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Abstract. Non-negative tensor factorization (NTF) has recently been
proposed as sparse and efficient image representation (Welling and We-
ber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factoriza-
tion has been empirically observed in many cases, but there was no
systematic way to control it. In this work, we show that a sparsity
measure recently proposed for non-negative matrix factorization (Hoyer,
J. Mach. Learn. Res., 2004) applies to NTF and allows precise control
over sparseness of the resulting factorization. We devise an algorithm
based on sequential conic programming and show improved performance
over classical NTF codes on artificial and on real-world data sets.

1 Introduction and Related Work

Non-negative tensor factorization (NTF) has recently been proposed as sparse
and efficient image representation [1, 2, 3]. Compared to non-negative matrix fac-
torization (NMF) [4, 5], which has also been used for image modeling [6], tensor
factorization offers some advantages due to the fact that spacial and temporal
correlations are accounted for more accurately than in NMF where images and
videos are treated as vectors [7]. In particular, it has been reported that com-
pared to NMF tensor factorization shows a greater degree of sparsity, clearer
separation of image parts, better recognition rates, and a tenfold increased com-
pression ratio [3].

From a data analysis viewpoint, NTF is attractive because it usually allows for
a unique decomposition of a data set into factors. In contrast, while NMF will be
unique up to permutation and scaling under some conditions, there are realistic
scenarios where additive factors are not separated into independent factors but
pollute the whole image basis with “ghost artifacts” [8]. This is not the case
with NTF: Under mild conditions, which are usually satisfied by real-world data,
tensor factorization is unique [9, 10].

However, until now it was not possible to exercise explicit sparsity control
with NTF. This differs from NMF where very efficient sparsity control was in-
troduced in [11]. The main problem is that current algorithms for NTF [2] are
often variations of general nonlinear programming codes that can be very fast
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Fig. 1. Sparse NTF face model. MIT CBCL faces are factorized (k = 10) and re-
constructed using sparsity-control for horizontal factors u1 (see text). The min-sparsity
constraints were 0.0, 0.2, 0.4, 0.6, 0.8 (from left to right). Starting from smin

i = 0.4 re-
constructions look increasingly generic and individual features disappear.

as long as sparsity constraints are absent [12, 13]. With additional sparsity con-
straints the corresponding projected gradient descent algorithm [11] can converge
slowly. This aggravates with NTF where individual factors interact in a more
complicated way.

For sparsity controlled NMF, approaches from convex programming and
global optimization [14] have thus been proposed [15]. In this work, we build
on such ideas to allow for fully sparsity-controlled NTF models and study the
behavior of the resulting model on artificial data and on databases of real-world
images.

Overview. After this introduction we discuss the sparsity-controlled NTF prob-
lem in Sec. 2. In Sec. 3 we provide a practical algorithm to solve the problem.
We validate it empirically in Sec. 4 before we summarize our paper in Sec. 5.

Notation. We represent image data as tensor of order 3, e.g., V ∈ R
d1×d2×d3
+ de-

notes d3 images of size d1 × d2. We are not concerned about the transformation
properties of V , so this simplified 3-way array notation is sufficient. The factoriza-
tion is givenby vectorsuj

i ∈ R
di , where j = 1, . . . , k indexes k independent vectors.

Where convenient, we omit indices of the factors, e.g., ui ∈ R
di×k is the matrix of

k factors corresponding to index i, and u alone is the ordered set of such matrices.

2 The NTF Optimization Problem and Sparseness

In this section we formally state the NTF optimization problem in its original
form and extended by sparseness constraints.

2.1 Original NTF Model

The NTF optimization problem admits the general form

min
uj

i∈R
di

‖V −
k∑

j=1

3⊗

i=1

uj
i‖2

F

s.t. 0 ≤ uj
i .

(1)
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Here, image volume V is approximated by the sum of k rank-1 tensors that are
outer products uj

1 ⊗ uj
2 ⊗ uj

3. By using outer products with additional factors
uj

i , i > 3, this generalizes to higher-order tensors. In this work, however, we are
concerned with image volumes only.

It is instructive to compare NTF with the more widespread NMF model:
In NMF, image data is first vectorized, and the resulting non-negative matrix
V ∈ R

m×d3
+ , m = d1 · d2, is then factorized as the product of two non-negative

matrices W ∈ R
m×k
+ and H ∈ R

k×d3
+ . In short, one optimizes

min
W,H

‖V − WH‖2
F

s.t. 0 ≤ W, H.
(2)

It is clear that the vectorized representation does not take into account the
spatio-temporal correlations of image data or video. In contrast, the NTF anal-
ogon to basis images are rank-one matrices uj

1 ⊗ uj
2 that nicely represent corre-

lations along the x and y direction of the image plane. The price to pay is that
with NTF basis images are no longer arbitrary: The rank one restriction rules
out, e.g., basis images with diagonal structures.

2.2 Sparsity-Constrained NTF

It has early been reported that NTF codes tend do be sparse, i.e., many entries
of the uj

i equal zero [1]. Especially for pattern recognition applications, sparsity
is a key property since it relates directly to learnability [16, 17] and is biologically
well motivated [18]. Sparsity also seems to act as a strong prior for localized image
representations [11]. Such representations are desirable since they naturally focus
on parts and thus are potentially more robust against occlusion or noise than
are their global counterparts.

Thus, the following sparseness measure has been suggested for NMF [11]:

sp(x) :=
1√

n − 1

(√
n − ‖x‖1

‖x‖2

)
. (3)

It assigns to each vector1 x ∈ R
n\{0} a real number within [0, 1] where sp(x) = 0

corresponds to a uniform vector with xi = const > 0, ∀i, and sp(x) = 1 corre-
sponds to a vector with a single non-zero element. Since sp(x) is not affected
by multiplicative factors, i.e., c > 0 ⇒ ∀x : sp(x) = sp(c · x), and varies con-
tinuously between the two boundary cases it serves as a convenient and ex-
pressive sparsity measure. Empirically, it has been observed that extending (2)
by sparseness constraints can lead to considerably improved non-negative ba-
sis functions which are more localized and allow easier semantic interpreta-
tion [11, 15].

1 Where convenient, we will also use sp(M) ∈ R
n for matrices M ∈ R

m×n. Then,
sparsity is measured for each column of M and the results are stacked into a vector.
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Thus, it is desirable to extend (1) by similar sparsity-controlling constraints,
leading to the problem

min
uj

i∈R
di

‖V −
k∑

j=1

3⊗

i=1

uj
i‖2

F

s.t. 0 ≤ ui

smin
i ≤ sp(ui) ≤ smax

i .

(4)

The parameters smin
i and smax

i are real numbers in [0, 1] specified by the user for
a given application. We propose solvers for (4) in Sec. 3 and validate the model
on artificial and on real-world data in Sec. 4.

3 Solving Sparsity-Constrained NTF

In this section, we develop an algorithm for solving problem (4). The basic build-
ing block of our method are second order cone programs (SOCPs) which we intro-
duce in Sec. 3.1. In Sec. 3.2 we propose an algorithm that dually and alternately
optimizes sparseness and reconstruction quality of the tensor approximation.

3.1 Sparsity and Second Order Cones

From an optimization viewpoint, it is important to note that (3) models a second
order conic set [19]. The second order standard cone Ln+1 ⊂ R

n+1 is the convex
set:

Ln+1 :=
{(

x
t

)
= (x1, . . . , xn, t)�

∣∣∣ ‖x‖2 ≤ t

}
. (5)

As second order cones are useful in modeling a range of applications and are
computationally convenient at the same time, they gave rise to the framework
of second order cone programming [19]. In SOCP one considers problems with
conic constraints that admit the general form

inf
x∈Rn

f�x

s.t.
(

Aix + bi

c�i x + di

)
∈ Ln+1, i = 1, . . . , m. (6)

Being convex problems, efficient and robust solvers for SOCPs exist in soft-
ware [20, 21, 22]. Furthermore, additional linear constraints and, in particular,
the condition x ∈ R

n
+ are admissible, as they are special cases of constraints of

the form (6).
Considering the sparseness function (3) it has been pointed out [15] that the

set of non-negative vectors x ≥ 0 no sparser than s ∈ [0, 1] is given by the second
order cone

C(s) :=
{

x ∈ R
n

∣∣∣
(

x
1

cn,s
e�x

)
∈ Ln+1

}
, cn,s :=

√
n − (

√
n − 1)s. (7)
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In this light, we can rewrite (4) as

min
uj

i

‖V −
k∑

j=1

3⊗

i=1

uj
i‖2

F

s.t. uj
i ∈ (Rdi

+ ∩ C(smax
i )) \ C(smin

i ), j = 1, . . . , k.

(8)

This notation makes explicit that the constraints consist of a convex part uj
i ∈

{R
di
+ ∩ C(smax

i )} and a reverse-convex part uj
i �∈ C(smin

i ). The two fundamental
challenges to address are thus, first, the non-convex objective function, and,
second, the reverse-convex min-sparsity constraint.

3.2 The Sparsity Maximization Algorithm (SMA)

We use two strategies to cope with the basic challenges in problem (8): First,
to address the non-convexity of the objective function, we apply an alternate
minimization approach where only one component ui, i ∈ {1, 2, 3}, is opti-
mized at a time while the other two components are held constant. The result-
ing objective function is convex quadratic in each step. Alternate minimization
is very popular with NMF, NTF, and similar models and seems to perform
well in experiments [1, 2, 3, 4, 5, 6, 13, 15]. Note that for problems where mem-
ory is not a major concern, joint optimizations of pairs or triplets of the ui

components may offer performance benefits, especially toward the end of an
optimization [5, 23]. For our sparsity maximization-approach, however, we will
remain with the more memory efficient and simpler scheme of strict alternate
minimization.

To deal with the second challenge, the reverse-convex min-sparsity constraint,
we adopt an approach from global optimization [24]: Given a current estimate
for ui we compute the maximally sparse approximation subject to the constraint
that the reconstruction error does not deteriorate, and, dually, given a maximally
sparse approximation we minimize the reconstruction error subject to the con-
straint that the min-sparsity constraint may not be violated.

Let us assume that within the alternate minimization approach (“outer loop”)
we optimize component ui, while the components Ī := {1, 2, 3}\{i} remain fixed.
Then the target function f(V, u) := ‖V −

∑k
j=1

⊗3
i=1 uj

i‖2
F can be written as

f(V, ui) = ‖vec(V ) − Uvec(ui)‖2
2, where U is a sparse matrix containing the

corresponding entries ui, i ∈ Ī, that are not currently optimized.

Initialization. We start with any ui that obeys the constraints of (8). A simple
way to obtain such an initialization is to first solve the problem ignoring the
min-sparsity constraint, i.e.,

min
ui

f(V, ui)

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k
(9)
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which is a SOCP that reads in standard form
min
ui,z

z

s.t. 0 ≤ ui(
vec(V ) − Uvec(ui)

z

)
∈ Lkdi+1

(
uj

i

(cdi,smax
i

)−1e�uj
i

)
∈ Ldi+1, j = 1, . . . , k.

(10)

The resulting ui can then be projected on the boundary of the min-sparsity cone.
Accuracy is of no concern in this step, so simple element-wise exponentiation
followed by normalization

π(uj
i ) ∝ (uj

i )
t

‖(uj
i )t‖2

(11)

with suitable parameter t, yields a feasible initialization.
Step one. In the first step we maximize worst-case sparsity subject to the
constraint that reconstruction accuracy may not deteriorate:

max
ui

min
j

sp(uj
i )

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k

f(V, ui) ≤ f(V, ūi),

(12)

where ūi is the estimate for ui before sparsity maximization. Problems similar
to (12) have been solved using cutting plane methods, however, such solvers
seem to perform well for small to medium-sized problems only [24, 14]. For the
large scale problems common in computer vision and machine learning, we must
content ourselves with a local solution obtained by linearization of the sparsity
cone around the current estimate ūi. The resulting problem is a SOCP:

max
ui,z

z (13a)

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k (13b)
f(V, ui) ≤ f(V, ūi) (13c)

z ≤ sp(ūj
i ) + 〈∇sp(ūj

i ), u
j
i − ūj

i 〉, j = 1, . . . , k. (13d)

Note that sp(x) is convex, so the linearization (13) is valid in the sense that
min-sparsity will never decrease in step one.
Step two. In the second step we improve the objective function while paying at-
tention not to violate the min-sparsity constraints. Given the sparsity-maximized
estimate ūi we solve the SOCP

min
ui

f(V, ui) (14a)

s.t. uj
i ∈ R

di
+ ∩ C(smax

i ), j = 1, . . . , k (14b)

‖uj
i − ūj

i‖2 ≤ min
q∈C(smin

i )
‖q − ūj

i‖2, j = 1, . . . , k (14c)
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Algorithm 1. The sparsity maximization algorithm in pseudocode
1: initialize all uj

i using eqn. (10) and (11), set ū ← u
2: repeat
3: for i = 1 to 3 do
4: repeat
5: uold ← u
6: ūi ← solution of (13)
7: ui ← solution of (14)
8: until |f(V, ui) − f(V, uold,i)| ≤ ε
9: end for

10: until no improvement found in loop 3–9

which is straightforward to translate to standard form. Note that constraints
(14c) make sure that the resulting uj

i will not enter the min-sparsity cone. In
effect, the reverse-convex min-sparsity constraint is translated in (14) into a
convex proximity constraint. This is similar to trust region approaches common
in nonlinear programming.

Termination. After the second step we check whether f(V, ui) improved more
than ε. If it did we jump to step one, otherwise we switch in the outer loop to a
different factor i. The whole algorithm is outlined in Alg. 1.

3.3 Convergence Properties

Regarding termination of Alg. 1, we assert:

Proposition 1. The SMA algorithm (Alg. 1) terminates in finite time for any
sparsity-constrained NTF problem.

Proof (sketch). For lack of space, we omit technicalities and note that:

– Step 1 consists of solving three convex programs and subsequent projections.
These operations will terminate in polynomial time.

– Any current estimate u is a feasible point for the convex programs (polyno-
mial time) in the inner loop (steps 6 and 7). Thus, with each iteration of the
inner loop the objective value f(V, u) can only decrease or remain constant.

– Since f(V, u) is bounded from below, the inner loop will eventually terminate
(step 8).

– And so will the outer loop (step 10) for the same reason. ��

The algorithm conveniently converges on a stationary point if the constraints are
regular. Following [24] we call constraints regular if their gradients are linearly
independent and if removing one would allow for a new optimum with lower
objective value. From a practical viewpoint, this means that in particular we
assume smin

i < smax
i , i.e., the interior of the feasible set is not empty.

Proposition 2. Under regular sparsity constraints, Alg. 1 converges on a sta-
tionary point of problem (4).
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Proof. The first order optimality conditions for problem (4) read:

− ∂L

∂u∗
i

∈ NQi(u
∗
i ), (15a)

Gi(u∗
i ) ∈ R

k
+, (15b)

λ∗
i ∈ Rk

−, (15c)
〈λ∗

i , u
∗
i 〉 = 0, (15d)

where i runs from 1 to 3. Here,

L(u, λ1, λ2, λ3) = f(V, u) +
3∑

i=1

λ�
i Gi(ui) (16)

is the Lagrangean of the problem and

Gi(ui) =
(
‖u1

i ‖2 − (cdi,smin
i

)−1‖u1
i ‖1, · · · , ‖uk

i ‖2 − (cdi,smin
i

)−1‖uk
i ‖1

)�
(17)

encodes the min-sparsity constraints: Gi(ui) is non-negative if the min-sparsity
constraints on ui are adhered to. Finally, NQi in (15a) is the normal cone [25]
to the convex set Rdi×k

+ ∩ C(smax
i ), i = 1, . . . , 3.

Now assume the algorithm converged (Prop. 1) on a point ũ. Because sp(·) is
convex and the constraints are regular we find that (13d) is locally equivalent
to z ≤ sp(ũi). In fact, z = smin

i because the min-sparsity constraint is active for
some vector ũj

i : Otherwise we could remove the constraint without changing the
objective value of the solution.

Overall, we find that the solution to (13) satisfies

max
z,ui∈Qi

z,

s.t. z = min
i

sp(ui),

0 ≤ f(V, ui) − f(V, ũi),

Gi(ui) ∈ R
k
+.

(18)

Then the solution obeys the corresponding first order condition

− ∂

∂ui

(
λ̂fif(V, ui) + 〈λ̂ui, Gi(ui)〉

)
∈ NQi(u

∗
i ) (19)

which is equivalent to (15). ��

3.4 Practical Considerations

The SOCP problems (13) and (14) are sparse but can become very large. Solvers
with support for sparse matrices are crucial2. In applications where the convex
max-sparsity constraints are not used, i.e., only min-sparsity constraints are
specified, quadratic programming (QP) solvers can be used instead of SOCP
solvers. Commercial QP solvers are usually highly optimized and may be faster
than their SOCP counterparts.
2 In our experiments we used MOSEK 3.2.1.8 [22].



64 M. Heiler and C. Schnörr

4 Experiments

In this section we show that our optimization framework works robustly in prac-
tice. A comparison demonstrates that explicit sparsity-control leads to improved
performance. Our results validate that sparsity-controlled NTF can be a useful
model in real applications.

4.1 Ground Truth Experiment

To validate our approach we created an artificial data set with known ground
truth. Specifically, we used three equally-sized factors ui with di = 10 and all
entries zero except for the entries shown in Fig. 2(a). We computed V = u1 ⊗
u2 ⊗ u3 + |ν|, where ν ∼ N (0, 0.5) was i.i.d. Gaussian noise.
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(a) Ground truth
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(c) Sparse NTF

Fig. 2. Ground truth experiment. We created an artificial data set with known
factors ui (Fig. 2(a)). We added noise (see text) and used NTF to recover the factors
from V = u1 ⊗ u2 ⊗ u3 + |ν|. While the NTF model without sparsity constraints failed
(Fig. 2(b)), sparsity-controlled NTF successfully recovered the factors (Fig. 2(c)).

We found that over 10 repeated runs the classical NTF model without sparsity
constraints was not able to recover any of the factors (Fig. 2(b)). In contrast,
sparsity-controlled NTF with smin

i = 0.55 yielded useful results in all 10 repeated
runs (Fig. 2(c)).

We conclude that in the presence of noise, sparsity constraints are crucial to
successfully recover sparse factors. Further, we find that at least with the simple
data set above the sparsity maximization algorithm converged on the correct
factorization in 10 out of 10 repeated runs.

4.2 Face Detection

For the face detection problem, impressive results are reported in [3] where NTF
without sparsity constraints clearly outperformed NMF recognition rates on the
MIT CBCL face data set [26]. We demonstrate in this section that performance
can further be improved by using sparsity-constrained NTF.

In our experiments we used the original training and test data sets provided
by CBCL [26]. In this data sets, especially the test data set is very imbalanced:
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Table 1. Recognition performance of sparse NTF codes. We trained a SVM on
a subset of the MIT CBCL face detection data set (see text). Features were raw pixels,
a NMF basis, and a NTF basis with different min-sparsity constraints. We compared
area under ROC for the MIT training data (first row), the MIT test data set (second
row) and recognition accuracy for a balanced test data set with 50% face samples (last
row). NTF with a relatively strong min-sparsity constraint smin

1 = 0.8 performs best.

feature pixels NMF NTF NTF NTF NTF NTF NTF NTF
smin
1 0.0 0.3 0.4 0.6 0.7 0.8 0.9

ROC (trai) 0.997 0.995 1.000 1.000 0.997 0.997 0.994 1.000 0.991
ROC (test) 0.817 0.817 0.835 0.822 0.789 0.830 0.822 0.860 0.821

ACC-50 (test) 0.611 0.667 0.753 0.600 0.702 0.743 0.728 0.761 0.719

A trivial classificator returning “non-face” for all input would obtain 98% ac-
curacy. For this reason, we consider the area under the ROC curve as a more
suitable performance measure. We thus trained radial-basis function SVMs on
small subsets (250 samples only) of the CBCL training data set. To determine
the SVM and kernel parameters, we used 5-fold crossvalidation on the training
data. For the resulting SVM we determined the area under the ROC on the test
data set. In addition, we also created a data set ACC-50 consisting of all 472 pos-
itive samples in the test data set as well as of 472 randomly chosen negative test
samples.

We compared the following feature sets:

1. the 19 × 19 = 361 raw image pixels as found in the CBCL data set,
2. coefficients for 10 NMF basis functions determined on a subset of the faces

in the training data set,
3. coefficients for 10 NTF basis functions determined on a subset of the faces in

the training data set using different values of the min-sparsity constraint on
u1. Reconstructions using these features are shown in Fig. 1. Note that the
NTF basis corresponds to an about 10-fold higher compression ratio than
the NMF basis.

The results are summarized in Tab. 1: NMF and raw pixel values perform similar
in this experiment. NTF yields improved results, which is consistent with [3].
Best results are obtained with NTF with strong sparsity constraint (smin

1 = 0.8).

5 Conclusions

We extended the non-negative tensor factorization model for images [1, 2, 3] by
explicit sparseness constraint [11]. We found that compared to unconstrained
NTF the extended model can be more robust against noise (Sec. 4.1) and the
corresponding image codes can be more efficient for recognition, especially when
training data is scarce (Sec. 4.2).

From an optimization point of view, we devised an algorithm based on se-
quential conic programming (Sec. 3.2) which has desirable convergence prop-
erties (Sec. 3.3) and works well in practice (Sec. 4). Because the algorithm’s
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basic building blocks are convex programs, we believe the model could further
be extended by additional convex constraints taking into account prior knowl-
edge about the specific problem at hand, while still remaining in the sequential
convex programming framework.
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