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Abstract

The total variation (TV) measure is a key concept in the field of variational image
analysis. In this paper, we focus on vector-valued data and derive from the Hodge de-
composition of image flows a definition of TV regularization for vector-valued data that
extends the standard componentwise definition in a natural way. We show that our ap-
proach leads to a convex decomposition of arbitrary vector fields, providing a richer de-
composition into piecewise harmonic fields rather than piecewise constant ones, and mo-
tion texture. Furthermore, our regularizer provides a measure for motion boundaries of
piecewise harmonic image flows in the same way, as the TV measure does for contours
of scalar-valued piecewise constant images.

1 Introduction

The total variation (TV) measure has been introduced in image processing by Rudin, Osher
and Fatemi [1] in connection with image denoising. Let BV (Ω) be the space of functions of
bounded variation and TV the corresponding norm which will be precisely defined in Section
2. Minimizing over BV (Ω) the convex functional

1

2
‖u− d‖2

L2(Ω) + λTV(u) , λ > 0 , (1)

for given image data d leads to an edge-preserving nonlinear smoothing process that effec-
tively removes noise and small-scale spatial patterns from d.
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Starting with the work of Meyer [2], the more general viewpoint of image decomposition
has been adopted, see also [3] and references therein. The solution ū of the basic model (1)
leads to a decomposition

d = ū+ v̄ (2)

of the given image data d into a piecewise constant image structure ū and oscillatory patterns
and noise contained in v̄.

Another key property of the TV measure is due to its geometric interpretation via the co-
area formula [4]: TV(u) equals the length of level lines of u, summed up over the range of u
(contrast). As a consequence, TV(u) measures the length of contours of piecewise constant
images, hence implements the regularization term of the Mumford-Shah variational approach
to segmentation. This fact has been explored for image inpainting [5] and more recently
also for image segmentation, in order to replace non-convex variational approaches [6, 7] by
convex ones that can be globally optimized [8, 9].

A natural issue concerns the application of the TV measure to vector-valued data u =

(u1, u2)
T. Usually, definitions are applied which, for sufficiently regular u, have the form [10]

TV(u) :=

∫

Ω

√
|∇u1|2 + |∇u2|2 dx . (3)

The Helmholtz decomposition of u into its basic components, divergence and curl, suggests
an alternative:

R(u) :=

∫

Ω

√
(div u)2 + (curl u)2 dx. (4)

This viewpoint has been used recently in [11] for decomposing image flows. However, a
geometric interpretation based on convex analysis and its connection to the definitions (3) and
(1) has not been given. We will show below that R

– is a mathematically more natural definition extending TV,

– decomposes flows into a richer “structural” component – analogous to ū in the scalar
case (2) – comprising piecewise harmonic flows rather than piecewise constant flows.

The regularizer R in (4) is also relevant for the processing of directional vector fields d with
‖d(x)‖2 = 1 a.e. in connection with other important applications besides image processing
[12, 13, 14]. In fact, applying the standard TV measure (3) to the angular representation

d

‖d‖2

= (cos θ, sin θ)>

yields

‖∇θ‖2 =

√(
div

( d

‖d‖2

))2

+
(

curl
( d

‖d‖2

))2

. (5)

In previous work, nonlinear systems of PDEs defined on the sphere and sophisticated numer-
ical schemes were applied for the regularization of directional fields [12, 13, 14], and a very
efficient algorithm was recently devised in [14].
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This paper, elaborates the convex representation of the term (4). Besides enabling a range
of convex programming approaches for algorithm design, our approach contributes a defini-
tion of motion texture and highlights motion discontinuities to which a convex functional is
sensitive.

Organization We briefly recall the basic Rudin-Osher-Fatemi (ROF) model in Section 2.
In Section 3, we consider orthogonal decompositions of linear spaces of images and vector
fields which provides the basis for extending the convex decomposition underlying the ROF
model to vector fields in Section 4. This leads to a proper definition of the regularizer (4)
in Section 5. In Section 6, we examine its behaviour at motion boundaries. A basic convex
programming approach is provided in Section 7, but the design of really efficient schemes is
beyond the scope of this work. Numerical experiments illustrate and validate our approach in
Section 8. We conclude and indicate directions of further research in Section 9.

Notation Throughout this paper, let Ω ⊂ R2 be an open, bounded and simply-connected
domain with Lipschitz-continuous boundary ∂Ω. Then we use the following notation for
inner products of scalar fields

〈f, g〉Ω :=

∫

Ω

fg dx ,

and of vector fields
〈u, v〉 := u · v , 〈u, v〉Ω :=

∫

Ω

u · v dx .

The scalar-valued curl operator for vector fields v = (v1, v2)
T is defined by

curl v :=
∂v2

∂x1

− ∂v1

∂x2

,

while the vector-valued curl operator for scalar fields φ is the rotated gradient

∇⊥φ :=

(
∂φ

∂x2

, − ∂φ

∂x1

)T

.

2 The Rudin-Osher-Fatemi (ROF) Model

The total variation of a scalar function u is defined as

TV(u) := sup
‖p‖∞≤1

p∈(C1
0(Ω))2

〈u, div p〉Ω, (6)

where ‖p‖∞ := supx∈Ω

√
p2

1(x) + p2
2(x). Based on this definition, the convex variational

image denoising approach (1) can be transformed into its dual formulation ū = d − div p̄,
where p̄ is the minimizer of

inf
p∈Cλ

‖ div p− d‖2
Ω , (7)
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where Cλ is the closed convex set

Cλ =
{
v = div p : ‖p‖∞ ≤ λ, p ∈ (C1

0(Ω))2
}
,

see [15]. Denoting the orthogonal projector onto Cλ by ΠCλ
, this results in a decomposition

of the scalar image data d into

d = ū+ v̄ = ū+ div p̄ = ū + ΠCλ
d, (8)

where ū provides the piecewise smooth component, i.e., the large-scale structural parts of the
image signal d, and div p̄ comprises the corresponding small-scale structure, i.e., texture and
noise. Accordingly, this is called the structure-texture decomposition of image d.

For d with mean zero, the smallest value of λ such that the solution ū of (1) becomes
zero, equals the G-norm of d (cf. [2]) which measures the size of the small-scale oscillating
component (noise, texture) of the image function.

3 Orthogonal Decomposition of Images and Flows

In this section, we first provide an orthogonal decomposition of scalar-valued functions. Next,
we summarize orthogonal decompositions of vector fields, the Helmholtz decomposition and,
as an extension thereof, the Hodge decomposition.

The difference between orthogonal image decomposition and the convex decomposition
of the previous section will provide the guideline for generalizing the convex decomposition
approach to vector fields in the subsequent section.

3.1 Orthogonal Image Decomposition

Any scalar-valued function d ∈ L2(Ω) can be decomposed as

d = c+ div p , p|∂Ω = 0 (9)

with a constant image c. Since
∫
Ω

div p dx = 0, due to the boundary condition on p, the
constant function c is just the mean value 1

|Ω|
∫

Ω
d dx, and we have also the orthogonality of

the two components 〈c, div p〉Ω = 0.
As in (8), the function d is decomposed into two components, a smooth component c and

a remaining component of small-scale structure. The difference between (8) and (9) is that the
latter projects onto special convex sets, namely orthogonal subspaces. This leads to a constant
“smooth” component c in (9), as opposed to u in (8) that tends to be piecewise constant. Of
course, if λ is large enough, then u in (8) becomes a constant as well.
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3.2 Orthogonal Decomposition of Image Flows

Beside the Sobolev spaces H1(Ω) and H1
0 (Ω) for scalar-valued functions and their compo-

nentwise analogues (H1(Ω))2 and (H1
0 (Ω))2 for vector-valued functions, see [4], we need the

special function spaces involving the div and curl of a vector field

H(div; Ω) =
{
v ∈ L2(Ω)2

∣∣ div v ∈ L2(Ω)
}
,

H(curl; Ω) =
{
v ∈ L2(Ω)2

∣∣ curl v ∈ L2(Ω)
}
.

With the inner products

〈u, v〉div;Ω = 〈u, v〉Ω + 〈div u, div v〉Ω ,
〈u, v〉curl;Ω = 〈u, v〉Ω + 〈curlu, curl v〉Ω ,

these spaces become Hilbert spaces [16]. Next we recall the following Helmholtz decompo-
sitions.

Theorem 3.1 ([17]). The orthogonal decompositions

L2(Ω)2 = ∇H1(Ω)⊕∇⊥H1
0 (Ω) , (10a)

L2(Ω)2 = ∇H1
0 (Ω)⊕∇⊥H1(Ω) , (10b)

into gradients and curls hold true. The gradients and curls of H1(Ω) are characterized by

∇H1(Ω) =
{
v ∈ H(curl; Ω)

∣∣ curl v = 0
}
, (11a)

∇⊥H1(Ω) =
{
v ∈ H(div; Ω)

∣∣ div v = 0
}
. (11b)

We refine the decompositions (10) by splitting up the first factor in (10a) and the second
factor in (10b), respectively.

Theorem 3.2 (Orthogonal Hodge Decomposition). The space L2(Ω)2 can be orthogonally
decomposed as

L2(Ω)2 = H⊕∇H1
0 (Ω)⊕∇⊥H1

0 (Ω), (12)

where the space of harmonic vector fieldsH is given by

H :=
{
v ∈ H(div; Ω) ∩H(curl; Ω)

∣∣ div v = curl v = 0
}
. (13)

Proof. Due to the inclusions ∇H1
0 (Ω) ⊂ ∇H1(Ω) and ∇⊥H1

0 (Ω) ⊂ ∇⊥H1(Ω), the space
H is by virtue of (10) given by

H =
(∇H1

0 (Ω)⊕∇⊥H1
0 (Ω)

)⊥
=

(∇H1
0 (Ω)

)⊥ ∩ (∇⊥H1
0 (Ω)

)⊥
= ∇⊥H1(Ω) ∩∇H1(Ω) .

Inserting (11) yields the assertion. ¤
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4 Convex Hodge Decomposition of Flows

Based on the previous discussion, natural questions arise:

1. Because the orthogonal decomposition of scalar fields (9) is clearly inferior to the con-
vex decomposition (8) in that the structural component ū models more general func-
tions, what is the convex counterpart of the orthogonal decomposition of vector fields
(12)?

2. What is the natural generalization of the variational denoising approach (1) to vector
fields?

We will address the first question next and the second question in the following section.
Given a vector field d ∈ L2(Ω)2, we consider the convex Hodge decomposition

d = ū+ v̄ = ū+∇ψ̄ +∇⊥φ̄ = ū+ ΠSλ
d , (14)

into a piecewise-smooth component ū and a non-smooth component given by the orthogonal
projection ΠSλ

d of d onto the convex set

Sλ :=
{
v = ∇ψ +∇⊥φ :

√
ψ(x)2 + φ(x)2 ≤ λ, (ψ, φ) ∈ (

H1
0 (Ω)

)2}
, (15)

Notice the structural similarity between (8) and (14). Likewise, as ū in (8) generalizes c in (9)
from constant functions to piecewise constant functions, so ū in (14) generalizes the harmonic
vector fields from H in (12) to piecewise harmonic vector fields. The second component of
(14) appears to be a plausible definition of “motion texture”.

5 Denoising of Image Flows

We take a closer look to the analogy between the ROF-model and our generalization to vector
fields. Based on the definition (15), we propose to minimize the convex functional

1

2
‖u− d‖2

Ω + λR(u) (16)

as a natural generalization of the ROF-model (1) to vector-valued data, where the regularizer
R is given by

R(u) = sup
v∈S1

〈v, u〉Ω . (17)

Assuming u to be sufficiently smooth, and taking into account the representation (15), in
particular that the functions ψ, φ vanish at ∂Ω, we can rewrite the regularizing term (17) as

R(u) = sup
v∈S1

〈v, u〉Ω = sup
‖(ψ,φ)‖∞≤1

〈∇ψ +∇⊥φ, u〉Ω ,

= sup
‖(ψ,φ)‖∞≤1

{− 〈ψ, div u〉Ω + 〈φ, curlu〉Ω
}
,

=

∫

Ω

√
(div u)2 + (curlu)2dx , (18)

6



and obtain (4). Since R is positively homogeneous, λR(u) equals supv∈Sλ
〈v, u〉Ω. Hence,

minimizing (16) reads

inf
u

sup
v∈Sλ

{1

2
‖u− d‖2

Ω + 〈v, u〉Ω
}
.

Exchanging inf and sup yields the convex decomposition

d = u+ v ,

and the dual convex problem of (16)

inf
v∈Sλ

‖v − d‖2
Ω. (19)

In summary, the solution ū of (16) is just given by (14). Let us point out again the similar-
ities of our approach (16) for denoising vector fields with the ROF-model (1) for denoising
scalar-valued functions, based on the convex Hodge decomposition introduced in the previ-
ous section. The regularizer R in (17) is defined as support function of a convex set, as is the
total variation measure TV in (6). Likewise, the dual convex problem (19) characterizes the
non-smooth, oscillating component (“motion texture”) of a given vector field d as a projection
onto a convex set, as does the ROF-model for scalar-valued functions in (7).

6 Motion Boundaries

Next we show by an heuristic example that for piecewise harmonic flows u, i.e., with vanish-
ing divergence and curl a.e., the measure R in (17) only contributes at motion boundaries.

Indeed, let us consider a partition Ω = (Ω1 ∪ Ω2) \ ∂(Ω1,Ω2) with a smooth interior
boundary ∂(Ω1,Ω2) = Ω1 ∩ Ω2, and a piecewise harmonic flow

u = u|Ω1 + u|Ω2 ∈ H ,

that is discontinuous along ∂(Ω1,Ω2). Applying Green’s formulas [16],

〈u,∇ψ〉Ω + 〈div u, ψ〉Ω =

∫

∂Ω

〈u, n〉ψ ds , ∀u ∈ H(div; Ω) , ∀ψ ∈ H1(Ω) , (20a)

〈curlu, φ〉Ω − 〈u,∇⊥φ〉Ω =

∫

∂Ω

〈u, t〉φ ds , ∀u ∈ H(curl; Ω) , ∀φ ∈ H1(Ω) , (20b)

we obtain by (ψ, φ) ∈ (
H1

0 (Ω)
)2 and

√
ψ(x)2 + φ(x)2 ≤ 1 due to (15) and (13) that

R(u) = sup
‖(ψ,φ)‖∞≤1

〈∇ψ +∇⊥φ, u〉Ω ,

= sup
‖(ψ,φ)‖∞≤1

{
− 〈ψ, div u〉Ω1 +

∫

∂(Ω1,Ω2)

〈u1 − u2, n〉ψ ds

+ 〈φ, curlu〉Ω2 −
∫

∂(Ω1,Ω2)

〈u1 − u2, t〉φ ds
}
,

=

∫

∂(Ω1,Ω2)

‖u1 − u2‖ds .
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This generalizes in a plausible way the regularization term

(u1 − u2) length
(
∂(Ω1,Ω2)

)

of the Mumford-Shah functional from piecewise-constant functions [6] to piecewise-harmonic
vector fields.

7 Algorithm

In this section, we confine ourselves to deriving a simple iterative algorithm for solving the
problem (19). The derivation of dedicated, more efficient algorithms, as was successfully
done for the ROF-model [18, 19, 20], is beyond the scope of this paper.

Throughout this section, we consider the discretized problem (19). The quantities ψ, φ, d
are vectors of appropriate dimension, and∇,∇⊥, div, curl,∆ are corresponding matrices pre-
serving the identities fulfilled by the continuous operators, as detailed in [11]. Further, ‖ · ‖Ω

becomes an Euclidean inner product.

Proposition 7.1. For 0 < τ < 2/‖∆‖2, the sequence {(ψ(k), φ(k))}k∈N produced by the
algorithm (

ψ(k+ 1
2
)

φ(k+ 1
2
)

)
:=

(
ψ(k)

φ(k)

)
+ τ

(
∆ψ(k) − div d

∆φ(k) + curl d

)
, (21)

(
ψ(k+1)

φ(k+1)

)
:=

λ

max

{
λ,

∥∥∥∥∥

(
ψ(k+ 1

2
)

φ(k+ 1
2
)

)∥∥∥∥∥
2

}
(
ψ(k+ 1

2
)

φ(k+ 1
2
)

)
, (22)

converges for any initiatization (ψ(0), φ(0)) to the minimizer v̄ = ∇ψ̄ +∇⊥φ̄ of (19).

Note that ‖∆‖2 ≤ 8, where the bound becomes sharp if the image size goes to infinity.
The above algorithm was proposed without convergence proof for solving the ROF problem
for scalar-valued images by Chambolle in [21]. The same author suggested another algorithm
in [15].

Proof. In view of (15), we rewrite (19) as

inf
ψ,φ

{
F1

((
ψ

φ

))
+ F2

((
ψ

φ

)) }
= inf

ψ,φ

{
‖∇ψ +∇⊥φ− d‖2

Ω + δB∞;λ

((
ψ

φ

)) }
, (23)

where δB∞;λ
denotes the indicator function of B∞;λ := {(ψ, φ)T :

√
ψ2 + φ2 ≤ λ} and the

square and square root of vectors is meant componentwise. By virtue of (20) and orthogonality
of ∇ψ and ∇⊥φ, we obtain the optimality condition [22]

0 ∈ ∇F1

((
ψ̄

φ̄

))
+ ∂F2

((
ψ̄

φ̄

))

=

(−∆ 0

0 −∆

)(
ψ̄

φ̄

)
+

(
div d

− curl d

)
+NB∞;λ

((
ψ̄

φ̄

))
, (24)
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where NB∞;λ
denotes the normal cone to the convex set B∞;λ. This inclusion leads for a

positive constant τ > 0 to the fixed point equation

(I − τ∇F1)

((
ψ̄

φ̄

))
∈ (I + τ∂F2)

((
ψ̄

φ̄

))
,

(
ψ̄

φ̄

)
= (I + τ∂F2)

−1(I − τ∇F1)

((
ψ̄

φ̄

))

= ΠB∞;λ

((
ψ̄

φ̄

)
+ τ

[(
∆ 0

0 ∆

)(
ψ̄

φ̄

)
−

(
div d

− curl d

)])
.

The corresponding Picard iteration (21), (22) is known as forward-backward splitting algo-
rithm, see, e.g., [23]. Since the functional (23) is coercive there exists a minimizer. Further,
F2 is proper, convex and closed so that it remains by [24, 25] to show that ∇F1 is Lipschtz
continuous with constant < 2/τ which is obviously the case if τ < 2/‖∆‖2.

8 Experiments

Figures 2 – 9 show results of various experiments concerning flow structure-texture decom-
position, flow denoising, and the preservation of motion boundaries in order to substantiate
the reasoning above. Detailed comments are given in the respective figure captions.

Comparing the performance of the standard TV-term (3) with our alternative term (17),
resp. (4), the later shows the following advances:

– it leads to a flow decomposition d = ū+ v̄ with a richer structural component ū,

– it provides a plausible definition of motion texture v̄ dependent on the scale parameter
λ,

– it separates more accurately motion texture and noise from flow structure,

– and it better preserves motion boundaries.

9 Conclusion

Our work enlarges the class of convex variational approaches that can be used to denoise
and separate vector-valued data. Our results elucidate a further mathematical setting where to
some extent decisions (separation and segmentation) can be done just by convex programming,
that is globally optimal.

In future work, we will continue this line of research and investigate more general vari-
ational approaches as well as related applications. Concerning the latter, an obvious class
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of data discussed already in the introduction above, are directional vector fields. Given a
directional vector field d with ‖d(x)‖2 = 1 a.e., we suggest the minimization problem

inf
‖u‖≤1

{
− 〈d, u〉Ω + λR(u)

}
, (25)

with R from (17). This functional is convex. Does the solution satisfy ‖u(x)‖2 = 1 for any
value λ > 0? We will address this question in a subsequent paper and report here a preliminary
numerical example only.

Figure 1: Top row: A directional flow field d , ‖d(x)‖ = 1 is shown on the left, and its
color-coded components d1, d2 in the center and on the right, respectively. Bottom row: The
plots corresponding to the minimizer of (25), computed with the parameter value λ = 0.2.
Noise has been effectively removed while preserving ‖d(x)‖ = 1 almost everywhere.
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Figure 2: Vector field comprising 7 components (left: vector plot; right: colour plot of vector
directions): a smooth harmonic flow in the background, two medium-scale non-harmonic
flows in the upper-left and lower-right part, respectively, and four small-scale constant flows.
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Figure 3: Decomposition d = ū+ v̄ of the flow d shown in Fig. 2 for small λ by the standard
TV-term (3) (top row), and by the alternative definition (17) (bottom row). Left: structural
part, Right: small-scale part. Due to the small value of λ, large- and medium-scale flows
comprise the structure part u. Small-scale flow discontinuities, on the other hand, are more
accurately determined by the alternative TV term (bottom right).
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Figure 4: Decomposition d = ū+ v̄ of the flow d shown in Fig. 2 for a large λ by the standard
TV-term (3) (top row), and by the alternative definition (17) (bottom row). Left: structural
part, Right: small-scale part. Due to the large value of λ, the structure part u returned by the
standard term is an almost constant flow (top left), whereas the alternative term catches the
large-scale harmonic flow in the background (bottom left). Accordingly, the standard term (3)
recognizes almost all flow structure as “motion texture” (top right), whereas the alternative
term (17) is able to separate the medium- and small-scale flows (bottom right).
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Figure 5: Decomposition d = ū+ v̄ of the flow d shown in the top row, comprising a smooth
harmonic flow and an arbitrary second flow (center) that varies at a smaller scale. As in the
previous experiment the standard TV-term (3) (middle row) is not able to separate these two
flows, whereas the alternative term (17) (bottom row) does so successfully. Notice that the
parameter values were identical in both experiments, and that the motion texture separated
by the novel term (bottom right) is not identical to the corresponding flow in the data (top
row, middle part of the flow). This illustrates that motion texture v is separated by an additive
decomposition d = ū+ v̄.
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Figure 6: Data for the denoising experiment: Ground-truth flow f (top left) and noisy input
data d (top right). Middle row: curl(f) and curl(d). Bottom row: div(f) and div(d).
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Figure 7: Decomposition d = ū+ v̄ of the noisy flow depicted in Fig. 6 using the standard TV-
term (3) (top row) and the alternative term (17) (bottom row). The alternative term appears to
separate more accurately signal from noise. Confer also Fig. 8 and Fig. 9 highlighting motion
boundaries.
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Figure 8: Decomposition d = ū + v̄ of the noisy flow depicted in Fig. 6 using the standard
TV-term (3) (top row) and the alternative term (17) (bottom row). The panels show curl(ū)

(left) and div(ū) (right) corresponding to the flows depicted in Fig. 7 left. Motion boundaries
are less blurred by the alternative term.
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Figure 9: Decomposition d = ū+ v̄ of the flow depicted in Fig. 6 using the standard TV-term
(3) (top row) and the alternative term (17) (bottom row). The panels show curl(v) (left) and
div(v̄) (right) corresponding to the flows depicted in Fig. 7 right. Noise is more accurately
separated by the alternative term.

20


