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ABSTRACT

We present a new method for cell segmentation which combines a
marked point process model with a combinatorics-based method of
finding global optima. The method employs an energy term that
assesses possible segmentations by their fidelity to both local im-
age information and a simple model of cell interaction, and we use
a randomized iterative reweighting technique for its minimization.
Our approach was successfully applied to cell microscopy images
of varying difficulty and experimentally compared with both a stan-
dard segmentation method as well as a method based on Multiple
Birth and Cut [1]. The proposed method is found to improve upon
previous approaches.

Index Terms— Cell Segmentation, Iterative Candidate Reweight-
ing, Randomized Set Covering, Marked Point Process

1. INTRODUCTION

The task of segmenting cell nuclei or whole cells in microscopy im-
ages poses a major challenge for current biomedical imaging ap-
plications. As a result of new techniques for microscopy imaging
such as SPIM [2], the amount of image data has been growing con-
tinuously over the last years. Applications such as high-throughput
screenings have made manual segmentation increasingly infeasible,
giving rise to the development of various automated approaches. In
the context of cell (nuclei) segmentation, especially densely popu-
lated microscopy images with a large number of clustering cells are
challenging for current segmentation algorithms.

Previous approaches for cell segmentation are primarily based
on intensity thresholding, feature detection, morphological filtering,
region accumulation or deformable model fitting (see [3] for an
overview). Some recent efforts focus on the generation of seeds
required to initialize region accumulation methods such as marker-
controlled watershed as well as deformable model fitting approaches
such as active contours. The segmentation results of these methods
strongly depend on a proper choice of seed points. One strategy
for seed generation entails calculating seeds directly from the im-
age, for example, based on the image gradient for initializing active
contours.

In cases where local image information is not sufficient, an a
priori model of object interaction, for example, based on Marked
Point Processes (MPP), can be incorporated into the segmentation.
Among others, [4],[5] employed this Bayesian approach: A good
segmentation is defined as the set of objects – or “candidates” – that
minimize an energy function. This energy function measures fidelity
to both image data and a simplified model of pairwise interaction

of the segmented objects. Resulting energies are, however, usually
highly non-convex, and global optimization is not computationally
feasible in practice. A recent approach [6],[1] solves this problem
by iteratively selecting a random set of candidates, and performing
the minimization locally on this set. However, sampling globally
optimal candidates from a uniform distribution over a large number
of candidates requires many resampling steps. In [6] this problem
is addressed by alternating between sampling completely random
candidates and local perturbations of the previous segmentation.

In this contribution, we present Model-Based Set Covering
(MBSC), a different approach compared to [6] for achieving faster
convergence: A model-based energy is iteratively minimized over
a random set of candidates, but the distribution according to which
they are sampled is reweighted in each step. This update is based
on the Geometric Set Cover algorithm in [7]. The idea is to regard
segmentation as the problem of finding a minimal set of candidates
that cover all object pixels. The probability of sampling such a set
can be shown to systematically increase in each step under mild
conditions, leading to convergence in almost surely finite time. The
Geometric Set Cover algorithm can be seen as a special case of the
multiplicative weights method described in [8].

In the following sections 2 and 3, we briefly discuss our choice
of candidate model for segmentation and the energy model. Then, in
section 4, we introduce our new method for updating the sampling
probabilities. Section 5 provides a quantitative evaluation using fluo-
rescently labeled neuroblastoma cell images of different cell density
as well as a comparison with previous approaches.

2. SETTING AND CHOICE OF CANDIDATES

In the following, a “candidate” is a set of points that represent possi-
ble segmentations of single cells. Given a set of discrete candidates
C, our goal is to find those that fit the image best without violating
our a priori model of cell interaction.

For simplicity, as well as computational speed, we confine our-
selves to the easily parameterizable case of circles with varying cen-
ters and radii as candidates for cell shapes. However, the use of ei-
ther shapes of higher parameter dimension, for example, ellipses, or
a set of candidates that is not parameterized at all, as used, for exam-
ple, in [9], is costly only in computational time, and the calculation
of pairwise overlap is slightly more complicated, without presenting
any theoretical obstruction.



3. INTERACTION ENERGY MODEL

Given a finite subset of candidates X ⊆ C, our energy function is
composed of a unary energy termU1 as well as a pairwise interaction
energy U2:

U(X) :=
∑
ci∈X

D(ci)

︸ ︷︷ ︸
U1(X)

+
∑

ci,cj∈X
ci 6=cj

χ[0,∞)(d(ci, cj))

︸ ︷︷ ︸
U2(X)

(1)

where d measures the distance between two candidates ci and cj ,
and

χ[0,∞)(r) :=

{
0 if r ≥ 0

∞ else
(2)

is the characteristic function. U1 assigns a function D rewarding
fidelity to image data to each possible candidate, while U2 excludes
pairs of candidates that interact in a way we deem unrealistic with an
infinite penalty. Specifically, if pi and ri are defined as center point
and radius of a candidate circle ci, we define

d(ci, cj) := ||pi − pj || − t(ri + rj) (3)

as a measure of pairwise overlap relative to circle radius. The param-
eter t governs the amount of overlap that is still acceptable, t = 1
meaning no overlap at all. Our choice of the data fidelity term D
is dependent on the sampling probabilities output by the Set Cover
update and will be explained in detail in section 4.

In earlier works (for example, [6]) graph cut methods were used
for energy minimization. Application of this method is, however,
limited to minimizing over two subsets X1 and X2, each of which
must internally be non-interacting, i.e. U2(X1) = U2(X2) = 0.
Using a binary global optimizer allows for more flexibility in the
number and choice of candidates over which the energy is min-
imized. It further eliminates the need to calculate a set of non-
interacting candidates as a preprocessing step to energy minimiza-
tion. Tree Reweighted Message Passing (TRWS) is our binary op-
timizer of choice, primarily because its exceptional speed is conve-
nient for repeated minimization (see [10] for a detailed description
of the method).

Our approach consists of iteratively sampling a finite set of can-
didates according to a probability distribution µn, finding a subset
C∗(n) that minimizes the energy over both the newly sampled candi-
dates and the optimum calculated in the previous step, and updating
the probability distribution µn using the update described in the next
section. See Algorithm 1 for an overview.

Algorithm 1: Model-Based Set Covering
Sample C ⊃ C(0) ∼ µ0

while n < nmax do
Sample a new set of candidates N(n) ∼ µn

Combine with old optimum: C(n) = N(n) ∪ C∗(n−1)

Minimize energy: C∗(n) = argmin
X⊆C(n)

U(X)

Update µn using Algorithm 2
return C∗(nmax)

4. PROBABILITY UPDATE USING RANDOMIZED SET
COVERING

As mentioned before, the basic idea of the Set Cover update is to
view the labeling of candidates as the problem of finding a minimal
set of candidates that cover all object pixels. This minimal set cover
is approximated by iteratively increasing the probability of covering
those pixels which are covered with a low probability in the current
step: Given p ∈ P , where P is the set of all object pixels – obtained,
for example, by thresholding – we can define

Cp := {c ∈ C : c ∩ {p} 6= ∅} (4)

as the set of all candidates that potentially cover the pixel p. If p is
not covered in a certain step, and the a priori probability of covering
it is smaller than a predefined value ε, i.e.

µn(Cp) :=
∑
c∈Cp

µn(c) < ε (5)

we double the current probabilities µn(c) of all candidates in this
set, followed by normalization to obtain a new distribution µ(n+1).
The set cover probability update is summarized in Algorithm 2.

Algorithm 2: Set Cover Probability Update

set P c = P \
⋃
Cn

if P c 6= ∅ then
pick any point p ∈ P c

if µn(Cp) < ε then
ω(c)←− 2µ(n+1)(c), ∀c ∈ Cp
ω(c)←− µ(n+1)(c), ∀c /∈ Cp

Normalize: µ(n+1)(c)←− ω(c)∑
c′ ω(c′) , ∀ c ∈ C

else
µ(n+1) ←− µ(n)

If a set O of k optimal candidates exists and ε < 2
1
k − 1, con-

dition (5) ensures that µn(O) grows in each step. Convergence is
guaranteed in almost surely finite time if the probability of condition
(5) being satisfied is not zero. For details on the proof of conver-
gence, see [7]. Note that while the original setting does not include
object interaction, the proof of convergence only relies on the exis-
tence of an optimal subset, and the probabilities of its members being
updated in each step, and thus still holds. Similarly, the update can
be performed for multiple points pi in one step, as long as the sets
Cpi do not intersect.

In practice, a non-zero probability for condition (5) can be easily
verified in a stepwise manner. The choice of a value of ε that guar-
antees convergence requires estimating an upper bound of the cardi-
nality of a set of optimal candidates, i.e. the number of cells. This
bound does not need to be precise, however. For our application,
we estimate the number of cells as a fixed multiple of the number of
connected components of the thresholded cell image (either 1.4 or
2.4 was used as a factor depending on cell density).

4.1. Data Term

The Set Cover algorithm is constructed to assign large probabilities
to members of a minimal covering set, i.e. candidates that cover a lot
of object pixels that others do not. This also means that the output
probabilities can serve as an implicitly constructed data term D, see
figure 1 for an example.
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Fig. 1: Small section of a cell image with two touching cells. (a)
Original image. (b) Probabilities assigned to possible centers of
larger candidates and (c) smaller ones. For large candidates, one cir-
cle placed in the center of both cells is a minimal covering set, and
the algorithm assigns large probabilities to this region. For those
candidates of approximately the cell size, a minimal covering set
consists of two candidates placed roughly in the center of each cell.

For our application, we choose a rescaled version of the prob-
abilities µn as the data term. Specifically, given a set of sampled
candidates X , we take the logarithm of µn, set the overall minimum
to 0, the maximum to 1, and take the negative to obtain low values
of the data term for candidates with high probabilities:

D′(c) := log(µn(c))−min
c∈X

(logµn(c)) (6)

D(c) = − D′(c)

maxc∈X D′(c)
(7)

Rescaling avoids rounding errors both internally and in the TRWS
minimization, as the increase of probabilities µn depends exponen-
tially on the number of updates.

Constructing the unary energy in such a way eliminates the need
to separately calculate a data term for each candidate, which may
lead to a significant speed-up, especially for a large number of can-
didates and a computational expensive data term. However, the main
advantage is that for an optimal set of candidates O, its probability
µn(O) increases with each update, leading to a steadily decreas-
ing data term. If the interaction energy is not chosen unrealistically,
i.e. assigning an infinite penalty to pairs of optimal candidates, this
means that as the number of probability updates increases, better
candidates will not only be preferably randomly sampled, but also
be more and more likely to be part of a stepwise energy minimum.

The main disadvantage of this method is that candidates that
cover more points have a high chance of being updated more often,
and thus be assigned a higher probabilities than their subsets, even
if, for example, the ratio of covered object pixels to the total area of
the candidate is bad. We address this problem by assigning a penalty
depending on the radius of the candidate at the start of the algorithm,
ensuring that if a smaller candidate covers the same object points as
a larger one, it will be always preferably chosen.

5. EXPERIMENTAL RESULTS

5.1. Setup and Methodology

Recall that the set of candidates C consists of circles defined by their
points of origin pi ∈ P ′ and radii ri ∈ R. The set P ′ can naively
be chosen as the set of all image pixels. We apply an isotropic Gaus-
sian filter to the original image and subsequently use conservative
thresholding on the result to eliminate all very unlikely candidate
centers as a pre-processing step for all algorithms. We choose the 9
possible radiiR = {7, 8, . . . , 15} based on an inspection of typical
cell sizes. As a post-processing step, we perform marker-controlled

(a) Approximate segmentation
using circular candidates

(b) Segmentation result after
seeded watershed transform

Fig. 2: Seeded watershed transform for postprocessing (medium
data)

watershed segmentation on the thresholded image, using the centres
of segmented candidates as seeds, to improve the local matching of
candidate shape to image data. Since seeded watershed is prone to
oversegmentation, we apply the algorithm locally on the connected
components of the thresholded image, and ignore connected compo-
nents that are smaller than 5 pixels (see figure 2 for an example). As
mentioned in section 4, we estimate the number k of cells as a multi-
ple of the connected components of the thresholded cell image: 1.4
for easy and medium images, and 2.4 for difficult ones. Furthermore,
we heuristically set the parameters to t=0.75 (see (3)), ||C(n)|| = 3k
(see Algorithm 1), and the starting penalty for candidates of radius r
to q(r) = 4−r2 (see the last paragraph of subsection 4.1).

We evaluate three different approaches: First, our proposed ap-
proach, referred to as MBSC; its starting probabilities are propor-
tional to the output of the filter-based pre-processing multiplied by
q(r). Second, a version of the approach that uses static uniform
sampling probabilities and the static data term for circles proposed
in [9] (MBC) with parameter d0 = 0.1, and third, an approach that
uses the data term of MBC multiplied by q(r) as starting proba-
bilities, but is otherwise identical to the first approach (denoted as
MBSC/MBC). Note that MBC is similar to the Multiple Birth and
Cut algorithm proposed in [1], with the difference of using a slightly
different data term, and an interaction term that defines overlap based
on distance instead of area. Also, in contrast to [1], the repeated en-
ergy minimization is performed on a random set of size 3k using
the TRWS minimizer, instead of employing graph cuts on two sets
of non-interacting candidates of roughly size k, as used for all three
approaches evaluated here. In addition, we compare the three ap-
proaches with a standard segmentation method, namely Otsu thresh-
olding [11] as implemented in Fiji/ImageJ [12] with additional pre-
and postprocessing (contrast enhancement, anisotropic filtering, and
morphological opening to fill holes).

5.2. Data and Performance Measures

We apply the approaches to microscopy images of fluorescently la-
beled neuroblastoma cell lines (see [13] for a detailed description
of the data). The images have a size of 1344 x 1024 pixels. For
the evaluation, the image data is categorized into different degrees
of difficulty: the images of the cell line SH-EP exhibit a small to
medium cell count and little clustering (low to medium difficulty).
The images of the cell line SK-N-BE(2)-C have a high cell count as
well as many clustering cells and constitute more challenging data.
The evaluation is performed on 18 images comprising 6 images of
each category of difficulty, i.e. easy, medium, and difficult. An ex-
ample of an image of category easy is shown in figure 3a.

The performance of the approaches is evaluated with respect to
manual segmentation by a human expert. The values of the con-



easy medium difficult

Otsu MBC MBSC/ MBSC Otsu MBC MBSC/ MBSC Otsu MBC MBSC/ MBSCMBC MBC MBC
Recall 87.9 91.4 87.8 88.2 90.3 92.4 89.3 89.5 69.8 79.8 69.5 71

Precision 98.8 77.9 95.7 93.4 98.9 83.5 96.9 96.8 94.3 72.5 93.7 86.9
FNR 12.1 8.63 12.6 12.2 9.92 7.61 11 10.7 33.5 20.2 34 31
Dice 0.846 0.859 0.876 0.876 0.865 0.871 0.888 0.887 0.81 0.8 0.857 0.826
σDice ± 0.014 ± 0.007 ± 0.005 ± 0.004 ± 0.016 ± 0.012 ± 0.01 ± 0.009 ± 0.017 ± 0.025 ± 0.008 ± 0.047

Hausdorff 1.77 1.75 1.87 1.86 9.63 9.16 9.52 9.42 11.8 12 15.6 14.4
σHausdorff ± 0.311 ± 0.468 ± 0.374 ± 0.373 ± 1.484 ± 1.263 ± 1.16 ± 1.194 ± 1.053 ± 1.394 ± 1.723 ± 0.571

ARI 0.839 0.852 0.869 0.869 0.82 0.825 0.846 0.845 0.72 0.707 0.778 0.739
σARI ± 0.014 ± 0.008 ± 0.005 ± 0.004 ± 0.019 ± 0.014 ± 0.011 ± 0.011 ± 0.033 ± 0.042 ± 0.021 ± 0.071

MCN 74± 14 419± 50 641± 45

Table 1: Averaged values of different performance measures chosen for the segmentation approaches applied to ”easy”, ”medium” and
”difficult” cell images. FNR is the false negative rate, and MCN is the mean cell number per image.

fusion matrix (True Positives, False Positives, True Negatives, and
False Negatives) are used to determine recall and precision values.
Additionally, we investigate the performance of the approaches us-
ing a selection of measures described in [14]. We used an overlap-
based metric (Dice coefficient, F-measure), a distance-based met-
ric (Hausdorff distance), and a pair-counting-based metric (Adjusted
Rand Index, ARI) to assess different characteristics of the segmen-
tation results. For the Hausdorff distance we calculate the modified
Hausdorff distance as proposed in [15] for the True Positives. All
measures are normalized with respect to the number of cells or pix-
els in the manually segmented images and averaged over all images
of the respective category of difficulty.

5.3. Results

On average, manual segmentation resulted in a total of 74 cells per
image for ”easy”, 419 cells for ”medium”, and 641 cells for ”diffi-
cult” data. The results for the different performance measures av-
eraged over all images of the respective category of difficulty are
summarized in table 1. For all approaches the results for difficult
data are worse compared to easy and medium data. Although the
MBC algorithm achieves the highest recall and lowest FNR, this is
mainly due to a consistent oversegmentation as evident in the rela-
tively low precision. In terms of precision, Otsu thresholding yields
the best results, and both MBSC and MBSC/MBC perform better
than MBC. Also, MBSC/MBC is better than MBSC. Except for dif-
ficult images, MBSC and MBSC/MBC perform comparably well.
Concerning the Hausdorff distance, MBC performs better than both
MBSC and MBSC/MBC, and it is outperformed by Otsu threshold-
ing for difficult images. However, the results for the Hausdorff dis-
tance should be interpreted with caution due to the relatively large
standard deviations. Both MBSC and MBSC/MBC consistently out-
perform Otsu thresholding as well as MBC with regard to the Dice
coefficient and ARI. The improvement is more prominent for diffi-
cult images with a high cell density and a higher amount of clus-
tering. MBSC/MBC yields similar or slightly better results com-
pared to MBSC in terms of precision, Dice coefficient, and ARI.
The results show that although better-tuned starting probabilities of
MBSC/MBC do have a slight positive influence, the Set Cover prob-
ability update of MBSC and MBSC/MBC has a much stronger im-
pact on the result, and the result generally does not depend on the
initialization.

(a) (b)

(c) (d)

Fig. 3: (a) Section of an original cell microscopy image (easy data);
(b) manual segmentation result; and segmentation result using (c)
Otsu thresholding and (d) MBSC. For (c) and (d), cells marked in
green are True Positives (TP), and those in blue are False Negatives
(FN, taken from manual segmentation).

6. SUMMARY AND DISCUSSION

We have introduced an approach for cell segmentation which com-
bines marked point process-based segmentation through repeated en-
ergy minimization with iterative candidate reweighting by a random-
ized set covering algorithm. The approach has several advantages:
On the theoretical side, a stronger convergence is guaranteed, and
it is not necessary to explicitly calculate a fitting data term. Exper-
imentally, we found that our approach generally leads to improved
results compared to a method based on the same energy model where
the sampling probabilities and the data term are not updated. By
combing our method with the data term previously presented in [9]
the result was further improved. An extension of our approach would
be the use of candidate shapes with a higher number of parameters,
as well as a more sophisticated model of object interaction.
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