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Abstract. We present a novel approach for representing shape knowl-
edge in terms of example views of 3D objects. Typically, such data sets
exhibit a highly nonlinear structure with distinct clusters in the shape
vector space, preventing the usual encoding by linear principal compo-
nent analysis (PCA). For this reason, we propose a nonlinear Mercer-
kernel PCA scheme which takes into account both the projection dis-
tance and the within-subspace distance in a high-dimensional feature
space. The comparison of our approach with supervised mixture models
indicates that the statistics of example views of distinct 3D objects can
fairly well be learned and represented in a completely unsupervised way.

Keywords: Nonlinear shape statistics, Mercer kernels, nonlinear density
estimation, shape learning, variational methods, kernel PCA

1 Introduction

One of the central questions in computer vision is how to model the link between
external visual input and internally represented, previously acquired knowledge.
For the case of image segmentation, prior information on the shape of expected
objects can drastically improve segmentation results [9,10]. A conceptually at-
tractive way of incorporating prior information is given by a variational approach
in which external image information and statistically acquired knowledge about
the shape of expected objects are combined in a single cost functional [6]:

E = Eimage + Eshape . (1)

The present paper is concerned with the question of how to construct such a
shape energy, which measures the similarity of a given shape to a set of training
shapes. We focus on encoding views of distinct objects in an unsupervised way.

In most of the models of shape variability it is assumed that the training
shapes define some linear subspace of the shape space [4]. Though quite powerful
in many applications, this assumption only has limited validity if the observed
deformations are more complex. It fully breaks down once shapes of different
classes are included in the training set, such as those corresponding to different
objects or just different views of a single 3D object. An example is given in
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Figure 1, which shows a sampling along the first principal component for a set
of 10 hand shapes containing right and left hands: the assumption of a linear
distribution obviously results in an unwanted mixing up of the two classes.

Fig. 1. Mixing of two classes in a Gaussian model: Sampling along the first principal
component around the mean (center) for a training set of 10 hands, comprising both
left and right hands. Shapes of different classes are morphed in an undesirable way.

Several approaches have been undertaken to model nonlinear shape variabil-
ity. They often suffer from certain drawbacks, namely they assume some prior
knowledge about the structure of the nonlinearity [8], or the number of under-
lying classes [3], or they involve an intricate model construction [2].

An elegant and promising way to avoid these drawbacks is to employ feature
spaces induced by Mercer kernels [1], in order to indirectly model a nonlin-
ear transformation Φ(x) of the original data from a space X into a potentially
infinite-dimensional space Y , aspiring a simpler distribution of the mapped data
in Y . The search for an appropriate nonlinearity Φ is replaced by the search for
an appropriate kernel function k(x, y) defining the scalar product on Y :

k(x, y) = (Φ(x), Φ(y)) . (2)

With great success, this Mercer kernel approach has been used for the pur-
pose of classification [5]. By contrast, our aim in the present paper is that of
constructing a similarity measure by probability density estimation. We there-
fore propose to approximate the nonlinearly mapped data points Φ(x) by a
Gaussian probability density in the high-dimensional space Y . It turns out that
this can be done in the framework of Mercer kernels, i.e. all nonlinearities Φ can
be expressed in terms of scalar products.

The resulting nonlinear density estimate in the original space X does not
assume any prior information about the number of classes. Comparison with a
supervised mixture model on simulated 2D data and its application to silhouettes
of various 3D objects reveals that our estimate captures the essential nonlinear
structure in the original (shape) space, although being fully unsupervised.

Our method of density estimation is related to the so-called kernel PCA,
which shall therefore be reviewed in the next section.

2 Kernel Principal Component Analysis

In [13] a method to perform nonlinear principal component analysis is proposed.
This is done by assuming an appropriate nonlinear transformation Φ(xi) of the
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training data {xi}i=1,...,� into a space Y and performing a linear principal com-
ponent analysis of the transformed data in Y (after centering it in Y ). It is shown
that the nonlinearity Φ enters the relevant expressions only in terms of scalar
products (2). Therefore the choice of an appropriate nonlinear transformation Φ
corresponds to the choice of an appropriate kernel k(x, y). The eigenvectors in
Y can be expressed as linear combinations of the mapped training data:

Vk =
�∑

i=1

αk
i Φ(xi) , (3)

with known coefficients αk
i . The projection of a mapped point Φ(z) on the eigen-

vector Vk is therefore given by:

βk := (Vk, Φ(z)) =
�∑

i=1

αk
i k(xi, z) . (4)

In [12] this kernel PCA is applied to pattern reconstruction. To this end the
authors propose to minimize the distance

ρ(z) = ||PrΦ(z) − Φ(z)||2 (5)

of a mapped sample point to its projection onto the subspace spanned by the
first r eigenvectors:

PrΦ(z) =
r∑

k=1

βk Vk . (6)

The distance (5) can be expressed in terms of the kernel function (2). For a
suitable kernel, a corrupted pattern z is reconstructed by minimizing (5).

3 Density Estimation in Kernel Space

In the present paper we deviate from the kernel PCA formulation above, namely
we propose to perform a nonlinear probability density estimation by exploiting
kernel spaces. We model the statistical distribution of the nonlinearly mapped
data by a Gaussian distribution in Y . After centering, the covariance matrix in
Y is given by

ΣΦ :=
�∑

i=1

Φ(xi)Φ(xi)t . (7)

Let {λi}i=1,...,r be the nonzero eigenvalues of ΣΦ and V the matrix containing
the respective eigenvectors VK . In general ΣΦ is not invertible and needs to be
appropriately regularized (cf. [7]), for example by replacing all zero eigenvalues
by the smallest non-zero eigenvalue λr. The inverse of this matrix is:

Σ∗
Φ = V




λ−1
1

λ−1
2

. . .
λ−1

r


 V t + λ−1

r · (I − V V t
)

. (8)
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Approximating the distribution of mapped points in Y by a Gaussian density

P(z) ∝ exp
(

−1
2
Φ(z)t Σ∗

Φ Φ(z)
)

, (9)

corresponds (up to scaling) to an energy of the form:

E(z) = Φ(z)t Σ∗
Φ Φ(z) . (10)

Using definition (8), the energy is split into two terms:

E(z) =
r∑

k=1

λ−1
k (Vk, Φ(z))2 + λ−1

r

(
|Φ(z)|2 −

r∑
k=1

(Vk, Φ(z))2
)

. (11)

Inserting expansion (3) of the eigenvectors Vk and the kernel (2) we get:

E(z) =
r∑

k=1

(
�∑

i=1

αk
i k(xi, z)

)2
· (λ−1

k − λ−1
r

)
+ λ−1

r · k(z, z) . (12)

Again, the nonlinearity Φ only appears in terms of the kernel function. Start-
ing from a shape vector z, minimization of (12) increases its similarity to the
training data {xi}.

How and why does energy (10) differ from distance (5) proposed in [12]? The
second term in (11), weighted by λ−1

r , is identical with (5). It corresponds to the
distance of a mapped point Φ(z) to the feature space F , which is the subspace
of Y spanned by the mapped training data. Following an analogous derivation
in the linear setting [11], we call this term distance from feature space (DFFS).
The first term in (11) is called distance in feature space (DIFS). Both of these
distances are visualized in Figure 2: the original data is mapped from the space
IRn to a (generally higher dimensional) space Y by the nonlinear mapping Φ.
The space Y is the direct sum of F and its orthogonal complementF in Y .
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Fig. 2. Nonlinear mapping into Y = F
⊕

F and the distances DIFS and DFFS.

In order to measure how similar a point z is to the training data {xi}, both
distances – DIFS and DFFS – need to be included. The DFFS by itself is not
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sufficient: it completely ignores how the mapped training data is distributed in
F . Moreover, one can easily imagine the mapped test point Φ(z) to be far away
from the mapped training data, while still being at exactly the same DFFS.

Including the DIFS as proposed in (11) accounts for the distance of the
projection PrΦ(z) within F from the mapped training data {Φ(xi)}i=1,...,�. It is
the Mahalanobis distance in the feature subspace F . Therefore, (11) is a more
reliable measure of the similarity of a test point z to the training data {xi}.

4 Numerical Results

4.1 Unsupervised Density Estimation via Kernel Spaces versus
Supervised Mixture Models

Given the information which class each training point belongs to, one can con-
struct a mixture model of Gaussian distributions as a nonlinear extension of
PCA. For each class i one calculates mean mi and covariance matrix Σi. The
total probability is the sum of the probabilities for each class. The corresponding
energy is given by:

E(z) = − 1
β
log

[∑
i

ci exp(−βEi(z))

]
, where ci := |2πΣi|−1/2 (13)

and
Ei(z) =

1
2
(z − mi)t Σ−1

i (z − mi) . (14)

The additional parameter β is introduced to allow smoothing. For small values
of β one obtains the weighted sum of the single class energies (14):

E(z) ≈ 1∑
i ci

∑
i

ciEi(z) + const for β 	 1 . (15)

The limit β → ∞ gives their minimum: limβ→∞ E(z) = mini Ei(z)+ const.
We compared our approach (12) for a Gaussian radial basis function kernel[1]

k(x, y) = exp
(

−||x − y||2
2σ2

)
(16)

to the supervised case (13) on an artificial training set of 2D points, which were
sampled from three different Gaussian distributions. The training data and the
level-lines of the respective energies are depicted in Figure 3.

The comparison shows several advantages of our method. The kernel space
approach is unsupervised: The class membership of a training point is neither
known, nor determined beforehand. Even the knowledge that the data of each
class is sampled from a Gaussian distribution is not taken into account. Yet, the
qualitative comparison shows that the data distribution is approximated better
than by the mixture model, which is based on the valid assumption of Gaussian
distributions and which does imply the knowledge about the class membership
of each point. Accordingly, the density estimate obtained by the mixture model
is always restricted to ellipse-like level lines.
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Fig. 3. Level-lines of the energies corresponding to a supervised mixture model (13) for
β = 1 (left) and β = 0.02 (center) and the unsupervised density estimate via kernel
spaces (10) for σ = 1.5 (right). These figures illustrate that our approach captures
nonlinear data distributions without the need to classify the training data beforehand.

4.2 Nonlinear Shape Statistics in Kernel Space

In order to apply our distance measure (10) to realistic shapes, we parameter-
ized the silhouettes of binarized training objects by closed spline curves. The
spline curves were aligned with respect to Euclidean transformations and cyclic
renumbering of the control points – see Figure 4. We used 100 control points

Fig. 4. 3D sample objects, and aligned silhouettes for several views of these objects.
Applying linear PCA to the training set on the right would not produce an accurate
description of the shape variability.

in order to assure a sufficiently detailed contour description. The control point
vectors were then used as training data to construct the energy (12), again us-
ing the kernel (16). In order to visualize the energy we projected the control
point vectors of the training contours onto the first two principal components
of a linear PCA1. The data points and the respective level lines of energy (12)
are shown in Figure 5. The projection shows that our density estimate works
well even in higher dimensions2 and for distributions which are not necessarily
1 Note that linear PCA is only used as a coordinate frame for visualization of the
high-dimensional data!

2 Due to the 2D projection, Figure 5 is merely a crude visualization of how the data
distribution is approximated in the original 200-dimensional space.
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Fig. 5. Training shapes and level lines corresponding to the shape density estimate in
kernel space (12), projected onto the first two principal components of a linear PCA.
Left: Different views of objects 1 (◦), 2 (+) and 3 (•) in Figure 4 for σ = 0.04.
Center: Left hands (+) and right hands (•) (used in Figure 1) for σ = 0.1. Right:
Hands for σ = 0.04. Clusters in high-dimensional shape space are estimated in variable
detail.

Gaussian – see Figure 5. Compared to linear PCA (elliptical level lines) the true
data distribution is approximated much better. This is crucial since the different
shapes can be quite similar – see Figure 4, right side. Moreover, the construction
of the shape energy is fully unsupervised, i.e. it does not involve the number of
objects nor the number of clusters, in which the different views of one object can
be separated. By changing the parameter σ in (16), one can choose how detailed
the approximation of the data should be – see Figure 5, middle and right.

Note that we are not interested in classification of the objects, we merely
want a measure of how similar an object is to a set of training objects given
their 2D projections. It is therefore irrelevant whether all projections of one 3D
object can be associated with one cluster. Rather we expect to obtain several
clusters corresponding to the stable views of each object.

5 Conclusion

We presented a method to perform nonlinear density estimation in the framework
of kernel spaces. A set of training points is mapped to a higher dimensional
space Y by a nonlinear mapping Φ. The distribution of mapped points is then
approximated by a Gaussian distribution in Y . Back projection to the original
space allows a visualization of the estimated density. Comparison to supervised
mixture models shows the advantages of our approach – namely that it is fully
unsupervised and that the data distribution is approximated more appropriately.
An application of this density estimation to silhouettes of 3D objects shows
that the density estimate via kernel spaces seems to be well suited for high-
dimensional and highly nonlinear data distributions. We argued that the distance
measure corresponding to the density estimation in kernel spaces is more reliable
than that obtained in kernel PCA [12].
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Ongoing work focuses on ways to automatically estimate the optimal size of
the parameter σ and on the application of the proposed density estimation to
image segmentation [6].
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