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Abstract We exploit the mimetic finite difference method
introduced by Hyman and Shashkov to present a frame-
work for estimating vector fields and related scalar fields (di-
vergence, curl) of physical interest from image sequences.
Our approach provides a basis for consistent definitions of
higher-order differential operators, for the analysis and a
novel stability result concerning second-order div-curl reg-
ularizers, for novel variational schemes to the estimation of
solenoidal (divergence-free) image flows, and to convergent
numerical methods in terms of subspace corrections.

Keywords Variational models · Optical flow · Helmholtz
decomposition · Experimental fluid dynamics

1 Introduction

The estimation of highly non-rigid image flows is an impor-
tant problem in various application areas of image analy-
sis like remote sensing, medical imaging, and experimental
fluid mechanics. Such flows, which cannot be represented by
a single parametric model, are typically estimated by varia-
tional approaches. In contrast to standard approaches, how-
ever, higher-order regularization is necessary in order to ac-
curately recover important flow structures like vortices, for
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example, and to incorporate physically plausible constraints,
like vanishing divergence of the flow.

The basis for our paper is early work on second-order
regularizers constraining the gradients of the flow compo-
nents divergence and curl [1, 11, 20]. This regularization ap-
proach has been elaborated in a series of papers by Mémin
and co-workers [8, 9]. Moreover, the decomposition and rep-
resentation of continuous vector fields by velocity potentials
and stream functions [10] has been adopted to derive piece-
wise parametric representations of relevant flow structures.
Recently, the direct estimation of this representation from
image sequences has been studied in [16].

The objective of this contribution is to provide a math-
ematically sound discrete representation of vector fields in
terms of basic flow components related to quantities of phys-
ical relevance, and a corresponding decomposition into sub-
spaces of the linear space of discrete vector valued func-
tions. By this, we obtain and can investigate a discrete ana-
logue of known continuous representations [10] in connec-
tion with image sequence analysis of fluids. This gives rise,
for example, to a novel variational approach for estimation
solenoidal (divergence-free) flows from image sequences.
Furthermore, we remove numerical convergence problems
of the heuristic alternating numerical estimation scheme em-
ployed in [16] by adopting a subspace correction method
from numerical analysis which directly applies to our flow
field representation. Finally, our analysis reveals the im-
portance of an additional boundary regularization term in
connection div-curl regularizers (Sect. 4.3), which has been
overlooked apparently in previous work.

In Sect. 2, we present the discrete representation of both
scalar and vector fields based on the mimetic finite differ-
ence method introduced by Hyman and Shashkov [12, 13].
A basic feature of this representation is that basic integral
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identities of vector analysis are preserved after discretiza-
tion. Furthermore, basic first-order differential operators can
be defined such that compound higher-order operators with
compatible domains and image spaces can be consistently
defined. Subsequently, we elaborate the representation of
vector fields by potential and stream functions and various
useful subspace decompositions of the linear space of dis-
crete vector fields.

Based on this, we reconsider a few variational approaches
to motion estimation in Sect. 3. By defining all quantities in
terms of the representation developed in Sect. 2, we examine
well-posedness and stability, including the non-trivial stabil-
ity issue mentioned above (Sect. 4). Section 5 provides a nat-
ural numerical estimation approach which directly fits to the
flow field representation, along with details of the multilevel
implementation. We validate our approach with numerical
experiments in Sect. 6.

A preliminary conference version of this paper appeared
in [28].

2 Vector-Field Representation

2.1 Discrete Fields and Differential Operators

We use the mimetic finite difference method introduced by
Hyman and Shashkov [12, 13] in order to preserve basic re-
lationships of continuous vector analysis by appropriately
defining their discrete analogues. This scheme applies to
general curvilinear grids in two and three dimensions. Here,
we only apply it to the special case of rectangular grids. This
discretization scheme will be used in Sect. 2.2 to accurately
represent and decompose vector fields.

Linear Spaces. Figure 1 illustrates the definitions of the fol-
lowing finite-dimensional vector spaces of scalar and vector
fields that naturally appear in discrete models of continuum
mechanics:

− HV : the space of scalar fields defined on cells,
− HP : the space of scalar fields defined on vertices,
− HE : the space of vector fields defined tangential to sides,
− HS : the space of vector fields defined normal to sides.

We denote with Ho
P , Ho

S , Ho
E the subspaces of inner scalar

and inner vector fields, respectively, obtained by restricting
the spaces HP , HS , HE , and by imposing zero boundary
values.

Notation. We denote with Li,j+1/2 the side between vertices
(i, j) and (i, j +1). The relationship between vertex indices
and cell indices is depicted in Fig. 1 for the lower-right cell,
denoted with �i+1/2,j+1/2. To simplify notation, we index
cell (side, vertex) positions sometimes directly with (α,β)

if the meaning is unambiguous. � denotes the whole image
section, and ∂� its boundary,

Fig. 1 Definition of finite-dimensional spaces of scalar fields and vec-
tor fields on a rectangular grid. Filled circles depict nodes or vertices,
the other circles indicate cells. The positions of diamonds are referred
to as sides

Convention. We consider in this paper only regular grids
with unit side-lengths Lα,β = 1 and unit cell-areas �α,β =
1, ∀α,β . Let our grid consist of m × n vertices. Reshaping
the scalar/vector fields columnwise into vectors, we iden-
tify: HP = R

mn, Ho
P = R

(m−2)(n−2), HV = R
(m−1)(n−1),

HS = R
m(n−1)+n(m−1), Ho

S = R
(m−1)(n−2)+(n−1)(m−2), and

HE , Ho
E with HS , Ho

S .

Inner products and Norms. While HP and HV are equipped
with the usual Euclidian inner product

〈g,h〉HV
=

∑

�α,β∈�

gα,βhα,β,

and with the corresponding induced norm, the inner prod-
ucts on HS and HE are defined as follows: let the indices
D,T ,R,L refer to the sides of cell �α,β , u ∈ HS , and

u�α,β := 1√
2
(uD,uT ,uR,uL)T

α,β .

Then

〈u,v〉HS
:=

∑

�α,β∈�

〈u�α,β , v�α,β 〉, ‖u‖HS
:= √〈u,u〉HS

.

Analogous definitions hold for HE .

First-order Differential Operators. We define the discrete
first-order differential operators corresponding to ∇ , ∇⊥,
div, and curl, operating on discretized 2D data:

G : HP → HE, G
⊥ : HP → HS,

Div : HS → HV , Curl : HE → HV ,
(1a)

G : HV +∂V → HS, G
⊥ : HV +∂V → HE,

Div : Ho
E → Ho

P , Curl : Ho
S → Ho

P .

(1b)
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Let

Dm :=

⎛

⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎞

⎟⎟⎟⎟⎟⎠
∈ R

m−1,m,

and

D̃m :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 0 0 . . . 0 0 0 0
0 −1 1 0 . . . 0 0 0 0
0 0 −1 1 . . . 0 0 0 0

. . .
. . .

. . .

0 0 0 0 . . . −1 1 0 0
0 0 0 0 . . . 0 −1 1 0
0 0 0 0 . . . 0 0 −2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m,m+1.

Then the discrete operators are represented by the following
matrices

G =
(

In ⊗ Dm

Dn ⊗ Im

)
, G =

(
In−1 ⊗ D̃m

D̃n ⊗ Im−1

)
,

Div = (In−1 ⊗ Dm,Dn ⊗ Im−1 ),

Div = (In−2 ⊗ Dm−1,Dn−1 ⊗ Im−2 ),

Curl = (Dn ⊗ Im−1,−In−1 ⊗ Dm ),

Curl = (Dn−1 ⊗ Im−2,−In−2 ⊗ Dm−1 ),

where ⊗ denotes the Kronecker product of matrices. The
operator G

⊥ : HP → HS is defined by

G
⊥ =

(−Dn ⊗ Im

In ⊗ Dm

)
.

It is easy to check that the restricted operator G
⊥|Ho

P
maps

to Ho
S .

Finally, for discretizing the boundary condition, n · u|∂�,
we introduce the boundary operator

Bn : HS → ∂HS := HS\Ho
S ,

which restricts the vector field to the vectors at the grid’s
boundary multiplied by the outer normal vectors. The matrix
form of the boundary operator is:

Bn =
(

In−1 ⊗ Bm 0
0 Bn ⊗ Im−1

)
,

where 0 are zero matrices of appropriate sizes, and

Bm :=
(−1 0 . . . 0 0

0 0 . . . 0 1

)
∈ R

2,m.

It has been shown [13] that using the operators defined
above, elementary properties of continuous fields in terms
of div, curl, ∇ , carry over to the discrete case. For example,
if the curl of a vector field w is zero, Curlw ≡ 0, then the
vector field can be expressed as the gradient of a scalar field
U , w = GU ; or, if the divergence of a vector field w is a
zero, Divw ≡ 0, then it should be the curl of another vector
field, w = G

⊥U (recall that we only consider the 2D case in
this paper).

Similarly, Green’s theorem
∫

�

g · divudv +
∫

�

∇g · udv =
∫

∂�

gunds (2)

becomes in the discrete case

〈g,Divu〉HV
+ 〈Gg,u〉HS

=
∑

Lα,β∈∂�

gα,βun;α,β, (3)

whereas Gauss’ theorem
∫

�

divudv =
∫

∂�

unds (4)

reads in the discrete case
∑

�α,β∈�

Divu =
∑

Lα,β∈∂�

un;α,β . (5)

Using the definitions above, we rewrite this equation more
concisely as

1T
dimHV

Divu = 1T
dim ∂HS

Bnu, (6)

where 1n denotes the one-vector.
Most importantly, the additional dual operators (1b) re-

solve the incompatibilities of domains and ranges of the pri-
mal operators (1a) when used to build compound second or-
der differential operators (cf. (16) below). For example, G

and Div cannot be regarded as mutually adjoint operators,
whereas G,Div and G,Div do.

2.2 Orthogonal Decomposition

We represent vector fields directly in terms of their irrota-
tional and solenoidal components. These two components
are defined by the first-order variations of velocity potentials
ψ ∈ HV +∂V and stream functions φ ∈ HP , and are orthogo-
nal to each other.

Theorem 2.1 (Basic Vector Field Decomposition [14]) For
any 2D vector field u ∈ HS , the representation of u in terms
of ψ,φ

u = Gψ + G
⊥φ, Bnu = BnGψ, (7)

where φ∂� = 0, is unique up to a constant of ψ .
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According to (7), let:

u = v + w, v = Gψ,w = G
⊥φ.

Since the operators defined in the previous section satisfy
[12, 13]:

Div G
⊥ ≡ 0, Curl G ≡ 0,

we have

Divw = 0, Curlv = 0, (8)

and

〈w,v〉HS
= 〈Gψ,G

⊥φ〉HS
= 〈Curl Gψ,φ〉HP

≡ 0. (9)

This shows:

Theorem 2.2 (Orthogonality) The decomposition (7) is or-
thogonal:

〈Gψ,G
⊥φ〉HS

= 0, ∀u ∈ HS (10)

Defining the corresponding subspaces

Sir := {u ∈ HS |u = Gψ}, (11)

Ssol := {u ∈ HS |u = G
⊥φ,φ∂� = 0}, (12)

the theorem asserts that the direct sum holds:

HS = Sir ⊕ Ssol (13)

Representation (7) is motivated by analogous decomposi-
tions of continuous vector fields [10]. However, discretizing
such vector fields with standard finite differences or finite el-
ements yields approximate decompositions only, which may
lead to numerical instabilities in applications. In contrast,
Theorem 2.1 provides an exact orthogonal decomposition
of the finite-dimensional space of vector fields HS . Further-
more, as detailed below, the decomposition allows to esti-
mate ψ and φ directly from a image sequence. Using vari-
ational optical flow approaches, the estimation can be done
in parallel by applying subspace correction methods. Alter-
natively, we may first estimate the motion field u, and then
compute ψ and φ in a subsequent step by solving the Neu-
mann and Dirichlet problems

�Dψ = Divu, BnGψ = Bnu, (14)

�Cφ = Curlu, φ∂� = 0, (15)

where the discrete Laplacians are defined by

�D := Div G, �C := Curl G⊥, (16)

and the additional constraint 1T
dimHV

ψ = 0 (continuous
case:

∫
�

ψdv = 0) is used to eliminate the arbitrary con-
stant in (7) and (14).

In the remainder of this paper, however, we show that
directly estimating ψ,φ from image sequence data is fea-
sible. Throughout we adopt the strategy to express estima-
tion problems by direct relations between the data and un-
knowns. Such direct formulations allow to formulate hy-
potheses about unknowns in a proper way and avoid addi-
tional approximation errors through the successive applica-
tion of independent techniques.

2.3 Flow Representation

Consider Gauss’ theorem (5) and (6) for any vector field
u ∈ HS . We say that ρ ∈ HV and ν ∈ ∂HS fulfill the com-
patibility condition if

1T
dimHV

ρ = 1T
dim ∂HS

ν (17)

In what follows, we will make use of another flow repre-
sentation, besides u ∈ HS . To this end, consider the operator
A : HS → HV ⊕ Ho

P ⊕ ∂HS given by

A :=
⎛

⎝
Div
Curl
Bn

⎞

⎠ ∈ R
dimHS+1,dimHS , (18)

where the Curl operator is naturally extended to the whole
space HS . The operator A has full rank dimHS . Moreover,
we see by (6) that (ρ,ω, ν)T is in the image of A if and only
if ρ and ν fulfill the compatibility condition (17). In this
case, the representation of u in terms of (ρ,ω, ν)T is given
by u = A†(ρ,ω, ν)T, where A† = (ATA)−1AT denotes the
pseudoinverse of A.

Proposition 2.1 There is a one-to-one correspondence be-
tween the spaces HS and

VS := {(ρ,ω, ν)T : 1T
dimHV

ρ = 1T
dim ∂HS

ν}, (19)

where u ∈ HS , ρ = Divu,ω = Curlu, ν = Bnu, and

u = A†(ρ,ω, ν)T (20)

Remark In practice, we do not compute u = A†(ρ,ω, ν)T

which is ill-conditioned. Rather, we solve both the Neumann
problem (14) and the Dirichlet problem (15), and insert the
solutions into (7).

2.4 Extended Flow Decompositions

We take a closer look at the representation (20) by further
decomposing the space VS defined in (20). As a result, we
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obtain a definition of laminar flows, insight into the influ-
ence of boundary values, and further orthogonality relations.

The orthogonal decomposition theorem (7) shows that
the two potential functions ψ,φ can be computed through a
vector field u and its normal boundary flow u∂�, and that the
representation (13) holds. This decomposition can be rewrit-
ten in a meaningful way using the representation (ρ,ω, ν)T:

(ρ,ω, ν)T = (ρ,0, ν)T + (0,ω,0)T (21)

Obviously, the two components, (ρ,0, ν)T and (0,ω,0)T,
are in VS . While (ρ,0, ν)T is curl-free, component (0,ω,0)T

is divergence-free. Let cρ and cω denote constants propor-
tional to the mean of the divergence and the curl of u, that
is

cρ := 1T
dimHV

ρ = 1T
dimHV

Divu, (22)

cω := 1T
dimHo

P
ω = 1T

dimHo
P

Curlu. (23)

Using these averaged quantities, we can further decompose
the flow u ∈ HS , represented by (ρ,ω, ν)T ∈ VS :

(ρ,ω, ν)T = (cρ, cω, ν)T + (ρo,0,0)T + (0,ωo,0)T, (24)

where 1T
dimHV

ρo = 1T
dimHo

P
ωo = 0. Accordingly, we define

the components

u = uc + uo
d + uo

c

where uc := A†(cρ, cω, ν)T, uo
d := A†(ρo,0,0)T and uo

c :=
A†(0,ωo,0)T. Vector uc and (cρ, cω, ν)T, respectively,
represent the basic pattern of the non-rigid flow u and
its boundary distribution, while uo

d,uo
c and (ρo,0,0)T,

(0,ωo,0)T are related to oscillating flow patterns that are
curl-free and divergence-free, respectively. Due to non-
vanishing spatial averages of cρ, cω, the component uc de-
termines the global structure of the flow field, justifying the
term basic flow pattern. It is easy to verify that orthogonality
between the components uo

d and uo
c is preserved

〈uo
d,uo

c〉 = 0,

while uc and uo
c, u

o
d are not orthogonal.

We summarize these properties, thereby extending Theo-
rem 2.1:

Proposition 2.2 For any 2D vector field u ∈ HS and Bnu �=
0, the decomposition (24) of u admits the representation in
terms of functions ψc,φc,ψo,φo

u = (Gψc + G
⊥φc) + Gψo + G

⊥φo,Bnu = BnGψc (25)

where φc
∂� = φo

∂� = 0, BnGψo = 0, and �Dψc ≡ constant,
�Cφc ≡ constant. This representation is unique up to two

constants of ψc and ψo, respectively. Moreover, the orthog-
onality relation

〈Gψo,G
⊥φo〉 = 0 (26)

holds.

While the components of the decomposition (24) and (25)
are easy to interpret, a single orthogonality relation (26) only
holds. To improve the latter situation, we consider the alter-
native decomposition

(ρ,ω, ν)T = (cρ,0, ν)T + (ρo,0,0)T + (0,ω,0)T. (27)

The corresponding components of u ∈ HS are denoted as

u = uc
d + uo

d + uc

where uc
d := A†(cρ,0, ν)T, uo

d := A†(ρo,0,0)T and uc :=
A†(0,ω,0)T. As will be shown below, this decomposition
provides the basis for representing any vector field, under
additional conditions to be specified, by three mutually or-
thogonal components. We first summarize the properties of
(27):

Proposition 2.3 For any 2D vector field u ∈ HS and Bnu �=
0, the decomposition (27) of u admits the representation in
terms of functions ψc,ψo,φ

u = Gψc + Gψo + G
⊥φ, Bnu = BnGψc (28)

where φ∂� = 0, BnGψo = 0, and �Dψc ≡ constant. This
representation is unique up to two constants of ψc and ψo,
respectively. Moreover, the orthogonality relations

〈Gψo,G
⊥φ〉 = 0, 〈Gψc,G

⊥φ〉 = 0

hold.

It remains to work out conditions under which the flow com-
ponents Gψc and Gψo are orthogonal, too. By Green’s the-
orem (3), we have

〈Gψo,Gψc〉 = −〈ψo,�Dψc〉 + 〈ψo, ν〉∂�

Taking into account the compatibility condition (17),
1T

dimHV
�Dψc = 1T

dim ∂HS
ν, we observe that the right hand

side is invariant with respect to an arbitrary additive con-
stant C of ψo:

−〈ψo + C,�Dψc〉 + 〈ψo + C,ν〉∂�

= −〈ψo,�Dψc〉 + 〈ψo, ν〉∂�

+ C(−1T
dimHV

�Dψc + 1T
dim∂HS

ν)

= −〈ψo,�Dψc〉 + 〈ψo, ν〉∂�.
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Hence, fixing this constant by setting 〈ψo, ν〉 = 0, we obtain

−〈ψo,�Dψc〉 + 〈ψo, ν〉∂� = −cρ1T
dimHV

ψo,

because �Dψc is constant by Proposition 2.3. It follows that
〈Gψo,Gψc〉 = 0 if cρ = 0. This means that the total diver-
gence of flow u is zero, and that the flow entering and leav-
ing the domain � is balanced

1T
dimHV

Divu = 1T
dim ∂HS

ν = 0.

Proposition 2.4 Suppose u ∈ HS is a 2D vector field with
Bnu �= 0, and that the balanced boundary flow condition

1T
dim ∂HS

Bnu = 0

holds. Then u can be represented in terms of functions
ψc,ψo,φ

u = Gψc + Gψo + G
⊥φ, Bnu = BnGψc, (29)

where φ∂� = 0, BnGψo = 0, and �Dψc ≡ 0. This repre-
sentation is unique up to two constants of ψc and ψo, re-
spectively, and all three components Gψc, Gψo and G

⊥φ,
are mutually orthogonal.

Note that the basic part Gψc turns out to be the laminar
flow, i.e. it is both divergence and curl free.

As a consequence of Proposition 2.4, we can refine the
decomposition (13) of the vector field space HS . To this end,
we define further subspaces in addition to (11) and (12):

− HS,o ⊂ HS : subspace of vector fields with
1T

dim ∂HS
Bnu = 0,

− Sir,o ⊂ Sir: subspace of irrotational vector fields with
zero boundary flow,

− Sir,C ⊂ Sir: subspace of irrotational vector fields with
constant divergence,

− Sdiv,0: subspace of vector fields with vanishing diver-
gence,

− Slam: subspace of vector fields with vanishing divergence
and curl.

Based on these definitions, we summarize consequences of
Proposition 2.4:

Corollary 2.1 2D vector fields u ∈ HS admit the following
decompositions:

HS = (Sir,C + Sir,o) ⊕ Ssol, (30)

HS,o = Sir,C ⊕ Sir,o ⊕ Ssol, (31)

Sdiv,0 = Slam ⊕ Ssol. (32)

3 Variational Approaches

In this section, we present and discuss various variants of the
following variational approach to optical flow estimation:

min
u∈HS

F (u) := ‖I1(x + u) − I2(x)‖2
HV

+ L(u) (33)

Here, I1, I2 ∈ HV are subsequent images of a given se-
quence, and L(u) is a regularizing term to be specified be-
low, which makes the variational problem well-posed.

We point out that the data term—the first term in (33)—
could be made robust against outliers by using some robust
estimators or the L1-norm [4]. In this paper, however, we
focus on higher-order regularization in connection with the
representation (7).

3.1 Data Term

In order to alleviate the local minima problem and to capture
large motions, we apply the standard procedure of minimiz-
ing F(u) using a sequence of linearizations of the data term

F l(ul) := ‖GI l
1 · ul + ∂t I

l‖2
HV

+ L(ul), (34)

where {I l
1, I

l
2}l=0,1,...,m denote linear scale-space represen-

tations of a given image pair, and ∂t I
l = I l

1(x) − I l
2(x −

ul+1(x)).
In this connection, the prolongation operator transferring

various quantities to the next finer grid deserves special at-
tention, in order to preserve properties based on the de-
composition (7). A corresponding constrained interpolation
scheme will be detailed in Sect. 5.3.

3.2 Div-Curl Regularization

We wish to apply the following second-order regularizer
(cf. the discussion of related work in Sect. 1):

∫

�

λ1|∇ divu|2 + λ2|∇ curlu|2dx

=
∫

�

λ1|∇�ψ |2 + λ2|∇�φ|2dx (35)

where λ1 and λ2 are two positive constants. This term mea-
sures the variation of the basic flow components diver-
gence and curl, but does not penalize the components them-
selves. However, both standard finite differences or finite el-
ements discretization lead to finite-dimensional representa-
tions which do not satisfy (7) and (10). As a result, penal-
izing one component may affect the other component too.
Therefore, we adopt the framework of Sect. 2.2 which leads
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to the following discretization of (35):

L(u) =Ldiv(u) + Lcurl(u)

=λ1‖GDiv u‖2
HS

+ λ2‖GCurlu‖2
HE

(36)

=λ1‖G�Dψ‖2
HS

+ λ2‖G�Cφ‖2
HE

(37)

3.3 Potential Based Non-rigid Flow Estimation

For the general non-rigid flow estimation, we consider the
functional

min
u∈HS

F (u) := ‖I1(x + u) − I2(x)‖2
HV

+ Ldiv(u) + Lcurl(u)

(38)

Inserting the decomposition (7) and (37), we obtain the min-
imization problem

min
ψ,φ

F (ψ,φ) = ‖I1(x + Gψ + G
⊥φ) − I2(x)‖2

HV
(39)

+ λ1‖G�Dψ‖2
HS

+ λ2‖G�Cφ‖2
HE

subject to the linear constraints

1T
dimHV +∂V

ψ = 0, φ∂� = 0 (40)

Note that the first constraint fixes the free constant men-
tioned in Theorem 2.1. Furthermore, the vector fields in (39)
are elements of orthogonal subspaces (13), and thus may be
determined in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of
experimental fluid dynamics, concerns the estimation of
divergence-free flows. In this case the decomposition (29)
reduces to (cf. (32)):

u = Gψc + G
⊥φ := uc

d + uc (41)

with the laminar flow uc
d = Gψc which only depends on the

boundary flow Bnu:

�Dψc = 0, BnGψc = Bnu. (42)

In order to estimate solenoidal flows, we consider instead of
(39) the functional

min
u∈Sdiv 0

Fsol(u) := ‖I1(x + u) − I2(x)‖2
HV

+ Lcurl(u). (43)

Inserting the decomposition (41), we obtain the minimiza-
tion problem:

min
ψc,φ

Fsol(ψ
c,φ) =‖I1(x + Gψc + G

⊥φ) − I2(x)‖2
HV

+ λ2‖G�Cφ‖2
HE

(44)

subject to the constraints:

�Dψc = 0, 1T
dimHV +∂V

ψc = 0, φ∂� = 0 (45)

Note that the vector fields of (44) are elements of orthogonal
subspaces (32), and thus may be determined in parallel by
subspace correction methods.

3.5 Third-Order Derivative Regularizers

In both variational approaches (39) and (44) third-order reg-
ularizers appear in the energy functional. A common method
to reduce the order of the regularizer is to use auxiliary
variables ξ1 = �Dψ and ξ2 = �Cφ resulting in first-order
terms:

Ldiv = λ1‖Gξ1‖2
HS

, Lcurl = λ2‖Gξ2‖2
HE

(46)

s.t. ξ1 = �Dψ, ξ2 = �Cφ

In principle, this has the advantage to decrease the order of
the regularizers. On the other hand, imposing the equations
ξ1 = �Dψ, ξ2 = �Cφ as hard constraints requires a care-
ful analysis of the underlying continuous setting in order
to avoid a mismatch of spaces and boundary constraints.
Therefore, such equations are mostly applied in a least-
squares sense in the literature, which introduces additional
errors. In contrast, through the mimetic finite-difference
method it is possible to directly obtain problem discretiza-
tions which are both accurate and stable.

4 Well-Posedness and Stability

In this section, we analyse well-posedness of the variational
approaches discussed in Sect. 3. To this end, we state the
conditions under which the respective functionals are strictly
convex. This will be done for a single level l in (34), and
in terms of vector fields u due to the unique representations
stated in Theorem 2.1 and Proposition 2.4. These representa-
tions also allow us to point out in Sect. 4.3 a potential source
of instability in connection with the higher-order regularizer
from Sect. 3.2. This result appears to be new in the litera-
ture. Furthermore, our experimental results showed that re-
moving this instability as developed below, is numerically
significant.

In order to compactly state the various conditions for
well-posedness, we complement the list of subspaces de-
fined at the end of Sect. 2.4. To this end, we define the linear
operator

G := (GI1·),
and use the notation N(A) for the null-space of a linear op-
erator A:



74 J Math Imaging Vis (2007) 28: 67–80

− Ssol,C ⊂ Ssol: subspace of solenoidal vector fields with
constant curl,

− HS,C ⊂ HS : subspace of vector fields

HS,C := Sir,C + Ssol,C = N(GDiv) ∩ N(GCurl),

− SG0 ⊂ HS : subspace of vector fields

SG0 = {u | Gu = 0}.
4.1 Well-Posedness of General Flows

The variational approach (33) for estimating general flows
amounts to the unconstrained convex minimization prob-
lem:

min
u∈HS

F (u) =‖Gu + ∂t I‖2
HV

+ λ1‖GDivu‖2
HS

+ λ2‖GCurlu‖2
HE

(47)

As a consequence, the following is immediate:

Proposition 4.1 Problem (33) is well-posed if and only if

SG0 ∩ HS,C = {0}

As the subspace HS,C is fixed with the problem dimension,
this condition requires a sufficiently high spatial variation of
the grayvalue image I to obtain well-posedness. A counter-

example is given by any image I with �DI ≡ Curl G
⊥
I =

C, because for the vector field G
⊥
I ∈ HE the inner product

with GI ·G⊥
I , computed by summing up the corresponding

local expressions over all cells (see Fig. 1), vanishes.

4.2 Well-Posedness on Solenoidal Flows

The variational approach (43) for estimating divergence-free
flows amounts to a convex quadratic minimization problem
with linear equality constraints. Expressing the restriction
u ∈ Slam ⊕ Ssol through the constraint Divu = 0, we refor-
mulate (43):

min
u∈HS

Fsol(u) = ‖Gu + ∂t I‖2
HV

+ λ‖GCurlu‖2
HE

(48)

s.t. Divu = 0

As a consequence, the condition for well-posedness reads:

Proposition 4.2 Problems (43) and (48) are well-posed if
and only if

SG0 ∩ (Slam ⊕ Ssol,C) = {0}

Note that Problem (48) apparently gives rise to three relevant
null-spaces, Sg , Ssol,C , and Slam ⊕ Ssol. However, because
Ssol,C ⊂ Ssol, we have

Ssol,C ∩ (Slam ⊕ Ssol) = Slam ⊕ Ssol,C.

4.3 Stability

It is well-known that existence of a unique solution, as es-
tablished in the previous section, does not say much about
numerical stability. Indeed, inspection of the second-order
regularizer (35) reveals a particular sensivity of u with re-
spect to the image data and suggests using a corresponding
regularizer.

To motivate this additional term, we rewrite the es-
timation functional using the representation (ρ,ω,u∂�)T

(cf. Proposition 2.1):

min
ρ,ω,u∂�

F (u) =‖GA†(ρ,ω,u∂�)T∂t I‖2 (49)

+ λ1‖∇ρ‖2 + λ2‖∇ω‖2.

We consider the extended decomposition due to Theo-
rem 2.3 and (30). Considering (27), the variance of di-
vergence and curl field related to the two components
(ρo,0,0)T and (0,ω,0)T can be penalized and constrained
by the respective regularizers. However, for the last part
(cρ,0, ν)T which is curl-free and has constant divergence,
both regularization terms are not effective.

The discussion in Sect. 2.4 showed that this part only
depends on the normal flow at the boundary u∂�. In fact,
(cρ,0, ν)T is only weakly constrained by the data term,
that is the gradient field of image data I at the boundary
whose estimate is noisy and unreliable. Therefore, in prac-
tice, it turned out to be useful to reduce this sensivity of u

by including a regularizer which additionally constrains the
boundary values:
∫

∂�

(∂nu)2dl. (50)

This constraint term favors continuity of vector field u(�)

between the boundary and the interior domain. By virtue of
the orthogonal decomposition, it can be directly expressed
in terms of ψ

∫

∂�

|∂n(∇ψ)|2dl. (51)

The discrete version of this regularizer reads

‖PGψ‖2
bc (52)

where the respective matrix P represents the operator ∂n

in (51), and ‖·‖bc is the norm evaluating elements along the
boundary ∂�.

5 Algorithms and Implementation

In this paper, we apply the space decomposition method to
restore the two potential fields φ(�) and ψ(�) directly. This
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method provides a general framework for analysing domain
decomposition and multigrid methods [26, 27]. The essence
is to decompose the solution space into a sum of subspaces
and then solve the original optimization problem sequen-
tially or in parallel in each subspace. Extensions to some
convex optimization problems were presented in [23], and
convergence rates are analyzed in [21, 22, 24].

We describe the space decomposition method and its ap-
plication to our approach in Sects. 5.1 and 5.2. Subsequently,
we detail in Sects. 5.3 and 5.4 a multi-level representation of
flow fields adapted to the orthogonal decomposition.

5.1 Iterative Subspace Corrections

Suppose that for a general convex optimization problem

min
u∈V

F (u), (53)

the solution function space V can be decomposed into a sum
of subspaces

V = V1 + V2 + · · · + Vm. (54)

For any u ∈ V , there exist ui ∈ Vi , such that u = ∑m
i=1 ui .

Conversely, if ui ∈ Vi , then
∑m

i=1 ui ∈ V . Note that in gen-
eral the sum is not the direct sum, and the decomposition of
u is not unique.

There are two versions of iterative algorithms, the Par-
allel Subspace Corrections (PSC) and the Successive Sub-
space Corrections (SSC). In each step, PSC and SSC com-
pute the next iterate in V through searching each subspaces
Vi , i = 1, . . . ,m, in parallel or sequentially, respectively.
With suitable assumptions about the objective function F(u)

and the space decomposition scheme, both algorithms con-
verge. As we do not focus on parallel implementations in
this work, we adopted SSC which, in this case, converges
faster.

Algorithm 5.1 (Successive Subspace Corrections)

− Step 1. Choose u0
i ∈ Vi .

− Step 2. For the n-th iteration, compute ûn+1
i ∈ Vi sequen-

tially for i = 1, . . . ,m, by minimization:

F

(
∑

1≤k<i

un+1
k + ûn+1

i +
∑

i<k≤m

un
k

)

≤ F

(
∑

1≤k<i

un+1
k + vi +

∑

i<k≤m

un
k

)
, ∀vi ∈ Vi.

(55)

Choose un+1
i ∈ Vi, i = 1, . . . ,m, such that

‖un+1
i − ûn+1

i ‖V ≤ ε0‖un
i − ûn+1

i ‖V , 0 ≤ ε0 ≤ 1. (56)

− Step 3. Go to the next iteration.

In practice, we choose un+1
i = (1 − ε0)û

n+1
i + ε0u

n
i , with

ε0 ∈ [0.5,0.75].

5.2 Application to Flow Estimation

Based on Algorithm 5.1, the estimation of general flows
amounts to solving the two subproblems including the
boundary stability term (52) with a penalty parameter λ3,

min
ψ

F̃ (ψ, φ̄) =‖I (x + Gψ + G
⊥φ̄) − I (x)‖2

HV

+ λ1‖G�Dψ‖2
HS

+ λ3‖PGψ‖2
bc, (57)

min
φ

F̃ (ψ̄, φ) =‖I (x + Gψ̄ + G
⊥φ) − I (x)‖2

HV

+ λ2‖G�Cφ‖2
HE

, (58)

and subject to the linear constraint (40) for ψ , whereas the
constraint for φ is directly encoded by the discretization.
Here ψ̄ and φ̄ in (57) and (58) are fixed variables at each it-
eration. Each subproblem is an convex quadratic problem to
which the preconditioned conjugate gradient iteration [19]
was applied. The ψ -step includes a simple projection due to
the linear constraint in (40).

Concerning estimation of divergence-free flows, ap-
proach (44) together with (45) requires as part of Algo-
rithm 5.1 to solve a linearly constrained quadratic problem
in the subspace of laminar flows. To this end, the Augmented
Lagrangian Method is applied. For details, we refer to [3].
The corresponding augmented Lagrangian function for the
ψ -subproblem reads:

Lφ̄(ψc, r) =‖I (x + Gψc + G
⊥φ̄) − I (x)‖2

+ 〈r,�Dψc〉 + c

2
‖�Dψc‖2

HV
+ λ3‖PGψc‖2

bc

(59)

with φ̄ being fixed at each iteration step. Direct incorpora-
tion into the augmented Lagrangian iteration of the remain-
ing linear equality

∑
HV +∂V

ψ = 0 in (45) would destroy the
sparsity of the matrix of the penalty term and, in turn, the
efficiency of the sparse solver. Instead, we simply remove
the average from iterates (ψc)n as a simple post-processing
step.

In practice, the augmented Lagrangian iteration con-
verged in less than 10 iterations.

5.3 Multi-level Implementation

Related to Sect. 3.1, we detail in this and in the following
section the multi-level handling of flow fields in terms of
potential functions ψ,φ.

According to Sect. 2.2, discrete fields of divergence
(Divu)l, l = 1, . . . ,m, are elements of the space HV , and
fields (Curlu)l, l = 1, . . . ,m, are in Ho

P .
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As described in [16, 18], two image pyramids
{I l

i }l=1,...,m, i = 1,2, are constructed. l = 0 denotes the
original image, and l = m denotes the coarsest level. At
level l, given potential fields ψ̃ l , φ̃l and the velocity field
ũl = Gψ̃ l + G

⊥φ̃l , image I l
2 is warped to Ĩ l

2 = I l
2(x − ũl).

The image flow between the two images Ĩ l
1 and I l

2 is as-
sumed to be small enough to allow for accurate lineariza-
tion:

∂t I
l = I l

1 − Ĩ l
2, (60)

�l
u = GI l

1 · (ul − ũl), (61)

�l
ψ,φ = GI l

1 · (G(ψl − ψ̃ l) + G
⊥(φl − φ̃l)). (62)

The residual motion field ul , in terms of Gψl + G
⊥φl , is

estimated by solving the problem

min
ψl,φl

F (ψl,φl) =‖�l
ψ,φ + ∂t I

l‖2
HV

+ λ1‖G�Dψl‖2
HS

+ λ2‖G�Cφl‖2
HE

+ λ3‖PGψl‖2
bc (63)

The minimizer ψl , φl and ul are postprocessed to yield the
initialization ψ̃ l−1, φ̃l−1 and ũl−1 of the next finer level
l − 1, as discussed in the following section. The whole
process is started at the coarsest level m with ψ̃m = 0,
φ̃m = 0 and ũm = 0.

5.4 Constrained Prolongation

It is important to preserve the subspace properties dur-
ing grid transfer. Corresponding divergence- and curl-
preserving interpolation schemes for vector fields are sug-
gested in [5, 25]. In this work, however, we transfer potential
fields ψl and φl to the next level l − 1, rather than ul .

This is done by bilinearly interpolating the divergence
ρl , the curl ωl , and the boundary values of ψl , to obtain
ρ̃l−1, ω̃l−1 and ψ̃ l−1

∂� (cf. the notation of the previous sec-
tion). Then ψ̃ l−1 is computed as solution to

�Dψ = ρ̃l−1, s.t. ψ∂� = ψ̃ l−1
∂� . (64)

Analogously, we compute φ̃l−1 as solution to

�Cφ = ω̃l−1, s.t. φ∂� = 0. (65)

The corresponding velocity field ũl−1 at the next finer level
l − 1 is

ũl−1 = Gψ̃ l−1 + G
⊥φ̃l−1. (66)

6 Experiments

In this section, we validate our approach with few numeri-
cal experiments. A more thorough evaluation from the view-
point of experimental fluid dynamics is beyond the scope of
this work and will be reported elsewhere.

6.1 Error Measures

In practice, evaluating non-rigid flows by computing the av-
erage angular and norm error, respectively, induced by the
inner product of the space (L2(�))2 = L2(�) × L2(�) [2],
appeared to us too insensitive to the important flow struc-
tures. Therefore, we suggest error measures that also take
into account divergence and curl of flow structures:

enorm := 〈w,w〉DC

N
, (67)

eang := arccos
〈u,v〉DC + 1√〈u,u〉DC + 1

√〈v, v〉DC + 1
, (68)

where we adopt the average angular and norm error mea-
sures but use the inner products of the space H(div;�) ∩
H(curl;�) (see, e.g., [10]):

〈u,v〉DC :=〈u,v〉HS
+ 〈Divu,Divv〉HV

(69)

+ 〈Curlu,Curlv〉HP
.

6.2 Experiment Results

In this section, we present and discuss a range of numeri-
cal experiments. Some of the vector fields depicted in corre-
sponding figures are scaled by a factor 2 for better visibility.

6.2.1 Numerical Stability

The boundary term (51) is essential for numerical stability.
To demonstrate this, we warped a computer-generated gray-
value function with the ground-truth flow field whose color-
coded image is shown in the left panel of Fig. 2, and exam-
ined the numerical stability for the resulting variational flow
estimation problem.

Omitting the boundary term by setting for the corre-
sponding weight parameter λ3 = 0 leads to a numerically
instable problem. The value λ3 = 1e–6 results in an ill-
conditioned problem and very slow convergence of the nu-
merical iteration. Moreover, the resulting vector field shown

Fig. 2 (Colour figure online) Influence of the boundary regularizer
(51). Left: A ground-truth non-rigid velocity field shown color-coded
for better visibility. Middle: The velocity field estimated with
λ3 = 1e–6 for the boundary regularizer results in an ill-conditioned
problem. The estimated motion field may oscillate near the boundary.
Right: The velocity field estimated with λ3 = 0.1
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in the middle of Fig. 2 oscillates at the boundary. The value
λ3 = 0.1 yields a well-conditioned problem that converged
after 7 iterations and results in an accurate result (Fig. 2,
right panel).

6.2.2 Ground Truth Experiment

Figure 3 shows a particle image sequence provided by our
project partners [6] through direct numerical simulation
(DNS) [17] of an incompressible turbulent flow field.

The traditional Horn-Schunck method was used for com-
parison. We tuned the related penalty parameters by hand for
the Horn-Schunck approach, λ = 0.1, and for our approach
(44), λ2 = 0.05 λ3 = 0.05 (λ3 weights the boundary term
(52)).

Figure 3 shows the experimental results. The corre-
sponding errors for the approach (44), enorm = 1.49e–2,
eang = 6.94°, are smaller than for the approach of Horn and
Schunck: enorm = 3.70e–1, eang = 31.19°. Note that as de-
tailed in Sect. 6.1, these error measures include flow deriva-
tives as opposed to common measures used in the literature.
It can be clearly observed in Fig. 3 that our approach recov-
ers the curl field more accurately. Furthermore, even if the
image sequence data correspond to incompressible flows, ig-
noring the corresponding constraint leads to significant flow
estimation errors of the Horn and Schunck method (mid-
bottom panel).

6.2.3 Estimating Real Solenoidal Flows

Figure 4 shows a real world 2D turbulent flow which has
been obtained in laboratory. This experimental flow has been

Fig. 3 Top left: The first image of a particle image pair. Top middle
and right: The ground-truth DNS-simulated divergence-free flow and
its curl field. Bottom left: The curl field of the estimated flow, which
is totally divergence-free, computed by our approach. Bottom middle:
The divergence field, which is also the divergence-error, of the flow re-
sulting from the Horn-Schunck method. Bottom right: The curl field of
the flow estimated using the Horn-Schunck approach. It is apparent that
the recovered curl patterns by our approach are much more accurate.
The flow error measures reported in the text confirm this quantitatively

generated between two thin glass plates [15]. It is visualized
through a passive scalar (a mixture of fluorescein and wa-
ter) that is transported by the flow. A diffusion of the passive
scaler can also be observed along time. The measurement
of a slight non-vanishing divergence for this 2D flow corre-
sponds to this diffusion effect. Rather than taking into ac-
count this effect through developing a specific data term, we
focus in this paper on imposing vanishing divergence as a
constraint, along with higher order regularization and ade-
quate discretization.

Figure 4 shows the result of estimating the solenoidal
flow for the real image sequence based on the multi-level
framework (Sects. 5.3 and 5.4). The comparison with first-
order regularization (Horn-Schunck approach) in Fig. 5
clearly reveals the superiority of our approach regarding the
reconstruction of vortex structures. Furthermore, the physi-

Fig. 4 Top left: The first frame I1 of a real sequence together with the
estimated solenoidal flow. Top right: The divergence field of the flow
is less than 3 × 10−12. Middle left: The potential field ψl(�) related to
the laminar flow. Middle right: The potential field φ(�). Bottom left:
The first component of flow: the laminar flow ulam. Bottom right: The
second component of flow related to potential φ(�). A close-up view
for comparison with standard regularization is depicted in Fig. 5
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Fig. 5 Top: The restored solenoidal flow u(�). Bottom: The re-
stored flow uhs(�) using the Horn-Schunck regularization. This re-
sults clearly show that vortex structures are better recovered by our ap-
proach. Furthermore, the magnitude of the divergence is below 10−11

throughout the image plane

Fig. 6 (Colour figure online) Top: Image I with the restored flow field
u. Middle left: The divergence field of u. Middle right: The curl field
of u. Bottom left: The potential field ψ(�). Bottom right: The potential
field φ(�). The divergence field reveals a “source” (blue blob) corre-
sponding to a convective cloud cell at high altitude (see text)

cally plausible constraint of vanishing divergence is satisfied
accurately.

Fig. 7 Top: Image I with the restored flow field u. Middle left: The
divergence field of u. Middle right: The curl field of u. Bottom left: The
potential field ψ(�). Bottom right: The potential field φ(�). As in the
previous figure, the potential functions provide a useful representation
of qualitative properties of the flow

Fig. 8 Top: Image I with the restored flow field u. Middle left: The
divergence field of u. Middle right: The curl field of u. Bottom left: The
potential field ψ(�). Bottom right: The potential field φ(�). The two
potential fields ψ and φ are not zero at the area of two cylinders even
if the flow they represent disappears in these domains. The divergence
and curl fields provide clear flow information around the two cylinders

6.2.4 Estimating General Non-rigid Real Flows

Figures 6 and 7 show general non-rigid flows estimated for
two different real image sequences. The images show con-
vective cloud cells at high altitudes. These clouds undergo
strong upward motions until they reach the top of the at-
mosphere, the tropopause, and then start to decline slowly.
These cells are responsible for violent showers and gener-
ate locally very strong winds. Their apparent motions corre-
spond to highly divergent motions whose supports roughly
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Fig. 9 Top: Image I with the restored flow field u. Middle left: The
divergence field of u. Middle right: The curl field of u. Bottom left:
The potential field ψ(�). Bottom right: The potential field φ(�). The
potential functions provide a useful representation of qualitative prop-
erties of the flow

correlate with cloud boundaries. Nevertheless, such a di-
vergent motion does not necessarily have exactly the same
shape as the cloud cell. The recovered motion fields show
that we have been able to estimate blobs of diverging mo-
tions which correspond to the apparent motion of these type
of cloud systems.

6.2.5 Application to Particle Image Velocimetry (PIV)

Figure 8 shows the result of our approach applied to a PIV
image sequence from a flow around two cylinders. The di-
vergence field and curl field inside the area of two cylinders
are close to zero since the apparent motion vanishes there.
Note that the two potential fields ψ(�) and φ(�) are not
zero in these domains, but rather the sum of ∇ψ and ∇⊥φ is.

Finally, Fig. 9 shows the results computed from a PIV
image pairs of a liquid freezing experiment, recorded by
Tomasz A. Kowalewski (http://www.ippt.gov.pl/~tkowale/).

Again, both the divergence and the curl field reveal the basic
patterns of the underlying non-rigid motion.

7 Conclusion and Future Work

We introduced mathematically sound discrete representa-
tions of vector fields for estimating highly non-rigid flows
from image sequences. The estimation is directly done in
terms of component functions that decompose flows into or-
thogonal subspaces and reveal quantitative information of
physical relevance.

Our further work will focus on the use of multigrid it-
erations for accelerating the subproblem solvers, on evalu-
ations and applications from the viewpoint of experimental
fluid dynamics (cf., e.g. [7, 18]), and on the extension to 3D
image sequences.
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