemannian metric that can be
defined by the tangent map as hx⌘, x⇠i

x

:= h⌘, ⇠iId for ⌘, ⇠ 2 g. The dual of the
tangent map is TIdL

⇤
x

⌘ =: x�1⌘. We denote by vecg : g ! Rn,matg : Rn ! g

the vectorization and its inverse operation, respectively, where the underlying
Lie group G has dimension n. These operations allow representing the Lie al-
gebra g in a compact form. Df denotes the di↵erential of a function, whereas
Df(x)[⌘] := hDf(x), ⌘i

x

indicates the directional derivative for a specific direc-
tion ⌘. For compactness, we write D

i

f(x, y, z) for the di↵erential of the function
f respective the i�th component, whereas D

y

f(x, y, z) directly addresses a spe-
cific variable. Hess f [·] stands for the Riemanian Hessian on the considered Lie
group; the calculation of the latter requires the Riemannian connection r that
can be expressed in terms of a connection function ! on the Lie algebra g.

2 Model

In this section we will introduce the mathematical framework of joint monoc-
ular camera motion and disparity map estimation from the point of view of
(stochastic) filtering. Note, that we will use the notion disparity map for the
inverse of the depth map in this work without using the baseline that is re-
quired in stereo settings. In classical filtering theory one wants to determine
the most likely state of an unknown process x = x(t) modeled by a perturbed
di↵erential equation ẋ(t) = f(x(t))+�(t) based on prior perturbed observations
y(s) = h(x(s)) + ✏(s) for s  t, which results in a maximum a posteriori prob-
lem. In this work, we require the state space of x to be a Lie group G which
we need to describe non-Euclidean expressions such as camera motions. Using
the expressions � = �(t) and ✏ = ✏(t) to represent model noise and observations
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noise, respectively, the resulting filtering equations can be written as

ẋ(t) =x(t)
�
f(x(t)) + �(t)

�
, x(t0) = x0 , (1)

y(t) =h(x(t)) + ✏(t) . (2)

The state equation (1) is modeled on a Lie Group G by means of the tangent map
of the left translation at identity and functions f, � 2 g such that ẋ(t) 2 T

x

G.
In the following sections we will introduce the state space of x, the propagation
functions f and the observation function h.

2.1 State Space

The camera motion is modeled on the Special Euclidean group SE3 := {(R w

0 1 ) |R 2
SO3, w 2 R3}, and we also use a higher order kinematics (e.g. acceleration of
camera) modeled by a vector v 2 R6. The disparity map can be represented
by a large vector d

i

2 R|⌦|, resulting in an own dimension for each pixel in
the image. However, the depth must always be positive and we want to avoid
additional constraints within our optimization. Therefore, we introduce a novel
Lie group for the inverse of the depth, denoted by (0, 1)|⌦| which is defined as
follows:

Definition 1 (Lie group (0, 1)n (Disparity group)). By denoting d
i

(z, t) :=
1

d(z,t) 2 (0, 1) the inverse of the depth we define the Lie group (0, 1)n with group

action for x, y 2 (0, 1)n as

x � y 7!�
(x�1 � 1) · (y�1 � 1) + 1

��1
=

xy

1� x� y + 2xy
.

The (Lie group inverse) can be computed as i(x) := 1 � x. This results in
the identity element Id = 1

2 , i.e. a vector full of 1/2. The exponential map
Exp(0,1)n : Rn ! (0, 1)n and the logarithmic map Log(0,1)n : Rn ! (0, 1)n are

given through x 7! e

4x

1+e

4x

and x 7! 1
4 log

⇣
x

1�x

⌘
, respectively. All operations

apply component-wise to the vectors involved.

Using SE3 for the camera motion, R6 for the acceleration of the camera
and the Lie group given through definition 1 for the disparity map, we find the
product Lie group G for our state space, i.e.

G := SE3 ⇥R6 ⇥ (0, 1)|⌦| . (3)

2.2 Propagation of the Camera Motion

For propagation of the camera we will use a second order kinematic model that
can be expressed as second order di↵erential equation on SE3 as in [3], which is

Ė(t) =E(t)matse(v(t)), E(t0) = E0 ,

v̇(t) =0, v(t0) = v0 ,
(4)

where E = E(t) 2 SE3 and v = v(t) 2 R6.

Remark 2. Since E describes the local camera motion from frame to frame,
a first order model Ė(t) = 0 corresponds to a constantly moving camera, i.e.
with constant velocity. Thus, the model (4) describes a constant acceleration in
the global camera frame.
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2.3 Discrete Propagation of the Disparity Map

The propagation consists of mapping the image grid forward by an estimate of
the motion Ê = (R̂, ŵ), by cubic interpolation of the depth on the irregular grid
and back-projection of the resulting scene points. This leads to the following
algorithm, which is also depicted in Figure 1.

Ẑ

z̃
z

5

1
2
3
4
5

regular grid
warped grid
cubic interpolation

projection

1
2

3

4
z̃

z

d̂
i

(z) = (Ẑ3)�1

Ê = (R̂, ŵ) ! (I, 0)
4

5

movement to 2nd camera

Z̃ = (d̃
i

(z̃))�1z̃
Z = (d

i

(z))�1z

Figure 1: Discrete propagation of the disparity map

1. Start with the disparity map d
i

on regular image grid in camera (I, 0).

2. Warp the image grid forward into next image (camera estimate Ê(t)) by
using current disparity map d

i

to get a grid with points z̃ = ⇡(R̂ ( z1 ) (di(z))
�1+

ŵ), where ⇡ : R3 ! R2 is given through (z1, z2, z3)> 7! (z3)�1(z1, z2)>.

3. Perform cubic interpolation on the warped grid z̃ given the values (z, d
i

(z))
which gives the new depth map (z̃, d̃

i

(z̃)) in frame (I, 0).

4. Move Z̃ = ( z̃1 ) (d̃i(z̃))
�1 to second camera to obtain Ẑ = R̂>�Z̃ � ŵ

�
.

5. Recognize the propagated disparity map as third component, d̂
i

(z) =
(Ẑ3)�1.

2.4 Camera Motion and Disparity Map induced Optical
Flow

Since the state space G consists of the camera motion E(t) and the disparity
map d

i

(·, t) (inverse of depth map), we require observations that depend on both
variables. It is well-known that from a given disparity map and a given camera
motion the correspondences between a pair of consecutive images expressed as
optical flow can be uniquely determined if the scene is static. To be precise, the
dependency between the optical flow vector u(z, t) at a position z 2 ⌦ can be
expressed with the following non-linear relation, where we denote by R(t) 2 SO3

and w(t) 2 R3 the rotational and translational component of the camera motion
E(t) = (R(t), w(t)) 2 SE3, respectively. For details see [1, Eq. (6)].

u(z, t) + z = ⇡
⇣
R(t) ( z1 ) (di(z, t))

�1 + w(t)
⌘
. (5)
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2.5 Overall Filtering Model

The function f(x(t)) : G ! g in (1) can now be defined as follows:

f(x(t)) := (f
E

(x(t)), f
v

(x(t)), f
d

i

(x(t))) , (6)

with component functions f
E

(x(t)) := matse(v(t)), and f
v

(x(t)) := 06 as in (4)
as well as f

d

i

(x(t)) := 0|⌦|. Beside this continuous propagation step we also
incorporate discrete updates of the disparities as described in section 2.3.

By setting y
z

(t) := u(z, t) � z and h
z

: G ! R2, as the right hand side of
(5), we find the following observation equations by adding noise ✏

z

(t) 2 R2 for
all z 2 ⌦.

y
z

(t) = h
z

(x(t)) + ✏
z

(t) , z 2 ⌦ . (7)

2.6 Objective Function

Minimum energy filtering requires to define an energy function that penalizes
the model and observation noise. In contrast to [24], that we will follow in this
work, we will not use quadratic energy functions but an energy function that is
a smooth approximation of the L1�norm. The reason is that we want to reduce
the influence of outliers in the observations that may cause numerical problems
because the gradient grows linearly. The norm of the gradient of the proposed L1

penalty function is bounded. A smooth approximation to the non-di↵erentiable
L1�norm is the generalized charbonnier penalty function that is smooth (C1)
and has linear growth, such that we use it for �, i.e. �(x) := (x + ⌫)� � ⌫� .
With this notation and the shorthand kxk2

Q

:= x>Qx the energy function reads

J (�,✏, x; t) := 1
2kx� x0k2

R

�1
0

+

Z
t

t0

⇣
1
2kvecg(�(⌧))k2R�1 +

X

z2⌦

�( 12k✏z(⌧)k2
Q

�1
z

�⌘
d⌧,

(8)

where Q
z

, R0 and R are symmetric and positive definite matrices.

2.7 Optimal Control Problem

After replacing the observation noise ✏
z

(t) by the residual ✏
z

(t) = ✏
z

(x(t), t) :=
y
z

(t)�h
z

(x, t) in (8) we want to minimize the energy function J (�, x, x(t0); t) =
J (�, ✏(x), x(t0); t) regarding the model noise �(t) with respect to the di↵erential
equation (1) yielding the value function

V(x(t), t, x(t0)) := min
�|[t0,t]

J (�, x; t) subject to (1). (9)

Calculation of the value function requires to introduce the time-varying (left-
trivialized) Hamiltonian function H̃ : G ⇥ g

⇤ ⇥ g⇥R ! R that is given through

H̃(x, µ, �, t) :=
�
1
2kvecg(�(t))k2R�1 +

X

z2⌦

�( 12kyz(t)� h
z

(x(t)))k2
Q

z

�

� hµ, f(x(t)) + �(t)iId .
(10)
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Owing to the Pontryagin minimum principle [21] we find the minimizing ar-
gument of the value function (9) by minimizing the Hamiltonian H̃ with re-
spect to �. Since the Hamiltonian is convex in � we obtain a unique mini-
mum �⇤ = matg

�
R vecg(µ)

�
resulting in the optimal Hamiltonian H(x, µ, t) :

G ⇥ g

⇤ ⇥ R ! R given through H(x, µ, t) := H̃(x, µ, �⇤, t) such that

H(x, µ, t) =� hµ, f(x(t)iId � 1
2kvecg(µ)k2R +

X

z2⌦

�
�
�
1
2kyz(t)� h

z

(x(t))k2
Q

z

��
.

In the case of a linear-quadratic control problem this optimal Hamiltonian sat-
isfies the (left-trivialized) Hamilton-Jacobi-Bellman equation, i.e.

@

@t
V(x, t)�H(x, x�1D1V(x, t), t) = 0 . (11)

Here, D1V(x, t) 2 T ⇤
x

G is an element of the cotangent space.

Remark 3. Note that our control problem has neither linear control dynamics
nor a quadratic energy function. Thus, we have no guarantee that the HJB
equation is a necessary and su�cient condition for optimality. Instead we re-
quire a good initialization to gain an optimal reconstruction. However, we will
show that a fairly general initialization will lead to good reconstructions.

2.8 Recursive Filtering Principle and Truncation

Computation of the total time derivative of the necessary condition

D1V(x, t, x(t0)) = 0 ,

and insertion of the HJB equation (11) leads to the following lemma that gives
a recursive description of the optimal state x⇤ = x⇤(t) (cf. [25, Eq. (37)]).

Lemma 4. The evolution equation of the optimal x⇤ state is given through

ẋ⇤(t) = x(t)
⇣
f(x⇤(t))� Ẑ(x⇤(t), t)�1 � x�1(D1H(x⇤(t),0, t))

⌘
, (12)

where Ẑ : g ! g

⇤ is the left-trivialized Hessian of the value function given
through

Ẑ(x⇤, t) � ⌘ = (x⇤)�1 HessV(x⇤(t), t, x(t0))[x⇤⌘] , ⌘ 2 g . (13)

Because the non-linear filtering problem is infinite dimensional we will re-
place the exact operator Ẑ by an approximation Z : g ! g

⇤ which can be
obtained by truncation of the full evolution equation of Z. But still the opera-
tor Z(x⇤, t) on g is complicated such that we introduce a matrix representation
P (t) that is defined through the relation vecg(Z(x⇤, t)�1 � ⌘) =: P (t) vecg(⌘).

Lemma 5. The matrix representation of the approximation of the operator Ẑ
evolves regarding the following matrix Riccati equation

Ṗ (t) = R+ C(x⇤, t)P (t) + P (t)C(x⇤, t)> � P (t)H(x⇤, t)P (t), (14)

7



where the matrix R is the weighting matrix in the energy function (8) and the
matrices C and H are given for ⌘ 2 g through

C(x⇤, t)P (t) vecg(⌘) := vecg
�
(x⇤)�1D2(D1H(x⇤,0, t))[Z(x⇤, t) � ⌘]�

+ vecg(!
↵⇤
D2H(x⇤

,0,t) � Z(x⇤, t) � ⌘) + vecg(!
⇤
(x⇤)�1

ẋ

⇤ � Z(x⇤, t) � ⌘) ,
H(x⇤, t) vecg(⌘) := vecg((x

⇤)�1 Hess1 H(x⇤,0, t)[x⌘]) .

Here, x!
⇠

⌘ := r
x⇠

x⌘ denotes the connection function on the Lie algebra g of
the Levi-Civita connection r·· for ⇠, ⌘ 2 g and x 2 G, and !↵⇤

⇠

is the dual of
the “swaped” connection function !↵

⇠

⌘ := !
⌘

⇠ (cf. [24]).

By insertion of the expression P into (12) and by evaluation of the expres-
sions in Lemma 4 and 5 we obtain the final minimum energy filter that consists
of continuous propagation of the states with a discrete update of the disparity
map.

Theorem 6. The second order minimum energy filter with additional discrete
propagation step for the disparity map is given through the following evolution
equations of the optimal state x⇤ 2 G as well as the second order operator
P 2 R(12+|⌦|)⇥(12+|⌦|).

ẋ⇤(t) =x⇤(t)
�
f(x⇤(t))�matg(P (t) vecg(G(x⇤(t), t)))

�
, (15)

Ṗ (t) =R+ C(x⇤, t)P (t) + P (t)C(x⇤, t)> � P (t)H(x⇤, t)P (t), (16)

with initial conditions x⇤(t0) = x0 and P (t0) = R0, where R0 is the matrix in
(8). G(x⇤, t) = (G

E

(x⇤),0, G
d

i

(x⇤)) 2 g denotes the Riemannian gradient of
the Hamiltonian in (12) with components G

E

and G
d

i

.

The numerical integration of these equations between the time steps t
k�1 and

t
k

correspond to the update step of a filter, where the updates are assumed to
be piecewise constant. After each update step the disparity map is propagated
forward using the procedure in Fig. 1 that result in the final filter.

Remark 7. The expressions for C(x⇤, t), H(x⇤, t) andG(x⇤, t) can be calculated
explicitly but require matrix calculus and di↵erential geometry. The resulting
expressions become involved such that we refer the interested reader to the
supplemental material1.

Remark 8. The optimal state can be calculated by geometric numerical in-
tegration of the ordinary di↵erential equations (15) and (16), e.g. Crouch-
Grossman methods (cf. [15]). During numerical integration it is important to
keep the matrix P sparse, therefore we set the o↵-diagonal entries of the lower
right part of P (that addresses the disparities) after each iteration to zero.

3 Experiments

Preprocessing As stated above, our method requires precise optical flow as
input. Since we propose a monocular method we also demand that the optical
flow is computed from two consecutive image frames without stereo information.

1
http://hciweb.iwr.uni-heidelberg.de/people/johannesberger
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For this reason we used the well-known EpicFlow approach [23]. The matches
are computed with Deep Matching [28]; the required edges are from [10].

Choice of the weighting matrices Monocular methods su↵er from the
fact that observations that appear close to the epipole (focus of expansion)
are orthogonal to the camera motion such that these regions cannot be recon-
structed correctly. Therefore we use the weighting term from [1, Eq. (14)] for
the weighting matrix Q that decreases the influence of the data term in regions
close to the epipole.

Outlier detection To remove outliers, we computed the backward flow
from frame i to i+1 as well as the forward flow from frame i+1 to i. In regions
where these flows are not consistent with each other, we decreased the weight of
the term R such that the filter has less ability to fit to the data and the discrete
disparity map propagation from section 2.3 reduces the error.

Scale correction As monocular approaches cannot estimate the scale of
a scene without prior knowledge about invariants in the scene, we corrected
the scale by calculating of the pixel-wise quotient of the disparities and taking

its median as scale s := median{dgt
i

(z, t)/dest
i

(z, t)|z 2 ⌦⇤}, where ⌦⇤ denotes
the image domain without points which are close to the epipole (< 50 pixel
distance).

3.1 Qualitative Results

In Fig. 2 we compared the reconstruction of the disparity map of our method
with the results from [1] and the ground truth. One can recognize that our
method preserves small details and depth discontinuities better than [1] and
returns sharper edges.

3.2 Quantitative Results

We evaluated the mean amount of pixels in ⌦⇤ with a disparity error larger
than three pixel for both occluded and not occluded scenarios in Table 1. We
are slightly inferior towards Becker et al. [1]; however, unlike [1] we do not have
spatial regularization within our optimization which explains the di↵erences.

Table 1: Evaluation of the mean disparity errors.

p3px[%] (occ) p5px[%] (occ) p3px[%] (noc) p5px[%] (noc)

Becker et al. [1] 17.74 10.82 17.63 10.72
our approach 19.24 10.69 19.14 10.59

4 Conclusion

We provided a sound mathematical filtering framework for monocular scene
reconstruction based on novel minimum energy filters, extending the classical
quadratic energy function from Saccon et al. [25] to a generalized Charbonnier

9



Figure 2: Best viewed in color. Reconstruction of the disparity maps; left col-
umn: ground truth from the KITTI stereo benchmark, middle column: monocu-
lar method of Becker et al. [1], right column: reconstruction with our monocular
method. Although in the quantitative evaluation both methods perform equally,
one can recognize that our method results in sharper corners. Due to spatial
regularization [1] reconstructs regions close to the epipole better.

energy function. We demonstrated that the proposed filter copes with chal-
lenging mathematical issues, such as a non-Euclidean state space, non-linear
filtering equations based on projections, as well as high dimensions; in fact,
these di�culties are infeasible for most classical stochastic filters. The intro-
duced disparity group enables filtering without additional constraints making
the model relatively compact. Our experiments confirmed that the proposed
filter is almost as accurate as other state-of-the-art monocular and recursive
methods without having an own regularization within the model.

References

[1] F. Becker, F. Lenzen, J. H. Kappes, and C. Schnörr. Variational Recur-
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