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Summary

We present a novel variational approach to signal and image approximation using filter statistics (histo-
grams) as constraints. Given a set of linear filters, we study the problem to determine the closest point
to given data while constraining the level-sets of the filter outputs. This criterion and the constraints are
formulated as a bilevel optimization problem. We develop an algorithm by representing the lower-level
problem through complementarity constraints and by applying an interior-penalty relaxation method.
Based on a decomposition of the penalty term into the difference of two convex functions, the resulting
algorithm approximates the data by solving a sequence of convex programs. Our approach allows to
model and to study the generation of image structure through the interaction of two convex processes
for spatial approximation and for preserving filter statistics, respectively.

AMS Subject Classifications: 68U10; 65K05; 65K10; 90C33.

Keywords: level-sets; image approximation; equilibrium constraints; complementarity constraints;
DC-programming.

1. Introduction

Filter statistics play an important role in both natural and computational vision
systems [8], [12], [20]. It has been shown, for instance, that the statistics (histograms)
of bandpass filter outputs, collected over a large image database, are significant for
natural scences and can be accurately described by parametric families of probability
distributions.

A related subject that is relevant to our present work concerns the use of filter
statistics for representing subclasses of images. Zhu and Mumford [22] showed in
their seminal work impressive image restoration results by employing filter statistics.
A significant difference of their approach to established denoising methods using
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Fig. 1. TV-Denoising fails for non-smooth image structure. A grid image superimposed with noise,
shown left as image d, and three minimizers u(α) of ‖u − d‖2 + αTV(u) for increasing values of α,
computed with Chambolle’s projection algorithm [5]. Without prior knowledge about image structure,
denoising is not possible. The approach introduced in this paper exploits filter statistics as prior knowl-
edge for discriminating structure and noise through image approximation with level-set constraints –

see Figs. 5 and 8

TV-regularization [17] as well as to modern related approaches to image decompo-
sition [5], [3], is the ability to generate image structure which is not possible when
using the latter convex variational models (Fig. 1).

The nonconvex approach of Mumford and Shah involves two phases, learning and
inference. In the learning phase, a Gibbs distribution

p(u) = 1
Z

exp (−E(u)), (1)

defined on the image space R
n together with coarsely quantized coordinates, is

determined by maximizing the entropy of p subject to the constraint that samples
u ∼ p(u) reproduce given filter statistics on the average [23]. Stochastic sampling
was applied to cope with this difficult optimization problem. Inference, on the other
hand, amounts to approximate given image data d by a function u using the learned
energy function E(u) as a regularizing term. Because the latter is highly nonconvex,
stochastic sampling was applied, too, for computing a local minimizer [22].

The objective of this paper is to present a quite different variational approach to
solving a similar constrained approximation problem. Rather than encoding the fil-
ter statistics as prior information by a probability distribution that has to be learned
beforehand, we bypass this entire learning step and exploit the prior knowledge
directly by imposing hard constraints1 on the sizes of level-sets of filter outputs.
Furthermore, we devise a deterministic algorithm that computes an approximation
by solving a sequence of convex programs. The main purpose is the ability to study
directly the formation of image structure through approximation in image spaces
constrained by empirical distributions. Another aspect is that an explicit represen-
tation of the statistical knowledge is used for data processing, enabling to replace or
to revise this knowledge quickly if an overall task is calling for, or if novel data are
observed. This is not possible, however, when the available knowledge is implicitly
represented by a probability distribution (1) defined over the entire image space,
that has to be determined by a time-consuming prior learning process.

1 Our approach also allows to weaken these constraints in order to cope with uncertain
prior knowledge – see Remark 2.2. We do not exploit this modification in the present paper,
however.
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From the viewpoint of mathematical programming, our problem formulation
involves a bilevel optimization problem which is interesting by its own in view of
current research. This problem belongs to the class of mathematical programs with
equilibrium constraints (MPECs) [14] that cannot be treated using methods devel-
oped for conventional nonlinear programs, because standard constraint qualifica-
tions fail at any feasible point [18]. Accordingly, a substantial amount of research
has been devoted to cope with this difficulty by modifying established interior-point
methods, see [18], [19], [11], [1], [15], [13] and references therein. In this work, we
apply to our problem the interior-penalty approach investigated in [11], [13] together
with a DC-programming2 strategy [2] for solving a nonconvex relaxation of our
approach. While we analyze the two inner loops of our variational method, that is
the sequence of convex programs and its relationship to the nonconvex relaxation,
an analysis of the consequences of the aforementioned DC-decomposition on the
overall convergence, in view of the results in [11], [13], is beyond the scope of this
paper.

Organisation. We introduce some notation and state formally the constrained image
approximation problem in Sect. 2. In Sects. 3 and 4, we reformulate the problem as
a MPEC and as a complementarity-constrained program, respectively, followed by
the interior-penalty relaxation in Sect. 5. We apply a particular DC-decomposition
to the penalty term and state our final algorithm. Properties of this algorithm with
respect to both the convex inner loop and the nonconvex interior-penalty relaxation
are stated in Sect. 6. Finally, we report details of our implementation in Sect. 7 and
discuss some numerical examples for illustrating our approach.

Notation. Bars | · | applied to a finite set denotes the number of elements of the set.
� denotes the domain of a given signal or image. We identify it with the sampling
grid of size n, |�| = n, corresponding to given signal or image measurements.

Vectors are column vectors, and ·� transposes them. For simplicity, we often write
u = (v, w) for the column vector u = (v�, w�)� obtained by concatenating vectors
v and w. 〈v, w〉 as well as v�w denote the Euclidean inner product, and ‖ · ‖ the
Euclidean norm. en = (1, 1, . . . , 1)� ∈ R

n is the one-vector of dimension n, and
I the identity matrix whose dimension will be clear from the context. We use sub-
scripts for enumerating vectors, e.g., p1, p2, and brackets for denoting components
of vectors and matrices, e.g., p1(i), D(i, j). The symbol ⊗ denotes the Kronecker
product [9].

IC(v) denotes the indicator function of a closed convex set C, i.e., IC(v) = 0 if
v ∈ C, and IC(v) = ∞ if v 	∈ C. We set B = [0, 1].

2. Problem formulation

We introduce some notation regarding filters and level-sets, followed by the defini-
tions of two approximation problems.

2 DC stands for “difference of convex functions” – see, e.g., [10]
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2.1 Linear filters and level-sets

Let � = {1, 2, . . . , n} be the sampling grid with positions indexed by x ∈ �. For
any vector u ∈ R

n defined on �, that is for a given signal or for a vectorized image
with values u(x) , x ∈ �, we denote with

�(z; u) := {
x ∈ �

∣∣ u(x) ≤ z
}
, (2)

the level-set of u with respect to level z ∈ R.
Furthermore, we assume to be given a set of FIR-filters J , represented by matri-

ces Hj , j ∈ J , such that the linear mapping Hju corresponds to the convolved
function u(x). Typically, each Hj is a circulant and sparse matrix, or block-circulant
in the case of images. Level-sets of the filtered function u are denoted with

�j(z; u) :=
{
x ∈ �

∣∣
(
Hju

)
(x) ≤ z

}
. (3)

For a given set I of levels {zi}i∈I , we associate with each filter j a subset Ij ⊂ I of
relevant levels {zi}i∈Ij

. Thus, all relevant level-sets are given by
{
�j(zi; u)

}

i∈Ij , j∈J . (4)

We also consider intersections of level-sets. To this end, let K = {K1, K2, . . . }
denote a family of subsets of index pairs (i, j), i ∈ I, j ∈ J , that is each Kk ∈ K
has the form Kk ⊆ I × J . We require all elements of each Kk to differ from each
other, but a filter j or level i may be part of several elements of a set Kk. As a result,
K represents the family of intersections of level-sets

⎧
⎨

⎩

⋂

(i,j)∈Kk

�j (zi; u)

⎫
⎬

⎭
Kk∈K

. (5)

(4) may be regarded as a special of (5) with |Kk| = 1, ∀k.

2.2 Level-set constrained approximation

We distinguish two problems according to whether constraints are imposed in terms
of (4) or (5), respectively.

Separate filter statistics. Given a signal (or image) d, we wish to compute the closest
signal (or image) u subject to fixed sizes of the level-sets (4):

min
u∈Rn

1
2
‖u − d‖2, (6a)

s.t.
∣∣�j(zi; u)

∣∣ = ω
j
i , ∀i ∈ Ij , ∀j ∈ J. (6b)

The numbers ω
j
i are assumed to be given. They represent the filter statistics of the

signal (or image) class from which d is observed, and are computed from samples
of this class beforehand.
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The constraints (6b) impose a difficult combinatorial problem: for each location
x, the single value u(x) decides simultaneously whether x belongs to the level-sets
�j(zi; u). Moreover, due to overlapping supports of the filtersHj , this decision inter-
acts with those at adjacent positions in a local neighbourhood of x. Consequently,
despite local quantities are only involved in (6), the overall problem is intrinsically
non-local, akin to Markov random field inference. Unlike the latter, however, we
determine real-valued functions u : � → R with a deterministic algorithm, and do
not artificially quantize the range into discrete “labels”. In this sense, problem (6)
may be regarded as hybrid (continuous/discrete).

Joint filter statistics. We generalize problem (6) by fixing the size of intersections of
various collections of level-sets (5):

min
u∈Rn

1
2
‖u − d‖2, (7a)

s.t.

∣∣∣∣
⋂

(i,j)∈Kk

�j (zi; u)

∣∣∣∣ = ωk, ∀Kk ∈ K. (7b)

As in the previous section, we assume that the numbers ωk have been computed
beforehand from examples of a particular image class, and are therefore given.

A significant difference between problems (6) and (7) is that the constraints (7b)
represent conjunctions. At any location x, and for any level/filter pair (i, j) ∈ Kk,
only those values u(x) contribute to satisfying the corresponding constraint in (7b),
that make x an element of all level-sets indexed by Kk.

Remark 2.1: Problems (6) and (7) involve a very simple objective function. It may be
replaced by alternative functions, like the more robust ‖ · ‖1-norm for instance, with-
out essentially altering the overall basic problem structure as long as this function is
convex.

Remark 2.2: Using lower and upper bounds for sizes of (intersections of) level-sets in
(6b) and (7b), respectively, may turn out to be more useful in applications, in order to
capture the variability of a signal (or image) class. This requires minor modifications
only of our approach to be developed below. In this work, however, we only focus on
equality constraints.

3. Equilibrium constraints

We reformulate (6) and (7) as hierarchical problems involving two convex optimi-
zation problems and represent the lower-level problem by an equivalent variational
inequality. By this, we classify these problems as instances of mathematical programs
with equilibrium constraints (MPECs) and prepare the development of a numerical
algorithm in subsequent sections.
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Separate filter statistics. In order to make more explicit the dependency of the con-
straints (7b) on u, we introduce for each index pair (i, j) an auxiliary vector vi,j ∈ R

n

with components

vi,j (x) :=

⎧
⎪⎨

⎪⎩

1 if
(
Hju

)
(x) < zi,

∈ [0, 1] if
(
Hju

)
(x) = zi,

0 if
(
Hju

)
(x) > zi.

(8)

Thus, the size of the corresponding level-set is

〈en, vi,j 〉 = ∣∣�j(zi; u)
∣∣. (9)

The mapping u → vi,j defined in (8) is given by the linear program (LP)

vi,j ∈ argmin
ṽ∈Bn

〈Hju − zien, ṽ〉. (10)

In order to reformulate problem (6), we use the shorthand

Hi,j (u) := Hju − zien (11)

and the number of all level-sets

nl :=
∑

j∈J
|Ij | (12)

to define vectors

v ∈ R
nl ·n, (13a)

H(u) := Hu − z ⊗ en ∈ R
nl ·n, (13b)

ω ∈ R
nl (13c)

by stacking together for all i, j the vectors vi,j , Hi,j (u) defined in (8) and (11),
respectively, and the numbers ω

j
i on the right-hand side of (6). Furthermore, we

define the matrix

Ev :=

⎛

⎜⎜⎜
⎝

e�
n 0� . . . 0�

0� e�
n . . . 0�

...
...

. . .
...

0� 0� . . . e�
n

⎞

⎟⎟⎟
⎠

∈ R
nl×(nl ·n) (14)

and denote with

v ∈ SOL
(
B

nl ·n, H(u)
)

(15)

the fact that v satisfies the variational inequality

〈H(u), ṽ − v〉 ≥ 0, ∀ṽ ∈ B
nl ·n, (16)

that is equivalent to (10) holding for all indices i, j .
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Using this notation, problem (6) reads

min
u,v

1
2
‖u − d‖2, (17a)

s.t. Evv = ω, (17b)

v ∈ SOL
(
B

nl ·n, H(u)
)
. (17c)

This formulation shows that problem (6) is an instance of a MPEC [14]. It also
provides the basis for the design of numerical algorithms for computing u.

Joint filter statistics. Our objective is to make explicit the dependency of the con-
straints (7b) on u. To this end, we note that pixel location x = l belongs to the
intersection of the level-sets (7b) – recall the notation (11)) – if

max
{
Hi,j (u)

}
(i,j)∈Kk

≤ 0. (18)

To extract this information from u, we define local vectors

hk,l(u) := {(
Hi,j (u)

)
(l)
}
(i,j)∈Kk

∈ R
|Kk | (19)

that collect the lth components of all vectors Hi,j (u), (i, j) ∈ Kk, and compute the
left-hand side of (18) as solution to the LP

min
R

λk(l), λk(l) e|Kk | − hk,l(u) ≥ 0. (20)

Concatenating all numbers λk(l) and vectors hk,l(u) for l = 1, . . . , n, to obtain

vectors λk ∈ R
n, hk(u) ∈ R

n|Kk |, the k-th constraint (7b) can be expressed as

〈en, vk〉 = ωk, (21)

where

vk ∈ argmin
ṽ∈Bn

〈λk, ṽ〉 (22)

and every component of λk solves (20). Concatenating in turn for k = 1, . . . , |K| the
numbers and vectors ωk, vk, λk, hk(u), resulting in

ω ∈ R
|K|, v ∈ R

n|K|, λ ∈ R
n|K|, h(u) ∈ R

n
∑

k |Kk |, (23)

and defining

�(u) :=
{
λ ∈ R

n|K| ∣∣ λk(l) satisfies (20) , l = 1, . . . , n , k = 1, . . . , |K|
}

, (24)

the reformulation of problem (7) reads

min
u,v,λ

1
2
‖u − d‖2, (25a)

s.t. Evv = ω, (25b)

λ ∈ �(u), (25c)

v ∈ SOL
(
B

n|K|, λ
)

. (25d)

Comparing (25) with (17) reveals that the additional intersections in (7) relative to
(6) do not essentially alter the structure of the MPEC (17).
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4. Complementarity-constrained programming

In this section, we exploit the convexity of the lower level problems in (17) and (25)
to represent them by complementarity constraints. This provides the basis for relax-
ing the combinatorial part of the overall problem and, in turn, will directly lead to
the design of a numerical algorithm in the subsequent section.

Separate filter statistics. Introducing a dual (multiplier) vector w ∈ R
nl ·n, we con-

sider the KKT-conditions of the lower-level convex program (17c) and transform
further problem (17):

min
u,v,w

1
2
‖u − d‖2, (26a)

s.t. Evv = ω, (26b)

0 ≤
(

v

w

)
⊥
(

H(u) + w

enl ·n − v

)
≥ 0. (26c)

The lower-level problem (17c) now takes the form of a complementarity constraint,
i.e., an orthogonality constraint of two vectors in the positive cone. This constraint
represents the combinatorial part of the overall problem. Rewriting it in the more
common form

0 ≤
(

v

w

)
⊥
(

0 I

−I 0

)(
v

w

)
+
(

H(u)

enl ·n

)
≥ 0 (27)

reveals a linear complementarity problem (LCP) (see [6]) parametrized by the upper
level variable u.

Joint filter statistics. In order to generalize formulation (26) to problem (25), we
additionally consider the dual programs to (20)

max
R

|Kk |

〈
µk,l, hk,l(u)

〉
, s.t. 〈µk,l, e|Kk |〉 = 1, µk,l ≥ 0. (28)

By concatenating the local vectors µk,l as in the previous section, we obtain

µ ∈ R
n
∑

k |Kk |. (29)

Accordingly, the equality constraints in (28) define the system

Eµµ = en|K|, Eµ ∈ R
(n|K|) × (n

∑
k |Kk |), (30)

whereas the inequalities in (20) define the system

Eλλ − h(u) ≥ 0, Eλ ∈ R
(n
∑

k |Kk |) × (n|K|). (31)



Signal and image approximation with level-set constraints 145

Using this notation, problem (25) becomes

min
u,v,w,µ,λ

1
2
‖u − d‖2, (32a)

s.t. Evv = ω, (32b)

Eµµ = en|K|, (32c)

0 ≤
⎛

⎝
v

w

µ

⎞

⎠ ⊥
⎛

⎝
λ + w

en|K| − v

Eλλ − h(u)

⎞

⎠ ≥ 0. (32d)

5. Relaxation and optimization

Like the original level-set constraints (6b) and (7b), the complementarity constraints
(26c) and (32d) are still combinatorial and therefore difficult. A range of smoothing
and relaxation techniques have been proposed in the literature in order to weaken
such constraints and to cope with them numerically – see, e.g., [18], [1], [15], and [13]
and references therein.

In the following, we adopt an interior-penalty approach [11], [13], encouraged by
the numerical results reported by Leyffer et al. [13]. We additionally propose in the
subsequent section a decomposition of the corresponding penalty term into the dif-
ference of two convex functions, enabling us to conveniently compute a minimizer
by a sequence of convex programs.

5.1 Interior-penalty relaxation

The basic idea worked out in this section is to weakly incorporate the complementar-
ity constraints by complementing the constraints with slack variables, and by adding
a penalty term to the objective function. We distinguish again the two problems (6)
and (7).

Separate filter statistics. We include additional slack variables

s ∈ R
nl ·n, t ∈ R

nl ·n, (33)

and, using (13), propose the following relaxation of problems (6), (17) and (26),
respectively:

min
u,v,w,s,t

{
1
2
‖u − d‖2 + π (〈v, s〉 + 〈w, t〉)

}
, R � π > 0, (34a)

s.t. Evv = ω, (34b)

Hu + w − s = z ⊗ en, (34c)

v + t = enl ·n, (34d)

v, w, s, t ≥ 0. (34e)
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Note that all constraints are convex. The penalty term only, weighted by a parameter
π , is nonconvex. It will give rise to a sequential convex approximation technique
introduced in the subsequent section.

Joint filter statistics. Regarding problems (7), (25) and (32), respectively, we define
similarly

s ∈ R
n|K|, t ∈ R

n|K|, ν ∈ R
n
∑

k |Kk |, (35)

and the matrix S

h(u) =: SH(u) (36)

mapping the vector H(u) defined by (13b), to the vector h(u) defined by (23), as
specified by Eq. (19).

The relaxed problem then reads:

min
u,v,w,µ,s,t,ν,λ

{
1
2
‖u − d‖2+π (〈v, s〉 + 〈w, t〉+〈µ, ν〉)

}
, R � π > 0, (37a)

s.t. Evv = ω, (37b)

Eµµ = en|K|, (37c)

λ + w − s = 0, (37d)

v + t = en|K|, (37e)

Eλλ − SHu − ν = −S(z ⊗ en), (37f)

v, w, µ, s, t, ν ≥ 0. (37g)

Again this problem is convex up to the penalty term that is weighted by a parameter
π .

5.2 DC-Decomposition and sequential convex optimization

In the following, we decompose the inner product between two vectors p1, p2 into
the difference of two convex functions

〈p1, p2〉 = 1
2

(
p1
p2

)� (0 I

I 0

)(
p1
p2

)
(38a)

= 1
4

(
p1
p2

)�

⎡

⎢⎢⎢
⎣

(
cπI I

I cπI

)

︸ ︷︷ ︸
:=P +

−
(

cπI −I

−I cπI

)

︸ ︷︷ ︸
:=P −

⎤

⎥⎥⎥
⎦

(
p1
p2

)
, R � cπ > 1. (38b)

Remark 5.1: Both matrices P + and P − are positive definite.

We apply this decomposition together with a linearization of the second concave
term defined in terms of P −, to the nonconvex penalty terms in (34) and (37), respec-
tively. Our approach is a problem-specific instance of the general DC-programming
approach developed by An and Tao [2], [21].
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Separate filter statistics. Setting

p =
(

p1
p2

)
, p1 =

(
v

w

)
, p2 =

(
s

t

)
, (39)

we propose to minimize (34) by the sequence of convex programs

(
uk+1, pk+1

)
∈ argmin

u,p

{
1
2
‖u − d‖2 + π

4

〈
p, P +p − 2P −pk

〉}
, (40a)

s.t. A

(
u

p

)
= b, p ≥ 0. (40b)

The linear system (40b) is given by

A =
⎛

⎝
0 Ev 0 0 0
H 0 I −I 0
0 I 0 0 I

⎞

⎠ , b =
⎛

⎝
ω

z ⊗ en

enl ·n

⎞

⎠ . (41)

Joint filter statistics. Setting

p =
(

p1
p2

)
, p1 =

⎛

⎝
v

w

µ

⎞

⎠ , p2 =
⎛

⎝
s

t

ν

⎞

⎠ , (42)

we propose to minimize (37) by the sequence of convex programs

(
uk+1, pk+1, λk+1

)
∈ argmin

u,p,λ

{
1
2
‖u − d‖2 + π

4

〈
p, P +p − 2P −pk

〉}
, (43a)

s.t. A

⎛

⎝
u

p

λ

⎞

⎠ = b , p ≥ 0. (43b)

The linear system (43b) is given by

A =

⎛

⎜⎜⎜⎜
⎝

0 Ev 0 0 0 0 0 0
0 0 0 Eµ 0 0 0 0
0 0 I 0 −I 0 0 I

0 I 0 0 0 I 0 0
−SH 0 0 0 0 0 −I Eλ

⎞

⎟⎟⎟⎟
⎠

, b =

⎛

⎜⎜⎜⎜
⎝

ω

en|K|
0

en|K|
−S(z ⊗ en)

⎞

⎟⎟⎟⎟
⎠

.

(44)

Properties of (40) and (43) as well as details of our implementation will be reported
in the following two sections.

Remark 5.2: Note that λ is missing in the objective function (43a). This slightly com-
plicates our analysis and numerical implementation presented below.
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6. Properties

In the next two sections, we analyse the sequential convex approximations (40b) and
(43b) of the nonconvex programs (34) and (37). Next we comment on the solvability
of the original problems (26) and (32) by the nonconvex relaxations (34) and (37),
for an increasing sequence of the penalty parameter.

6.1 Global optimality and uniqueness (inner loop)

Lemma 6.1: The constraint systems (40b) and (43b) satisfy the Mangasarian Fromo-
vitz constraint Qualification (MFCQ) at every feasible point.

Proof: The rows of the matrix A in (41) are linearly independent. Furthermore,
inspection of the constraints in (34) shows that v 	= 0, and that v(i) and t (i) cannot
both vanish for any i. Thus, for any feasible (u, p) (recall the definition (39) of p),
there exists a vector q = (qu, qp) with Aq = 0, and with qp(i) > 0 if p(i) = 0. The
same reasoning applies to the matrix A in (44) and to the constraints in (37), for any
feasible point (u, p, λ). ��
Proposition 6.2: Each of the convex programs (40) and (43) has a unique global min-
imum at each iteration step k.

Proof: The assertion is immediate in the case of (40) because the Hessian

(
I 0
0 π

2 P +
)

is positive definite (cf. Remark 5.1). Regarding (43) (cf. Remark 5.2), let f denote
the objective function (43a), L the corresponding Lagrangian, C the feasible set,
y = (u, p, λ) a stationary point, T (y; C) the tangent cone at y, and C(y; C, ∇f ) =
T (y; C) ∩ {∇f (y)}⊥ the critical cone at y. If the Hessian ∇2

yyL of the Lagrangian
with respect to the primal variables is strictly copositive on C, then Lemma 6.1 and
[7, corollary 3.3.20] imply that y is an isolated, strong local minimizer. The assertion
then follows from the convexity of (43).

∇2
yyL is strictly copositive iff q = (qu, qp, qλ) = 0 is the unique global minimum

of

min
q∈C

1
2
〈q, ∇2

yyL q〉.

The expression

〈
q, ∇2

yyL q
〉
= ‖qu‖2 + π

2
〈qp, P +qp〉

and Remark 5.1 show that for any minimizer qu = 0 and qp = 0. Consequently,
because q ∈ C implies q ∈ T and in turn Aq = 0, equation (37d) and qp = 0 show
that qλ = 0. ��
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6.2 Convergence and local optimality (outer loop)

Let C denote the feasible set of (34). Using (38) and (39), we write (34) as
DC-program

min
u,p

{g(u, p) − h(u, p)} , (45)

with convex proper and lower-semicontinuous functions

g(u, p) = 1
2
‖u − d‖2 + π

4
〈p, P +p〉 + IC(p), (46)

h(u, p) = π

4
〈p, P −p〉. (47)

The iteration (40) corresponds to the two-step process

(0, qk
h) ∈ ∂h(uk, pk) (uk+1, pk+1) ∈ ∂g∗(0, qk

h) (48a)

= {∇h(uk, pk)} = argmin
u,p

{
g(u, p) − 〈qk

h, p〉
}

, (48b)

where g∗ is the conjugate function to g, and ∂h(uk, pk) and ∂g∗(0, qk
h) denote the

subgradients of h and g∗ at their arguments, respectively, (cf. [16, chap. 11]). This
iterative process is obviously well-defined for any feasible point (u, p).

The formulation (48) is a special instance of a general algorithm (“simplified
DCA”) developed and investigated in [21] and [2].

Proposition 6.3: The sequence (uk, pk) defined by (48) converges, and the limit point
(u, p) satifies the necessary local optimality conditions with respect to problem (45)

∂h(u, p) ⊂ ∂g(u, p) . (49)

Proof: In [21] it is shown that the sequence g(uk, pk) − h(uk, pk) is decreas-
ing. Because the objective function is finite and the sequence (uk, pk) is bounded,
[21, theorem 3.7] implies convergence to a critical point (u, p) defined by

∂g(u, p) ∩ ∂h(u, p) 	= ∅ .

The assertion follows from ∂h(u, p) = {∇h(u, p)} and ∇h(u, p) ∈ ∂g(u, p) ⇔
(u, p) ∈ ∂g∗ (∇h(u, p)) by [16, proposition 11.3]. ��
The same reasoning applies to the sequence (uk, pk, λk) generated by (43), taking
into account the proof of Proposition 6.2 regarding boundedness.

We summarize the result:

Corollary 6.4: The sequences of global optima of the convex programs (40) and (43)
converge, and the limit points satisfy the necessary local optimality conditions with
respect to the nonconvex problems (34) and (37).
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6.3 Stationarity (MPEC)

In our experiments, we wish to solve the approximation problems (6) and (7) through
sequences of minimizers of the nonconvex relaxations (34) and (37), defined by an
increasing sequence πl of the penalty parameter. General studies of the convergence
of penalty methods to various classes of stationary points of MPECs [18] include
the work of Hu and Ralph [11] and Leyffer et al. [13]. As mentioned at the end of
Sect. 1, a corresponding analysis of our approach is beyond the scope of this paper
and will be presented elsewhere.

We confine ourselves to pointing out an assumption that is most crucial (cf. [13,
theorem 3.4]): The penalty term 〈p1, p2〉 must converge to zero and exhibit a certain
behaviour relative to the sequence πl of the penalty parameter.

In view of these assumptions, we conduct our experiments with a finite increas-
ing sequence πl and conclude “success” of the approximation if the penalty term
vanishes, and “failure” otherwise.

7. Implementation and numerical examples

We first report some details of our implementation regarding (40) and (43). Next,
we illustrate the approaches (6) and (7) by a few numerical examples.

7.1 Implementation details

Interior point method. At each iteration step k in (40) or (43), we solve the convex
program using the standard logarithmic barrier function for the positivity con-
straints, and by applying a feasible Newton method to the resulting equality-con-
strained convex problem [4]. In the case of (43), the barrier problem with parameter
τ reads

{
uk, pk+1, λk+1

}
∈ argmin

u,p,λ

{
τ

(
1
2
‖u − d‖2 + π

4

〈
p, P +p − 2P −pk

〉)

−
∑

i

log p(i)

}

, (50a)

s.t. A

⎛

⎝
u

p

λ

⎞

⎠ = b. (50b)

Computing a descent direction. A key step of this approach is to determine a feasible
search direction by solving the KKT-system associated with the linearized optimal-
ity conditions for (50). We detail next how to do this efficiently, and how to cope
with the (minor) complication pointed out in Remark 5.2.

To this end, we use temporarily the notation y = (u, p) and f (y) for the objective
function (50a), and – omitting the iteration index k – rewrite (50):

min
y,λ

f (y) , s.t.
(
Ay Aλ

) (y

λ

)
= b. (51)
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Let ζ denote the dual vector corresponding to the constraints (50b). Then the KKT-
system for computing a descent direction (�y, �λ) reads

⎛

⎜
⎝

∇2f (y) 0 A�
y

0 0 A�
λ

Ay Aλ 0

⎞

⎟
⎠

⎛

⎝
�y

�λ

ζ

⎞

⎠ =
⎛

⎝
−∇f (y)

0
0

⎞

⎠ . (52)

The computation proceeds by eliminating (�y, �λ) and substitution to solve for ζ ,
which in turn gives (�y, �λ). The elimination step is slightly complicated by the
singularity of the upper-left 2 × 2 block-matrix in (52). We just focus on this prob-
lem here and refer to [4] for the remaining details of the algorithm that we applied
without further modifications.

Proposition 7.1: The variables (�y, �λ) in (52) can be eliminated by applying to the
corresponding components on the right-hand side the matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τ−1I 0 0 0 0 0 0 0
0 Q1,1 0 0 Q2,1 0 0 Q2,1
0 0 Q1,2 0 0 Q2,2 0 −Q1,2
0 0 0 Q1,3 0 0 Q2,3 0
0 Q2,1 0 0 Q3,1 0 0 Q3,1
0 0 Q2,2 0 0 Q3,2 0 −Q2,2
0 0 0 Q2,3 0 0 Q3,3 0
0 Q2,1 −Q1,2 0 Q3,1 −Q2,2 0 I + Q1,2 + Q3,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where the three diagonal matrices Qi = diag(Qi,1, Qi,2, Qi,3), i = 1, 2, 3, are given
by (59) and (57).

Proof: See Appendix. ��

Parameter values. We normalize the data d to the range d(x) ∈ [0, 1], ∀x ∈ �. Then
we choose cπ = 1.5 in (38) and start the iterations (40) or (43) with an iteration
parameter l = 0 and u0 = d, τ 0 = 1, π0 = 1. After convergence of the sequence of
convex programs, the barrier parameter τ and the complementarity parameter are
updated: τ l+1 = 2τ l, πl = 1 + 9(l/20)5. Next we increase the iteration counter l

by one and continue to solve the sequence of convex programs. We terminate this
process at l = 20.

The increasing weight π of the penalty term (see Fig. 2), together with the bar-
rier parameter, gradually enforces the complementarity constraints in (26) and (32),
respectively. We check this by monitoring the value of the penalty term. Figure 3
shows a typical behaviour of the penalty term that decreases during the iteration to
a small value close to zero. This in turn confirms that the level-set constraints in (6)
and (7) are satisfied.

7.2 Numerical examples

The objective of this section is to illustrate by numerical examples some key prop-
erties of the approaches (6) and (7).
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Fig. 2. Schedule log10(πl) of the complementarity penalty parameter π for enforcing the level-set
constraints in 20 iteration steps of the outer loop

10 15 20

4

3

2

1

Fig. 3. Typical behaviour of the penalty term log10 (maxi {p1(i)p2(i)}) during the iteration. Its final
value in the experiments is ≈ 10−6

Although some of the experiments discussed below required to solve MPECs
involving about 20.000 variables which is more than tenfold the problem sizes con-
sidered in [13], our current research implementation does not allow for processing
whole images. To this end, the sparse structure of the constraint matrix A has to
be exploited during the Newton search steps, e.g. for computing (A�H−1A)−1 with
H−1 given by Proposition 7.1. Thus, the main focus of the discussion below is on
the validation of our variational approach.

Separate filter statistics. Figure 4 shows two experiments for illustrating the combi-
natorial aspect of the approximation problem. We wish to compute the closest point
u to a given arbitrary noise signal d subject to the constraint that the filtered solution
Hu vanishes at all but eight locations x. The discrete decisions where these optimal
locations are, is simultaneously made together with approximating d by u. The only
difference between the two experiments is the respective filter H , which was the sim-
plest 2-tap derivative filter and the 1D-Laplacian, respectively. As a consequence,
we compute a piecewise constant approximation in the first case and a piecewise
linear approximation in the second. The bottom panels show the decisions made by
the algorithm in terms of Hu.

The reader might correctly point out that the previous experiment can be easily
solved using dynamic programming. This, however, is no longer possible (with a
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Fig. 4. (Top) A piecewise constant and a piecewise linear approximation of an arbitrary (noise) signal,
respectively, computed by using two level-set constraints that, in each case, enforce Hu to vanish at all but
eight locations. H was the 1D-gradient filter for the experiment shown on the left, and the 1D-Laplacian
on the right. (Bottom) The corresponding filtered solutions Hu. The locations with nonzero values are

automatically determined as part of the approximation

reasonable complexity) for two- and higher-dimensional signals. Figure 5 shows two
experiments using three primitive filters and six level-set constraints as described in
the figure caption. The results demonstrate the ability to restore non-smooth signals
and, related to that, to generate image structure consistent with both the constraints
and the input data. This latter fact is remarkable in view that the algorithm merely
solves a sequence of convex programs.

Joint filter statistics. We present two further numerical examples illustrating the
approach (7) involving intersecting level-set constraints.

Figure 6, top-left, shows a signal composed of two structures. Filtering this signal
with a 1D-Laplacian characterizes these structures locally by negative and positive
values corresponding to convex and concave parts (Fig. 6, top-right). Furthermore,
the levels z1 = 0 and z2 = 1 of the signal coincide with the levels z3 = −1/2 and
z4 = +1/2 of the filtered signal.

Consequently, adopting the notation introduced in Sect. 2.1, we define three levels

I = {1, 2, 3}, zi ∈ {−1, −1/2, 0}, i ∈ I,

and four filters, the signed identity filters and Laplacians3,

J = {1, 2, 3, 4}, H 1 = I, H 2 = L, H 3 = −I, H 4 = −L,

3 Signed filters are used to express constraints of the form
[(

Hju
)
(x) ≥ zi

]
as[(−Hju

)
(x) ≤ −zi

]
(cf. Definition (3)).
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Fig. 5. (Top, from left to right) An image and its partial derivatives ∂x1 , ∂x2 , and ∂2
x1x2

. The sizes of level-
set of positive, zero and negative values, respectively, i.e., the number of white, gray and black pixels (not
the values!), were imposed separately for the three filters as level-set constraints. (Bottom, two figures on
the left) A noisy input image (left) and its constrained approximation. This result shows that level-set con-
strained approximation enables non-smooth restorations. (Bottom, two figures on the right) A very noisy
image and its constrained approximation. This result shows that while the constraints do not suffice to
restore the grid, the level-set constrained approximation generates image structure compatible with both

the constraints and the input data
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Fig. 6. (Top-left) A simple signal with two local structures. (Top-right) The signal shown left (black curve)
together with its 1D-Laplacian filtered version (blue curve) indicating the local signal structure (convex-
ities, concavities) through positive and negative values. (Bottom-left) An arbitrary noisy input signal d.
(Bottom-center) The approximation u of the noisy signal subject to conjunctions of level-set constraints
as specified in the text. Based on the random input d, its approximation u exhibits the local structure
encoded by the constraints at random locations. (Bottom-right) The Laplacian-filtered approximation Lu.
This result illustrates that intersecting level-set constraints (joint filter statistics) provide tight restrictions

of the signal space and lead to the formation of local signal structure

as well as constraints with respect to the intersection of level-sets of signals filtered
with Hj , j ∈ J ,

K = {K1, K2},
= {{(3, 1), (2, 2)} , {(1, 3), (2, 4)}} .
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Rewriting the constraints above explicitly as conjunctions, we obtain for (7b)4

∣∣∣∣

{
x ∈ �

∣∣∣ (u(x) ≤ 0) ∧
(

(Lu) (x) ≤ −1
2

)} ∣∣∣∣ = ω1, (53a)
∣∣∣∣

{
x ∈ �

∣∣∣ (u(x) ≥ 1) ∧
(

(Lu) (x) ≥ +1
2

)} ∣∣∣∣ = ω2, (53b)

with ω computed from the original signal (Fig. 6, top-left). We include also the con-
straint that the gradient of the approximation u vanishes within an unknown subset
having a specified size. Thus, temporarily adopting the symbol G for the gradient
filter, we additionally impose

∣∣∣
{
x ∈ �

∣∣ (Gu) (x) ≤ −0.01
} ∣∣∣ = ω3 ,

∣∣∣
{
x ∈ �

∣∣ (Gu) (x) ≥ 0.01
} ∣∣∣ = ω4, (54)

by enlarging I, J , K accordingly.
The lower panel of Fig. 6 illustrates how tightly these constraints restrict the entire

signal space. On the left, Fig. 6 depicts an arbitrary input signal d. The approxima-
tion u subject to the constraints detailed above is shown in the center. This result
illustrates how the local signal structure is enforced by jointly constraining the level-
sets of two filters, and localized through approximating the input signal. The figure
on the right shows Lu satisfying exactly the intersecting level-set constraints. Note
that outside the intersection set, that is within {x ∈ � | 0 < u < 1}, the filtered
signal Lu is not constrained and thus may admit additional local signal structure,
depending on other constraints being active at such locations. In our example, this
occurs at the positive peaks close to the boundary.

Figure 7, top, shows another signal comprising the local structure from the previ-
ous example (Fig. 6) at random locations, and a corrupted input signal generated by
adding noise. The lower panel shows on the left the reconstruction using the same
constraints as for the previous example, with ω changed accordingly. While the local
structures are restored, the remaining degrees of freedom discussed above also lead
to undesired local structures that are not present in the original signal. The result
on the right shows that this additional structure can be avoided by specifying the
size of an unknown subset where the gradient of u vanishes and u(x) = 0. With
other words, we replace the constraint (54) with an intersecting level-set constraint
analogous to (53).

The key observation to be made here is that the approach (7) allows to approximate
(or restore) signals based on knowledge about local signal structure, rather than just
smoothness. This knowledge is encoded through filter statistics without the need to
specify any locations beforehand, and expressed in terms of sizes of intersections of
level-sets. It is the constrained approximation process only that decides where this
knowledge applies best to given data.

4 The symbol ∧ means “and”.
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Fig. 7. (Top-left) A signal comprising four local structures analogous to Fig. 6 (top-left). (Top-right) The
signal d corrupted by noise and normalized to the range [0, 1]. (Bottom-left) The approximation u using
the same constraints as for the experiment shown in Fig. 6. Restored structures emerge at the correct
locations. (Bottom-right) Adding a single intersection constraint (see text) results in a good reconstruction
of the original signal. This result illustrates that level-set constraints allow for the restoration of heavily

corrupted signals based on prior knowledge about local signal structure rather than smoothness

Figure 8 provides another example. The constraints are defined in terms of the
two filters

H 1 = I , H 2 =
⎛

⎝
−1 +1 −1
+1 +1 +1
−1 +1 −1

⎞

⎠ ,

and their response to the grid-image depicted in Fig. 5, top-left. Filter H 2 maps the
“background” (value 0, black) to {0, −1} and the “foreground” (value 1, white) to
{0, 1, 3, 5}. The two constraints imposed are

∣∣∣∣
{
x ∈ �

∣∣∣ (u(x) ≤ 0) ∧
((

H 2u
)

(x) ≤ 0
)} ∣∣∣∣ = ω1,

∣∣∣∣
{
x ∈ �

∣∣∣ (u(x) ≥ 1) ∧
((

H 2u
)

(x) ≥ 0
)} ∣∣∣∣ = ω2.

Note that these two constraints merely order the set of feasible images u. For exam-
ple, H 2u attains multiple positive values in the set {x ∈ � | u(x) ≥ 0}. Because the
spatial support of H 2 overlaps at any location x with adjacent pixel positions and,
therefore, only contextual decisions are possible, the restoration of structured non-
smooth signals simply becomes a consequence of spatial approximation (Fig. 8).

Finally, Fig. 9 shows another numerical experiment with a real image patch for
validating our approach. The objective was to generate image structure in order to
obtain some naturally looking contrast enhancement, that is without destroying the
object’s “shape”. This is not straightforward to do by modifying image intensities
directly. On the other hand, specifying plausible constraints with respect to intensity
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Fig. 8. (Top, from left to right) An image similar to Fig. 5 (bottom-left), a very noisy image, and pure noise.
(Bottom, from left to right) The corresponding approximations based on constraints specified in the text.
The results illustrate the intersecting level-set constraints considerably restrict the image space and allow
for the restoration of non-smooth signals from noisy input data. The constraints are far from defining

the original signal uniquely, however. Rather, they define a class of images satisfying the constraints

derivatives is a lot easier. For instance, choosing a level of medium magnitude 0.1, we
simply measured the sizes of the corresponding level-sets of the partial derivatives,
that is the level-sets of the filtered patches:

{
x ∈ �

∣∣∣
∣∣ (∂xi

d
)
(x)
∣∣ � 0.1

}
, i = 1, 2.

Doubling the level to 0.2 and approximating the patch d by u subject to these four
constraints, results in a desired contrast enhancement by automatically modifying
the intensities of d so as to satisfy the level-set constraints (Fig. 9, bottom left).

8. Conclusion

We presented a novel variational approach to image approximation subject to filter
statistics represented by level-set constraints. The key modeling step involved is to
embody the combinatorial part of the overall approximation problem – localiza-
tion of (intersections of) level-sets – as the interaction of two convex optimization
problems.

Our further work will focus on numerical issues enabling the processing of larger
data sets, and on determining optimal filters for encoding a given image class.
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Fig. 9. (Top, from left to right) An original real image patch together with histograms of the partial deriv-
atives ∂x1 and ∂x2 . (Bottom, from left to right) Approximation of the image patch, subject to using mod-
ified histograms of the outputs of derivative filters as constraints (see text), results in a naturally looking

contrast enhancement

Appendix A: Proof of Proposition 7.1

We use the following general inversion formula for an arbitrary block-matrix in
terms of the Schur complement SC of a regular matrix C:

(
A B�
B C

)−1

=
(

S−1
C −S−1

C B�C−1

−C−1BS−1
C C−1 + C−1BS−1

C B�C−1

)

, SC =A − B�C−1B.

(55)

Proof: We first compute the inverse of the Hessian of the objective function (50).
It has the form

∇2f (y) =
⎛

⎝
τ I 0 0
0 D1 c I

0 c I D2

⎞

⎠ (56)

with diagonal matrices

D1 = ccπI + P −2
1 , D2 = ccπI + P −2

2 , c = τ
π

2
, (57)

and Pi = diag(pi), i = 1, 2. An elementary computation yields

(
∇2f (y)

)−1 =
⎛

⎝
τ−1I 0 0

0 Q1 Q2
0 Q2 Q3

⎞

⎠ , (58)
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with diagonal matrices Q1, Q2, Q3 and entries

Q1(i, i) = D2(i, i)

D1(i, i)D2(i, i) − c2
, (59a)

Q2(i, i) = c

c2 − D1(i, i)D2(i, i)
, (59b)

Q3(i, i) = D1(i, i)

D1(i, i)D2(i, i) − c2
, ∀i. (59c)

Next, using the third block of equations of the system (52), we consider the equivalent
system

⎛

⎜
⎝

∇2f (y) + A�
y HAy A�

y HAλ A�
y

A�
λ HAy A�

λ HAλ A�
λ

Ay Aλ 0

⎞

⎟
⎠

⎛

⎝
�y

�λ

ζ

⎞

⎠ =
⎛

⎝
−∇f (y)

0
0

⎞

⎠ , (60)

and choose H to be the following block-matrix conforming to the structure of A in
(44):

H =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

, I ∈ R
(n |K|)×(n |K|). (61)

Inserting H into (60) and computing the upper-left 2 × 2 block-matrix, we obtain
(

E F�
F G

)
, E = ∇2f (y) + F�G−1F. (62)

Because ∇2f (y) is regular by (58), the Schur complement SG = E −F�G−1F and,
in turn, the upper-left 2 × 2 block-matrix in (60) are regular as well.

The assertion of Proposition 7.1 follows from inserting (Ay, Aλ) = A (44) and H

(61) into (62) and applying to the result (58) and (55). ��
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