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Abstract. We integrate a model for filter response statistics of natural images into a variational framework
for image segmentation. Incorporated in a sound probabilistic distance measure, the model drives level sets to-
ward meaningful segmentations of complex textures and natural scenes. Despite its enhanced descriptive power,
our approach preserves the efficiency of level set based segmentation since each region comprises two model
parameters only. Analyzing thousands of natural images we select suitable filter banks, validate the statistical
basis of our model, and demonstrate that it outperforms variational segmentation methods using second-order

statistics.
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1. Introduction
1.1. Motivation

Statistical models play an increasingly decisive role
in computer vision for shape modeling, segmentation,
tracking and appearance-based recognition (GMBYV,
2002). In the context of Bayesian inference, the na-
ture of a statistical model defines the class of the
optimization problem to be solved (Mumford, 1994).
From an optimization point of view, there is a trade-
off between the descriptive power of statistical models
and the difficulty of the associated Bayesian inference
step.

Recently, the statistics of filter outputs turned out to
provide powerful and general models for image statis-
tics and texture (Zhu and Mumford, 1997; Zhu et al.,
1998; Puzicha et al., 1999; Portilla and Simoncelli,
2000; Wu et al., 2000). Unfortunately, incorporating
such models into a variational approach to image seg-

mentation results in computationally intractable op-
timization problems which require time-consuming
stochastic sampling methods to compute a minimizer
(Zhu and Mumford, 1997; Zhu et al., 1998; Puzicha
et al., 1999).

From the viewpoint of optimization, on the other
hand, a range of variational approaches to image
segmentation exist (Chan and Vese, 2001; Jehan-
Besson et al., 2003) which can be regarded as effi-
cient and computationally convenient approximations
of the Mumford-Shah functional (Mumford and Shah,
1989). However, the class of problems that these mod-
els have been applied to is limited so far to cartoon-like
piecewise smooth images and second-order statistics
of multiple filter channel responses (Zhu and Yuille,
1996; Jehan-Besson et al., 2003).

This motivates us to use more sophisticated statisti-
cal models that describe a larger class of natural images
without compromising the efficiency of level set based
segmentation.
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1.2.  Contribution and Related Work

In this article, we study the use of a recent model of
natural image statistics in an efficient level set based
variational framework for image segmentation.

The statistical model that we describe in Sec-
tion 2 has been used for wavelet-based image coding
(Mallat, 1998; Buccigrossi and Simoncelli, 1999) and
was empirically verified for a large database of natu-
ral images (Reininger and Gibson, 1983; Huang and
Mumford, 1999).

Our variational approach to image segmentation fol-
lows Zhu and Yuille (1996) and Chan and Vese (2001).
We considerably enhance the applicability of these
methods by incorporating the above-mentioned statis-
tical model (Section 2). Despite its greater descrip-
tive power, our model is simple enough to be esti-
mated locally: By measuring an appropriate distance to
non-locally estimated models we compute forces that
drive level sets to meaningful segmentations of com-
plex scenes. In this sense, our work is similar to Para-
gios and Deriche (2002) who, in the context of super-
vised texture segmentation, successfully enhance the
geodesic active contour model (Kichenassamy et al.,
1995; Caselles et al., 1997) with a Gaussian mixture
model of filter response statistics. However, our statisti-
cal model is more compact and targeted toward natural
scenes. This allows natural images and unknown tex-
tures to be treated in a completely unsupervised way.
We give a rigorous derivation of the equations driving
the motion of region boundaries toward a segmentation
in Section 3.

In Section 4 we put our approach in a broader con-
text and evaluate it on images from publicly available
databases. We compare it with second order statistics
as in (Zhu and Yuille, 1996; Jehan-Besson et al., 2003)

(a) Normalized image.

(b) Filter response.

using the same variational framework (Chan and Vese,
2001). In Section 5 we conclude and indicate further
work.

Finally, we wish to point out that our results should
not solely be judged from the specific viewpoint of
texture segmentation. This would require to consider a
wide range of possible dissimilarity measures (Puzicha
et al., 1999; Randen and Husgy, 1999) many of which
cannot be easily incorporated into a level set based seg-
mentation framework. Rather, we focus in this paper on
a compact parametric model related to natural image
statistics for super- and unsupervised level set segmen-
tation of scenes where texture plays an important but
not an exclusive role.

2. Natural Image Statistics

We capture statistics of natural images using general-
ized Laplacians fitted to marginal histograms of linear
filter responses. The Kullback-Leibler (KL) distance
between the Laplacians then serves as a distance mea-
sure on the images (cf. Fig. 1). The following section
describes the statistical model in detail.

2.1. Feature Extraction
The basis of our approach is the statistical model

p) = exp(— |z/s]%) )]

o
25T (1 /)
for the filter response z of a linear filter applied to nat-
ural images. It was pointed out in the literature that for
a large class of images the generalized Laplacian (1)
describes the response statistics of various linear filters
surprisingly well. This model was empirically verified
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(c) Histogram and model.

Figure 1. Overview. An image (a) is filtered by a linear filter. The marginal histogram (dotted line) of the resulting filter response image (b)
is computed and a generalized Laplacian (solid line) is fitted to the histogram (c). The parameters («, s) of the generalized Laplacian serve as

image descriptors.
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for samples of natural images (Reininger and Gibson,
1983; Huang and Mumford, 1999) and has been ap-
plied to compactly code wavelet coefficients of images
(Mallat, 1998; Joshi et al., 1995; Buccigrossi and
Simoncelli, 1999; LoPresto and Ramchandran, 1997)
and to Bayesian image restoration (Simoncelli and
Adelson, 1996). In the present paper we apply this
model locally and globally within a variational frame-
work to the segmentation of natural images.

Various linear transformations of images have been
used in conjunction with the model: The discrete co-
sine transform (Reininger and Gibson, 1983), steerable
pyramids (Freeman and Adelson, 1991; Simoncelli
and Freeman, 1995; Simoncelli and Adelson, 1996),
and various orthogonal wavelets (Mallat, 1998; Huang
and Mumford, 1999). In this work we examine steer-
able pyramid filters and quadrature mirror filters as
well as the well-known Haar wavelet and Daubechies
wavelet of order 3. In the following, these filters are
abbreviated by spn, qmfn, haar, and daub3, where 7 is
an integer encoding the number of filter orientations.
Experimental results to be discussed below reveal how
the choice of the filter bank and the metric affect the
performance of the statistical model.

2.2.  Density Estimation

The generalized Laplacian model (1) has two param-
eters, s and «, which are related to variance o2 and

Figure 2 illustrates the nonlinear mapping from the
measured statistics (o, ) to the model parameters
(s, ) in (1). When «k > 9/5 we can solve the right
equation numerically for o« and determine s via the
left equation. Mathematically, we cannot model distri-
butions with x < 9/5 as for « — oo the generalized
Laplacian approaches the uniform distribution centered
at 0, the kurtosis of which equals 9/5. This is not a se-
vere restriction, however: In the experimental section
(Section 4 and Fig. 4) we show that such statistics are
very rare in natural images.

2.3.  MDL-Criterion for Segmentation

Our goal is to partition the image domain €2 into two,
maybe multiply-connected, regions €2;, and Q2 sepa-
rated by a contour C such that the local image statistics
are “close” to the global statistics within Qj, or Qqgy,
respectively. More precisely, if p, denotes the statis-
tics of a small window W, centered at image location
x, and if p;, and p,, denote the statistics of the interior
and exterior regions Q2i, and 2y, respectively, then we
want to minimize

Enar(Sins Qou) = / ds + / D(py || pin) dx
C Qin

+/ D(px || Poudx. 3
QOU[

kurtosis « of the filter response by Here D(pllq) = — [p(z)log(p(z)/q(z))dz is the
Kullback-Leibler (KL) distance between densities p
,  8T@/a)  T(/a)(5/a) @) and g. Note that (3) fits into Zhu and Yuille’s region
T T(1/a) T I2G/a) competition framework (Zhu and Yuille, 1996) when
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(a) Filter response parameters.

(b) Density parameters.

Figure 2. The role of nonlinear parameter mapping. Standard deviation o and kurtosis « of the filter responses are mapped nonlinearly
according to (2) to density parameters « and s. Note, that the left part of (a), where most points are located, is spread after mapping. Conversely,
the area on the right of (a), where relatively few points are situated, is compressed. The points depicted are 4167 measurements collected from
the van Hateren database using a linear derivative filter. The labeled grid visualizes the nonlinearity of the transformation.
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Pinjout ¢ exp(—D(px || Pinjout)) are the probabilities
for the region models and the local image features I,
are given by the distributions p;.

The motivation for energy (3) is that it can be linked
to the length of a hypothetical image code (Wallace
and Boulton, 1968; Rissanen, 1978) based on two gen-
eralized Laplacians p;, and p.y: We encode the filter
response image using either pj, or poye as models. As-
suming densities are truly Laplacian, encoding a pixel
x with model p, estimated from W, has average length
H(p,), H denoting Shannon entropy. Encoding it using
the model for one of the regions 2j, or €, instead re-
quires a code of average length H (p,)+D(px || Pinjou)-
KL-distance is nonnegative, therefore (3) describes the
additional coding effort we face when encoding x with
the models for one of the regions. The first integral in
(3) measures the length of the separating contour C,
ensuring that the membership relation, that is, whether
a specific point x belongs to 2, or to oy, Will be
inexpensive to encode (Leclerc, 1989).

The KL-distance between two generalized Lapla-
cians p and g with parameters (s,, &,) and (s4, otg)
can be computed conveniently: First, evaluate (2) for
sample estimates on the left hand sides, then insert the
resulting values for the parameters (s, ), 4, @;) into
the following expression:

()" ()

D(pllq) =

Note, that the hypothetical image code described
above is only optimal if adjacent pixels in the filter
response are statistically independent. Spatial correla-
tions of filter responses at neighboring locations are not
exploited. For an efficient real-world coding scheme
this would be mandatory.

2.4.  Combining Filter Responses

Given the statistics for a set of filter responses, how do
we combine information gathered at different scales
and orientations? In this work, we strive for a generic
measure not optimized for any particular set of textures
or filters, so feature selection schemes are not directly
applicable.

We propose, as a first approximation, to treat the
statistics of individual filter responses as statistically

independent. Under this assumption the individual KL-
distances simply add up so that we can minimize the
average distance collected over all linear filters i:

Enai(L2in, Qour) = /dS + Z [/ D(px,i I pin,i)dx
¢ i

Qin

+ [ Dl pom,»dx} )
Here pinjou,i denotes the probability density function
modeling the response of filter i in region Qiy/ou and
Dx.i 1s the corresponding density for a window W, cen-
tered at location x in the image plane.

It is known that in reality the independence as-
sumption does not hold. For orthogonal wavelet bases
normalization schemes have been proposed to re-
move dependencies between filter responses at differ-
ent scale and orientation (Buccigrossi and Simoncelli,
1999; Wainwright et al., 2001). In this first implemen-
tation of our approach, however, we did not incorpo-
rate any such scheme. While in theory this is clearly
suboptimal, our experiments (Section 4) suggest that
the model is sufficiently accurate for many real-world
scenes.

3. Level Set Formulation

In this section we incorporate our statistical distance
measure into a level set formulation. The update equa-
tions determining the dynamics of the segmentation
are rigorously derived, taking into account all region-
dependend terms, by computing the first variation of
the corresponding area integrals.

3.1. Energy Functional
We minimize energy (5) within the region-based varia-

tional framework of Chan and Vese (2001). The frame-
work applies to energy functionals of the form

E) = /Q Ko(x) [Vl 5(¢) dx
+ / K (x, §)H($) dx
Q

+io f K"(x, )1 — H@)dx.  (6)
Q

Here ¢ : R?>— R denotes the embedding level set
function, the zero-level of which represents segmen-
tation boundaries. H : R — {0, 1} is the step function
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and § Dirac’s delta function. k°(x), k™(x, ¢), and
k°"'(x, ¢) represent the boundary, interior, and exte-
rior energy contributions at a location x and for a given
level set function ¢. Finally, A; and A, weight the rela-
tive importance of the interior and exterior energy terms
against boundary energy. In the following we usually
drop the arguments ¢ and x for brevity.

Chan and Vese’s original gray-value based image
model (Chan and Vese, 2001) fits into this framework
as a special case with

K =1
k" = |ug — cinl* 7
kout |M() - Coutl
whereas with
K =1
= Z D(pyi |l pins) ®)

ket = Z D(pe.i || Poui)

energy (5) is obtained.

3.2.  First Variation and Boundary Update

—(E'(¢), ¥), Y, of the

The variational update ¢ =
level set function reads':

k |V 8dx
3 06

+ f A1k — 2k ™38y dx
Q

+ )\. UtH+)\. i I—H de

The third term, which is omitted in Chan and Vese
(2001), originates from applying the product rule to
the area integrals and thus takes into account that k™"
and k" also depend on the level set function ¢. After
some tedious calculations (Appendix A) and with the

shorthands n = W and ¢ = div(n) we arrive at
oE .
— = | (=VK°n — kPc + 1k — Mok™) ¥ ds
d¢ ¢
akout 8kin
+/ ()»1 H+ X (l—H))vﬁdx.
Q ¢ ¢
(10)

We point out that this formula was recently derived
in a different way in Jehan-Besson et al. (2003) based
on the calculus of shape optimal design (Sokolowski
and Zolesio, 1991) which, in turn, relies on previous
mathematical work like, e.g., (Simon, 1980).

3.3.  Derivation of the Model’s Area Term

Let us examine more closely the area integral in (10).
As mentioned above, Eq. (8), we model the local coding
cost w.r.t. the interior region as

=2 D(pei || Pin)- (11

Recall that the probability density functions are given
as generalized Laplacians with two parameters s =
s(a,0?) and @ = a(x) which depend themselves on
kurtosis x and variance o> measured both locally in
W, and globally in €;,. Therefore, we may write more
precisely

= ji: D(p

I p(e(kin, ), s (@kin), 02 ). (12)

(i), s (alieri). 07))

Here «;, ; and am ; depend on the area €2;, and thus vary
with the level set function ¢. Let us drop the index i
in the following discussion, thus focusing on a single
filter response only.

With a slight abuse of notation, the derivative then

reads
k™ 3D ki
9  Okin 0

oD o2
dol 3¢’

13)

where the computation of the partial derivatives
oD /0Ky and 0D/ 8051 is long but nevertheless elemen-
tary: Starting from the analytical formulation of the
KL-distance (4) and inserting the relations (2) solved
for o and s it is easily obtained.

The statistics depending on the area form a hierarchy
of region-dependent terms:

(x — um) / (x — Mm)
Kin =
|Qm| (T Qin 1n|

X
MmZ/ dx |l =/ dx.
., |2inl Q;

in

(14)

In the level set formulation (6) we replace the inte-
grals over 2;, by integrals over 2 weighted by the step
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function H. Now, taking the derivative w.r.t. ¢ yields

(cf. Appendix B)
/(x G =l X/de
|Qm| Q

(x — fin)?
/ a 8y dx (15)

1H|

and

0 in —4 — Min 3
« 2/—(x ’ﬁ)de[/ *_H dx
8([5 Q |Qin| Oin Q | 1n|

x/&lﬁdx—l—/—&pdx}
Q o [Qinl

x — ,U«m) (x — ,U«m)2
202 /
2% J im0t [ N
(x — win)?
fﬁ‘” / Y dx]
()C - Min)4
97|91n|2 3 H dx /Q&p dx
/(IQ ﬁ;) Sy dx. (16)

With (13) these terms form the area derivatives in (10).

4. Experiments and Discussion

Now we describe extensive computational studies of
the performance of our model. We validate the use of
generalized Laplacian densities for steerable pyramid
filter response statistics of natural images, perform ex-
periments in texture retrieval and synthesis to under-
stand what image features are captured by our model,
and show sample segmentations on natural and artifi-
cial images. We compare our model with a standard
second-order variational model for image segmenta-
tion and demonstrate that it performs well.

Table 1.

4.1. Filter Selection and Model Validation

Before focusing on segmentation (Section 4.3) we con-
ducted experiments to select a suitable filter bank and
to verify that the restriction on the kurtosis of the fil-
ter response to be greater than 9/5 is met in practice
(Section 2.2). Following Huang and Mumford (1999)
we used the van Hateren database of natural im-
ages (van Hateren and vander Schaaf, 1998) for eval-
uation and removed multiplicative constants from the
images by first log-transforming them and then sub-
tracting their log-means.

Table 1 summarizes our results: We display the me-
dian of the KL-distance between the filter response his-
tograms (20 bins) and a generalized Laplacian with
identical variance and kurtosis. For comparison, we
also report the histograms’ average entropy and the me-
dian of the quotient of these values. The results show
that almost all information in the histograms is cap-
tured by the parametric model. Importantly, the same
holds for densities estimated locally from moderately
small image patches (Fig. 3). In the following, we per-
form all experiments using the steerable pyramid bank
sp3 with four oriented sub-band filters and over three
scales.

In Fig. 4(a) we show the log-histograms of the kurto-
sis k for each individual filter determined for all 4167
images of the database. Two things are remarkable:
First, the distribution of « follows closely a shifted ex-
ponential distribution. Second, the minimal values of
k encountered are well above the critical value of 9/5.
Thus, distributions that violate the kurtosis-constraint
of our model do not occur in natural images.

Clearly, during segmentation we also work with
small parts of images for which small values for kur-
tosis are observed. Especially very homogeneous im-
age regions like sky or plain street occasionally lead
to untypical filter response histograms (Fig. 3). To
see how frequently this happens in reality, we ran-
domly sampled over 700,000 image patches of size

Model fit. Medians of KL-distances between histograms and parametric model (1) mea-

sured over 4167 pictures from the van Hateren database (van Hateren and vander Schaaf, 1998) for
different sets of filters. For comparison, median entropies of the filter responses are also reported:
Only a small fraction of the information present in the histograms is ignored (last row).

sp0 spl sp3 spS

gqmf9 gmfl2 gqmfl6  haar  daub3

KL-dist 0.018 0.011 0.012 0.014
Entropy 2274 2070 1996 2.004
KL/entropy  0.008  0.005 0.006 0.007

0.016  0.016 0.017 0.016 0.017
1.933 1.932 1.938  1.994  1.966
0.009  0.009 0.009  0.008  0.009
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patch size  sp0 spl sp3 spb
10 x 10  0.163 0.144 0.144 0.162
20 x20 0.053 0.045 0.046 0.054
30x30 0.032 0.025 0.025 0.032
40 x40 0.023 0.017 0.017 0.023 —
50 x50 0.019 0.013 0.014 0.018 v

100 x 100 0.010 0.007 0.007 0.009 e e
(c) periodic (d) histogram

(a) unstructured  (b) histogram

=~

Figure 3. Influence of window size. How does the size of W, influence the accuracy of the parametric model p, in modeling the filter histogram?
In the table the quotient KL-distance/entropy (Table 1) is depicted for 50.000 image patches randomly selected from the van Hateren database.
The bigger the images the more accurate is the fit between histogram and Laplacian. Two 50 x 50 image patches representative for very bad fits
are depicted on the right: Unstructured areas like sky or street (a) and areas with regular, periodic structure (c) are most problematic.

8 8 8 8 6)(10’3 2)(10’a x10° 15><1os
6 6 6 6 15
4 2 1
4 4 4 4
1
2 1 05
2 2 2 2 os
% 5 0 5 % 5 %0 50 o 0 0 0
min=3.2 med=8.2 min=3.2 med=8.6 min=3.9 med=9.2 min=3.2 med=8.5 1284567 1234567 12345867 1284567
8 8 8 0.08 0.06 0.06 0.06
6 6 6 6 0.06
0.04 0.04 0.04
4 4 4 4 0.04
5 2 2 A 002 0.02 0.02 0.02
0 0 0 0 0 0 0 0
0 50 o0 50 0 5 o 1234567 1234567 1234567 1234567
min=3.1 med=7.6 min=3.1 med=7.3 min=3.3 med=7.8 min=3.2 med=7.3
8 8 8 0.2 0.2 0.2 0.2
6 6 6 6 0.15 0.15 0.15 0.15
4 4 4 4 0.1 01 0.1 0.1
2 2 2 2 0.05 0.05 0.05 0.05
0 0 0 0 0 0 0 0
0 0 50 0 5 0 50 12834567 1234567 1234567 1234567
min=2.8 med=6.9 min=2.8 med=6.4 min=3.1 med=6.8 min=2.9 med=6.4
(a) Log-histogram of  for complete images. (b) Outlier statistics for small image patches.

Figure 4. Check for pathological statistics. (a) shows the log-histogram of kurtosis « measured over 4167 images from the van Hateren
database (van Hateren and vander Schaaf, 1998) for a steerable pyramid filter bank with three scales (rows) and four orientations (columns).
Minimal and median values for « are listed in the individual image captions. The histograms are very regular, and for each filter « is well
above 9/5, thus no pathological cases are present in the database. (b) shows the relative frequency of outliers with k < 9/5, measured over
approximately 700,000 randomly sampled image patches of size 102, 202, 302, 402, 502, 752, and 1007, labeled 1 (size 10%) to 7 (size 100%).
Outliers are frequent with patch sizes smaller than 30 x 30 only.

102,202, 30%, 40%, 50, 752, and 1007 pixels from the For patch sizes of size 30 x 30 or larger violations were
van Hateren database. For each patch size we counted very rare. In the segmentation experiments reported
how often the constraint k > 9/5 was violated. The below we treated these cases as outliers, replacing «
relative frequencies are shown in Fig. 4(b): Only for with a default value slightly larger than 9/5. We found
the two smallest patch sizes, corresponding to the bars that this did not lead to a noticeable deterioration of

labeled “1” and “2”, violations were found regularly. segmentation quality.
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Table 2. Assessment of KL-distance. Misclassification rate in percent on 512 randomly sam-
pled texture image patches from the Brodatz database (Brodatz, 1966). Different filters, fea-
tures, and strategies to combine individual filter responses are compared (see text for details).
The minimal error rate for each filter is marked in boldface. KL-distance with L; metric

performs best in most cases.

Lo L med Lo L med Lo L med

(o,6) (o,k) (o,k) (a,8) (a,8) () (KL) (KL) (KL)
sp0 2191 1819 2348 2661 26.81 5929 1467 13.89 20.15
spl 12.52 626 11.74 1291 998 21.72 6.45 5.08 6.65
sp3 12.13 5.87 7.82 1291 9.39 9.19 5.67 3.52 4.69
spS 15.06 6.26 645 12.72 6.26 8.80 7.43 5.87 4.69
qmf9 16.43 4.10 6.65 1643 8.02 16.24 391 3.32 4.30
qmfl2  15.45 3.71 6.84 15.26 7.63 1741 391 3.13 4.50
qmfl6  12.52 3.71 6.26 1291 743  16.04 3.13 2.34 3.32
haar 15.26 5.47 7.63 17.41 841  23.87 6.65 4.10 6.84
daub3 16.04 4.50 8.61 15.65 9.00 17.61 5.67 3.32 4.30

To assess our probabilistic distance measure we ran
an experiment in texture retrieval on images from the
Brodatz database: We extracted 16 image patches of
size 100 x 100 pixels non-overlappingly from 32 Bro-
datz images. Then we took each of the 32 - 16 = 512
image patches as a query and selected from the remain-
ing patches the one most similar to the query w.r.t. a
number of distance measures. We examined vectors of
filter response statistics collected over different scales
and orientations and for different sets of linear filters.
Additionally, we examined KL-distance. The distances
for individual scales and orientations were computed
independently and then combined using the max, mean,
and median operator, corresponding to L, L; and
med in the table. A retrieval was considered correct
if the patch most similar to the query originated from
the same Brodatz image. Otherwise it was considered
wrong.

Table 2 summarizes the results which show that the
mean of the KL-distance performs best for most filters.
This indicates that (12) is a useful distance measure
on images with texture.

4.2.  Texture Synthesis Experiment

To get an intuition for which image features are cap-
tured by the generalized Laplacians we synthesized
texture images using our model. For computational ef-
ficiency we did not resort to the Gibbs sampler but
modified the fast pyramid-based algorithm of Heeger
and Bergen (1995) instead. This greedy algorithm en-

forces filter histogram similarity between a target im-
age and a source image initialized to random noise
over different scale and orientation bands of a steer-
able pyramid. In contrast to Heeger and Bergen we did
not fit the complete filter histograms but only their gen-
eralized Laplacians. A similar approach was taken in
Srivastava et al. (2002) where Bessel K forms and the
Gibbs sampler were used to synthesize texture images
from a larger number of linear filter responses.

Figure 5 shows some results: While our—from the
viewpoint of image synthesis overly simple—method
does not produce realistically looking textures, it ap-
pears subjectively that some discriminative informa-
tion essential for image segmentation such as predom-
inant orientation is retained.

4.3.  Supervised and Unsupervised Segmentation
with Level Sets

To learn how our segmentation method performs on
a set of standard images, we composed randomly se-
lected textures from the Brodatz database and arranged
them in a texture collage with a cross-shaped inlay of
one texture in another (Fig. 6). We segmented 100 tex-
ture collages using (9) without area derivatives and
with fixed default parameters. While in our experience
the window size is an important parameter and should
be chosen not too small, the choice of 1 » is not critical.
In the experiments we chose A; = A, = 1 and window
size |W| = 80 x 80 pixels. The texture collages were
of size 512 x 512. For comparison, we implemented an
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Texture Histograms Laplacians

P> o> 9975
NS O e 0 P
Texture

Histograms Laplacians

Figure 5. Texture synthesis. Textures from the VisTex database are reproduced using the histogram-based algorithm of Heeger and Bergen
(1995) and a simplified version which uses only image features captured by our model. All images were synthesized using identical filters and
the same number of iterations. This illustrates how our model captures some structure of the image.

Figure 6. Sample segmentations. Brodatz texture collages segmented with KL-distance (solid line) and second order statistics (dotted line) with
default parameters set. The KL-distance captures the cross-shaped inlay better than second order statistics. Here, we show some examples out
of a large number of segmentation experiments, the statistics of which is given in Table 3. The image on the right is not successfully segmented

by either method.

image model based on second order statistics (cf.(Zhu
and Yuille, 1996) Eq. (20)):

K =1
in 2 (,ux,i - ,l'Lin,i)2 2 2
k= Zlog (i) + ————— 40l /om,
i

in,i

2
2 (Kx,i — Hout,i) 2,2
kot = Zlog (Gout,i) + = 2 = +Gx,i/aout,i'
i

out,i

a7

This model should work well for images where
the mean is the most important region descriptor
(Fig. 9(h)). Our Brodatz-collages are of such type: The
individual texture images usually are quite homoge-
neous, so filter response differences are likely to origin
from texture boundaries.

We ran both image models for 100 iteration steps,
i.e., well after we expected convergence, on each tex-
ture collage, using the same variational framework
(Section 3.1) for energy minimization. For increased
speed we computed the image statistics on a subsam-
pled image and interpolated the result on the whole
image. This makes the region boundaries look slightly

smoother than one would expect. As both models are
affected in exactly the same way this should not affect
the model comparison. We finally determined the per-
centage of correctly segmented pixels. We found (see
Table 3) that the average performance (median) as well
as the performance on difficult images (25% quartile)
of our model was significantly better than the perfor-
mance of model (17).

We then evaluated the importance of the area deriva-
tives, which are often omitted in variational segmen-
tation implementations. We took the first 100 images

Table 3.  Comparison of segmentation quality. The percentage of
correctly segmented pixels on a set of 100 randomly generated
Brodatz texture collages is reported for our model and for a refer-
ence model based on second order statistics. The median and both
quartiles are shown. Our model clearly outperforms the reference
model on average and shows much better performance on difficult
images.

Reference model  Proposed model — Improvement
median 0.65 0.81 25%
q-25 0.47 0.69 47%
q-75 0.81 0.84 4%
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from the van Hateren database and computed the area
derivative term from (9)

akout akin
H+ —(—-H) (18)

A
¢ 3¢

for an initial segmentation consisting of equally spaced
squares distributed over the whole image (Fig. 9(a)).
For comparison, we computed the KL-term

Akt — Aok, (19)

and measured the influence over the whole image.

The results (Table 4) indicate that for our choice of
distance measure the area derivatives are negligible.
This validates common practice and allows for simpler
implementations. Note, however, that this might not
hold in general: Recently Jehan-Besson et al. (2003)
reported different results for a different choice of dis-
tance measure.

Table 4. Importance of the area term.
The 10% and the 90% quantiles of
Egs. (18) and (19) evaluated on 100 im-
ages from the van Hateren database are
reported. The contributions of the area
term are five orders of magnitude smaller
than the contributions of the KL-term,
indicating that for our distance measure
the area derivatives are negligible.

g-10 q-90
KL-term —4.0 2.6
Area-term  —3.6-107°  2.1-107°

Figures 7 to 9 show some examples for super-
vised and unsupervised segmentation of natural im-
ages. In Fig. 7 we examine an image from the Berkeley
database (Martin et al., 2001). The contour was initial-
ized to equally spaced boxes. As stopping criterion we
computed the improvement of the energy functional (6)

Figure 7. Unsupervised segmentation. Zebras are separated from the background. Contours were initialized to boxes, stopping was determined

automatically according to E(¢)'.

(h) t=22

Figure 8. Supervised and unsupervised segmentation. With supervised segmentation the tree is separated from house and car. Unsupervised
segmentation fails in this case: Initialization of the filter response model is to unspecific, yielding a rather uninteresting segmentation into
homogeneous (sky, street) and inhomogeneous regions (car, tree, house). Note the low image contrast in the lower left part of the tree.
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Figure 9. Unsupervised segmentation. Unsupervised segmentation of a natural scene from the VisTex database (Picard et al., 1995). Contours
were initialized to boxes, stopping was determined automatically according to E(¢)'. The contour evolution at different time steps is displayed
for our model ((a)—(d)) and for second order statistics ((e)—(h)). The trees in the center of the image are the visually most dominant element
which is reflected by the segmentation with our model. Second order statistics separates the bright sky from the darker rest of the image, failing

to capture the visually dominant trees.

for every time step and stopped as soon as it dropped
below a previously determined threshold. The same
threshold was used for all experiments. The zebra pat-
tern is captured well by our model: The contour imme-
diately locks onto the zebra pattern and energy (6) (not
shown) drops sharply until the zebras are covered.

Figure 8 shows a more difficult case: A tree stand-
ing in front of a house, casting a sharp shadow on
the house. With this image, unsupervised segmentation
merely separates the irregular regions from the homo-
geneous sky and parts of the streets (Fig. 8(e)—(h)). In
contrast, if the contour is initialized in a supervised way
(Fig. 8(a)) the model captures the visually dominant
tree. However, in the final segmentation (Fig. 8(d)) rel-
atively large parts of the shadowed house are captured
as well.

In Fig. 9 we compare our model with second or-
der statistics (18) on an image from the MIT VisTex
database (Picard et al., 1995). The MDL criterion (3)
separates the trees from the image fore- and back-
ground. This is sensible: The trees form an image region
which is relatively expensive to encode while sky and
grassland are comparatively homogeneous. Using one
probability model for the trees and one for the rest of
the image thus minimizes the expected coding length
of the image. Second order statistics simply separates
the bright sky from the rest of the image, yielding a less
appealing segmentation.

4.4. Relation to Established Segmentation
Approaches

The image model we employ can potentially be use-
ful within alternative segmentation frameworks based
on graph cuts (Shi and Malik, 2000; Keuchel et al.,
2003), density clustering (Puzicha et al., 1999), or
within the image parsing framework (Tu and Zhu,
2002). For graph cut methods, the KL-distances
D(p. || px) between generalized Laplacians p, and
py is easily translated into a similarity value w,, =
exp(—D(px || px)/c) which can then be treated, for in-
stance, by normalized cut. In Fig. 10 we show, as amere
proof of concept, results obtained when such similarity
graphs are partitioned by normalized cut. The scaling
constant ¢ was chosen as the mean KL-distance ob-
served in the images, and the images were subsampled
to reduce the size of the eigenvalue problem to ap-
proximately 1000 x 1000 matrix entries. The results
roughly resemble those of the level set implementation
and could further be improved by integrating a smooth-
ing term in the similarity measure and by implementing
a more sophisticated approximation method (Fowlkes
et al., 2004) to reduce block-artifacts.

Note, however, that in the graph cut framework there
are no explicit models pj, and pg, for the complete
interior and exterior image regions 2j, and 24y Only
similarities between locally estimated image models p,
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i

Figure 10. KL-Segmentation with Normalized Cut. A similarity matrix, derived from KL-distances between locally fitted generalized Laplacians
(see text), was treated within the classical normalized cut framework. No effort was undertaken to enforce particularly smooth partitions. The
blocky segmentation boundaries are an artifact of our particular implementation.

are used. In connection with our approach this might
be a drawback as the global estimation over the larger
image regions 2, and 2., is usually more reliable than
the local models estimated from small image windows:
During a typical PDE evolution the region models pj,
and poy are refined iteratively until they represent their
corresponding image regions quite accurately. This is
not possible for non-iterative optimization methods.

Conversely, our framework can benefit from employ-
ing alternative image models instead of parametric gen-
eralized Laplacians. Bessel K forms, derived from an
image model based on weighted superposition of trans-
parent objects, are suggested to represent broad image
classes (Srivastava et al., 2002). Similarly, Weibull and
power-law distributions were recently proposed and
evaluated on thousands of natural images (Geusebroek
and Smeulders, 2003). The beauty of these paramet-
ric models is that, while depending on few parame-
ters only, they apply in rather broad contexts, and in
some cases statistical goodness-of-fit tests are readily
available.

When more flexibility in image modeling is needed,
in particular for images with regular textures, mixture
models (Belongie et al., 1998; Paragios and Deriche,
2002; Wu et al., 2003) and non-parametric mod-
els (Tang and Ma, 2001; Rousson et al., 2003) come into
play. These can, in principle, model empirical densities
to arbitrary precision. However, in order to avoid over-
fitting within unsupervised settings, care must be taken
that model complexity is kept under control. Also,
KL-distances can in general no longer be evaluated
analytically.

Empirical densities represented by histograms of
filter responses also provide greater modeling capac-
ity (Zhu et al., 1998). They fit into framework (6) when
the parametric KL-distance in (8) is replaced by the
discrete KL-distance between histograms. However,
this solution might not be optimal as results can be
sensitive to the chosen histogram bin-size. Therefore,

more robust statistical measures, such as earth movers
distance, Xz, Kolmogorov-Smirnov, or the Anderson-
Darling statistics seem more promising (Puzicha et al.,
1999; Rubner et al., 2000; Liu and Wang, 2000; Geuse-
broek and Smeulders, 2003).

Ideally, the user would not be required to decide for
a particular image model or for the number of different
image regions to expect a priori, but multiple models
of different complexity would compete to explain the
image during the course of optimization. This leads
to a model selection problem which can in principle
be treated within an MDL framework (Leclerc, 1989;
Hansen and Yu, 2001). While extensions of the Chan
and Vese framework to multiple image regions (Vese
and Chan, 2002) and models (Cremers et al., 2004)
have been proposed, it is unclear if they generalize to
a full MDL approach with multiple image models of
different modeling capacity. Currently, methods from
non-convex optimization are employed to handle such
problems (Leclerc, 1989; Zhu et al., 2000).

5. Conclusions and Further Work

In this paper we proposed a segmentation approach
based on natural image statistics and the gradient-less
level set segmentation method introduced by Chan and
Vese (2001). Exploiting the fact that a simple para-
metric model accurately describes the statistics of a
wide class of filter responses on natural images we con-
structed an energy functional justified by a minimum
description length argument.

We ran evaluations on thousands of images check-
ing that pathological cases not captured by our model
do not occur in real world images (Fig. 4(a)), that the
empirically observed histograms are accurately repre-
sented (Table 1), and that the minimum description
length formulation does contribute to the descriptive
power of our model (Table 2).
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We conducted experiments to evaluate the perfor-
mance of our segmentation method in comparison to a
second order model which has been used successfully
for image segmentation before (Zhu and Yuille, 1996).
The results indicate that for segmentation tasks where
image structure is more important than brightness con-
trasts our model compares favorably (Figs. 6, 8, 9, and
Table 3).

Finally, we examined the importance of an area
derivative term emerging during the derivation of the
first variation of our energy functional. We found (Ta-
ble 4) that for our functional the area derivative’s con-
tribution is not significant, thus validating the common
practice of ignoring it. Omitting the area derivatives
removes the requirement that the area descriptors k™
and k°* must be differentiable and greatly simplifies
the implementation.

An interesting line of research for the future is to ex-
amine how image features can be captured with more
involved image probability densities without overly
compromising model simplicity: Our energy functional
can in principle be applied with arbitrary probability
densities. However, model validation issues as well as
performance arguments make image models desirable
which are easy to train even on small image patches.

Appendix A: First Variation
of the Energy Functional

The exposition follows (Chan and Vese, 2001), suit-
ably generalized and adapted to our approach. Starting
from (9)

oF 9 K|V sd Sk =k ™ d
% 8¢U Vol x] f(l —dok™)r dx

+/</\ LSy 8kin(l—H)) d
o\ og 299 v dx

we take a closer look at the first term which equals

Vo
k8 |V §——V 20
f [ Vol +o s w} (20)

by product rule. With Green’s first theorem the second
part becomes

Vo
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which in connection with V8 <2
yields
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+/ kb89¢ vd
S
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(22)

Note that we can replace each area integral contain-
ing the Dirac impulse into an integral over the region
boundary C = {x : ¢(x) = 0}:

Lf(x,¢)5(¢)dX=/cf(x,0)dS- (23)
Hence we can write
b
g=/ k294 wds+/[ kaw
¢ crae |V@|on c Vol
—kbdiv( Vo ) + Akt — ki“}w ds
vel) ?

+/ X&OMH-F)» 8ki"1_H) d
Q(l&p 256 ¢ )‘” *
(24)

Assuming C N 92 = @, this leads to (10).

Appendix B: Derivation of the Area Terms
We start from the relations (14) and replace the inte-

grals over 2;, by integrals over 2 weighted by the step
function H. Taking the derivative w.r.t. ¢ yields

dop 9 f(x um>
9 3o |Q2nl

(x = Min)21| x - ,bLin)2
— H Sv d
/Qa¢>[ ol 0T T OV
25)
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and

i[(x - Min)z]zzﬂin — X Opin (X — Pin)? 9 |Qin]
00

[2in] |Qin|  0¢ |Qul> ¢
(26)
and finally
9 || / oH /
= [ —dx = | 8y dx. 27
a9 o 09 Q

Collecting these terms and using [, (itin—x)H dx =0
yields (15).

The derivation of dx/d¢ proceeds in the very same
manner:

oK ad — i)t
Pin _ D[y
ap 3¢ Jo |Quloy,
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=/—(x i) gy S Hin) sy g
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=— | = Hadx
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(29)

and

dok ( / (X — Win)? >2
= d.x
d¢p 09 |
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AN

(X — in)®

Inserting the various terms into each other, this yields
(16).
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Note

1. To save horizontal space we abbreviate (E'(¢), 1) by dE /d¢.
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