
This is page 1
Printer: Opaque this

Variational Segmentation with
Shape Priors
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ABSTRACT We discuss the design of shape priors for variational region-
based segmentation. By means of two different approaches, we elucidate the
critical design issues involved: representation of shape, use of perceptually
plausible dissimilarity measures, Euclidean embedding of shapes, learning
of shape appearance from examples, combining shape priors and variational
approaches to segmentation. The overall approach enables the appearance-
based segmentation of views of 3D objects, without the use of 3D models.
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1 Introduction

Variational models [17, 24] are the basis of established approaches to image seg-
mentation in computer vision. The key idea is to generate a segmentation by lo-
cally optimizing appropriate cost functionals defined on the space of contours.
The respective functionals are designed to maximize certain criteria regarding the
low-level information such as edge consistency or (piecewise) homogeneity of
intensity, color, texture, motion, or combinations thereof.

Yet, in practice the imposed models only roughly approximate the true inten-
sity, texture or motion of specific objects in the image. Intensity measurements
may be modulated by varying and complex lighting conditions. Moreover, the
observed images may be noisy and objects may be partially occluded. In such
cases, algorithms which are purely based on low-level properties will invariably
fail to generate the desired segmentation.

An interpretation of these variational approaches in the framework of Bayesian
inference shows that the above methods all impose a prior on the space of con-
tours which favors boundaries of minimal length. While the resulting length con-
straint in the respective cost functionals has a strongly regularizing effect on the
generated contour evolutions, this purely geometric prior lacks any experimental
evidence. In practical applications, an algorithm which favors shorter boundaries
may lead to the cutting of corners and the suppression of small-scale structures.

Given one or more silhouettes of an object of interest, one can construct shape
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priors which favor objects that are in some sensefamiliar. In recent years, it was
suggested to enhance variational segmentation schemes by imposing such object-
specific shape priors. This can be done either by adding appropriate shape terms
to the contour evolution [21, 33] or in a probabilistic formulation which leads to
an additional shape term in the resulting cost functional [10, 27, 22]. By extending
segmentation functionals with a shape prior, knowledge about the appearance of
objects can be directly combined with clues given by the image data in order to
cope with typical difficulties of purely data-driven image processing caused by
noise, occlusion, etc.

The design of shape priors strongly depends on ongoing work on statistical
shape models [6, 12, 18]. In particular, advanced models of shape spaces, shape
distances, and corresponding shape transformations have been proposed recently
[36, 15, 31, 3, 19, 29]. Concerning variational segmentation, besides attempting to
devise “intrinsic” mathematical representations of shape, further objectives which
have to be taken into account include the gap between mathematically convenient
representations and representations conforming to properties of human perception
[34, 23, 1], the applicability of statistical learning of shape appearance from ex-
amples, and the overall variational approach from the viewpoint of optimization.

The objective of this paper is to discuss these issues involved in designing
shape priors for region-based variational segmentation by means of two repre-
sentative examples: (i) non-parametric statistics applied to the standard Euclidean
embedding of curves in terms of shape vectors, and (ii) perceptually plausible
matching functionals defined on the shape manifold of closed planar curves. Both
approaches are powerful, yet quite different with respect to the representation of
shape, and of shape appearance. Their properties will be explained in the follow-
ing sections, in view of the overall goal – variational segmentation.

Section 2 discusses both the common representation of shapes by shape vec-
tors, and the more general representation by dissimilarity structures. The latter
is mathematically less convenient, but allows for using distance measures which
conform to findings of psychophysics. Learning of shape appearance is described
in Section 3. The first approach encodes shape manifolds globally, whereas the
second approach employs structure-preserving Euclidean embedding and shape
clustering, leading to a collection of locally-linear representations of shape man-
ifolds. The incorporation of corresponding shape priors into region-based varia-
tional approaches to segmentation is discussed in Section 4.

We confine ourselves to parametric planar curves and do not consider the more
involved topic of shape priors for implicitly defined and multiply connected curves
– we refer the reader to [21, 33, 4, 27, 3, 9] for promising advances in this field.
Nevertheless, the range of models addressed are highly relevant from both the
scientific and the industrial viewpoint of computer vision.
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2 Shape Representation

One generally distinguishes betweenexplicit (parametric) andimplicit contour
representations. In the context of image segmentation, implicit boundary repre-
sentations have gained popularity due to the introduction of the level set method,
which allows to propagate implicitly represented interfaces by appropriate partial
differential equations acting on the corresponding embedding surfaces. The main
advantages of representing and propagating contours implicitly are that one does
not need to deal with control/marker point regridding and can elegantly (without
heuristics) handle topological changes of the evolving boundary.

On the other hand, explicit representations also have several advantages. In
particular, they provide a compact (low-dimensional) representation of contours
and concepts such as intrinsic alignment, group invariance and statistical learn-
ing are more easily defined. Moreover, as we shall see in this work, the no-
tion of corresponding contour points (and contour parts) arises more naturally
in an explicit representation. In this work, we will only consider explicit simply-
connected closed contours.

2.1 Parametric Contour Representations, Geometric Distances,
and Invariance

Let
c : [0, 1] → Ω ⊂ R2 (1.1)

denote a parametric closed contour in the image domainΩ. Throughout this paper,
we use the finite-dimensional representation of 2D-shapes in terms of uniform
periodic cubic B-splines [13]:

c(s) =
M∑

m=1

pmBm(s) = Pb(s) , (1.2)

with control points{pi} and basis functions{Bi(s)}:

P =
[
p1 p2 . . . pM

]
, b(s) =

(
B1(s) B2(s) . . . BM (s)

)>
Well-known advantages of this representation include the compact support of the
basis functions and continuous differentiability up to second order. Yet, most of
our results also hold for alternative explicit contour representations.

Using the natural uniform sampling{s1, . . . , sM} of the parameter interval, we
stack together the corresponding collection of curve points, to formshape vectors
representing the contour. For simplicity, and with slight abuse of notation, we
denote them again with1:

c :=
(
c(s1)>, . . . , c(sM )>

)> ∈ R2M (1.3)

1In the following, it will be clear from the context whetherc denotes a contour (1.1) or a shape
vector (1.3).
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Note, that there is a one-to-one correspondence between shape vectorsc and cor-
responding control points{pi}i=1,...,M through the symmetric and sparse positive-

definite matrix:B =
(
b(s1) . . . b(sM )

)>
.

We consider a simple geometric distance measure between contours which is
invariant under similarity transformations:

d2(c1, c2) = min
s,θ,t

|c1 − sRθc2 − t|2 (1.4)

Here, the planar rotationRθ and translationt are defined according to the defini-
tion (1.3) of shape vectors:

Rθ = IM ⊗
(

cos θ − sin θ
sin θ cos θ

)
, t =

(
t1, t2, . . . , t1, t2

)>
,

ands is the scaling parameter. The solution to (1.4) can be computed in closed-
form [12, 18]. Extensions of this alignment to larger transformation groups such
as affine transformations are straight-forward Furthermore, since the locations of
the starting pointsc1(0), c2(0) are unknown, we minimize (1.4) over all cyclic
permutations of the contour points definingc2.

2.2 Matching Functionals and Psychophysical Distance
Measures

It is well-known that there is a gap between distance measures with mathemati-
cally convenient properties like (1.4), for example, and distance measures which
conform with findings of psychophysics [34]. In particular, this observation is
relevant in connection with shapes [23].

Given two arc-length parametrized curvesc1(t), c2(s), along with a diffeomor-
phismt = g(s) smoothly mapping the curves onto each other, then corresponding
studies [1] argued that matching functionals for evaluating the quality of the map-
pingg based on low-order derivatives, should involve stretchingg′(s) and bending
(change of curvature) of the curves (cf. Figure 1).

FIGURE 1. Stretching and bending of contours does not affect perceptually plausible
matchings.

As a representative, we consider the matching functional [1]:

E(g; c1, c2) =
∫ 1

0

[κ2(s)− κ1(g(s))g′(s)]2

|κ2(s)|+ |κ1(g(s))g′(s)|
ds + λ

∫ 1

0

|g′(s)− 1|2

|g′(s)|+ 1
ds (1.5)
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whereκ1(t), κ2(s) denote the curvature functions of the contoursc1, c2. The two
terms in (1.5) take into account the bending and stretching of contours, respec-
tively (see Figure 2).
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FIGURE 2. Local matching cost The local cost for bending of the matching functional
(1.5) as a function of theκ1, for two values ofκ2. Note how in the caseκ2 = 2, relatively
lower costs forκ1 ≈ 2 allow for significant bending, without affecting matching too much.

Functional (1.5) favors perceptually plausible matching because it accounts that
often object are structured into nearly convex-shaped parts separated by concave
extrema. In particular, for non-rigid objects, parts are likely to articulate, and the
matching functional produces articulation costs only at part boundaries.

From the mathematical viewpoint, functional (1.5) is invariant to rotation and
translation of contours, and also to scaling provided both contours are normalized
to length one. This is always assumed in what follows below. Furthermore, by
taking theq-th root of the integral of local costs, whereq > 2.4, (1.5) defines a
metricbetween contours [1]:

dE(c1, c2) := min
g

E(g; c1, c2)1/q (1.6)

Clearly, this distance measure is mathematically less convenient than (1.4). This
seems to be the price for considering findings of psychophysics. However, regard-
ing variational segmentation, we wish to work in this more general setting as well.
For a discussion of further mathematical properties of matching functionals, we
refer to [32].

The minimization in (1.6) is carried out by dynamic programming over all
piecewise-linear and strictly monotonously increasing functionsg. Figure 3 il-
lustrates the result for two human shapes.

3 Learning Shape Statistics

Based on the shape representations described in Section 2, we consider in this sec-
tion two approaches to the statistical learning of shape appearance from examples.
The common basis for both approaches are Euclidean embeddings of shapes.

The first approach uses the embedding of shape vectors into Reproducing Ker-
nel Hilbert Spaces by means of kernel functions, leading to a non-parametric
global representation of shape manifolds. The second approach uses embeddings
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FIGURE 3. Matching by minimizing (1.5) leads to an accurate correspondence of parts of
non-rigid objects, here illustrated for two human shapes.
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FIGURE 4. Gaussian density estimate upon nonlinear transformation to features space.

of dissimilarity structures by multidimensional scaling, along with a cluster-preserving
modification of the dissimilarity matrix. Subsequent clustering results in a collec-
tion of local encodings of shape manifolds, and in corresponding aspect graphs of
3D objects in terms of prototypical object views.

3.1 Shape Distances in Kernel Feature Space

Let {cn}n=1,...,N ∈ R2M denote the shape vectors associated with a set of train-
ing shapes. In order to model statistical shape dissimilarity measures, it is com-
monly suggested to approximate the distribution of training shapes by a Gaussian
distribution, either in a subspace formed by the first few eigenvectors [6], or in the
full 2M -dimensional space [10]. Yet, for more complex classes of shapes – such
as the various silhouettes corresponding to different 2D views of a 3D object – the
assumption of a Gaussian distribution fails to accurately represent the distribution
underlying the training shapes.

In order to model more complex (non-Gaussian and multi-modal) statistical
distributions, we propose to embed the training shapes into an appropriate Repro-
ducing Kernel Hilbert Space (RKHS) [35], and estimate Gaussian densities there
– see Figure 4 for a schematic illustration.
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A key assumption in this context is that only scalar products of embedded shape
vectorsφ(c) have to be evaluated in the RKHS, which is done in terms of a kernel
function:

K(c1, c2) = 〈φ(c1), φ(c2)〉 (1.7)

Knowledge of the embedding mapφ(c) itself is not required. Admissible kernel
functions, including the Gaussian kernel, guarantee that the Gramian matrix

K =
{
K(ci, cj)

}
i,j=1,...,N

(1.8)

is positive definite [35]. This “non-linearization strategy” has been successfully
applied in machine learning and pattern recognition during the last decade, where
the RKHS is calledfeature space.

Based on this embedding of given training shapes, we use the following Maha-
lanobis distance:

JS(c) = (φ(c)− φ0)> Σ−1
φ (φ(c)− φ0) , (1.9)

whereφ0 is the empirical mean, andΣφ is the corresponding covariance matrix.
Note that all evaluations necessary to computeJS(c) in (1.9) can be traced back
to evaluations of the kernel function according to (1.7). Furthermore, by exploit-
ing the spectral decomposition of the kernel matrixK in (1.8), we regularize the
covariance matrixΣφ with respect to its small and vanishing eigenvalues, thus
defining two orthogonal subspaces as illustrated in Figure 4 on the right. For fur-
ther details, we refer to [8].

3.2 Structure-Preserving Embedding and Clustering

Based on the matching functional (1.5) and the corresponding distance measure
dE(c1, c2) defined in (1.6), we consider an arbitrary sample set{cn}n=1,...,N .
To perform statistical analysis, we wish to compute an Euclidean embedding
{xn}n=1,...,N such that‖xi−xj‖ = dE(ci, cj) , ∀i, j. Such an embedding exists
iff the matrix K = − 1

2QDQ, with the dissimilarity matrixD = (dE(ci, cj)2)
and the centering matrixQ = I − 1

M ee>, is positive semidefinite [7]. The vec-
torsxn representing the objects (contours)cn of our data structure can then be
computed by a Cholesky factorization ofK.

Figure 5 shows the eigenvalues ofK for four different objects. The graphs
illustrate that the contours are “almost embeddable” since only few and small
eigenvalues are negative. This fact is caused by the powerful matching which
tightly groups given curves, and is performed by evaluating the distance measure
dE . The standard way then is to take the positive eigenvalues only, and to compute
adistortedembedding.

In view of subsequent clustering, however, a better alternative is to regularize
the data structure by shifting the off-diagonal elements of the dissimilarity matrix:
D̃ = D−2λN (ee>−I). For the resulting embedding, it has been shown [26] that
the group structure with respect to subsequent k-means clustering is preserved.
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FIGURE 5. Eigenvalues of the matricesK corresponding to the shapes of four different
objects.

Figure 6 shows a low-dimensional – and thus a heavily distorted – projection
of the embedded shapes of the rabbit. For the purpose of illustration, only shapes
corresponding to a single (hand-held) walk around the view-sphere are shown on
the left, along with cluster centers as prototypical views of the object. In this way,
we compute high-quality aspect graphs forgeneralobjects, without any restric-
tions discussed in the literature [2, 25].

On the right, Figure 6 also shows a clustering of 750 human shapes. In general,
when using simple geometric distance measures, the many degrees of freedom of
articulated shapes would require many templates for an accurate representation.
The matching distance (1.6), however, accounts for part structure and, therefore,
the principal components of the measure seem to be closer related to topological
shape properties. For example, the clusters on the left are all “single-leg” pro-
totypes, whereas on the right we find only clusters with two legs. The second
principal component seems to account for the viewing direction of the human,
which changes from left to right along a vertical direction through the plot.

4 Variational Segmentation and Shape Priors

4.1 Variational Approach

We consider partitionsΩ = Ω(F ) ∪ Ω(B) of the image domain into foreground
and background, respectively. Our objective is to compute an optimal partition
in terms of a planar closed curvec(s) = ∂Ω(F ) based on the corresponding
restrictions of the image functionF = I|Ω(F ), B = I|Ω(B), G = I|c(s), and by
using modelsH = (HF ,HB ,HG,HS) for these components, including a shape
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FIGURE 6. Clustering of the views of the rabbit sequence and the human shapes, projected
to the first two principal components. The clusters are indicated by prototypical shapes
(cluster centers) dominating a range of corresponding views.

priorHS for the separating curvec(s).
The variational approach is to compute theMaximum A-Posteriori (MAP)esti-

mate of the contourc, given the image dataI, and using the modelsH:

ĉ(s) = arg max
c(s)

P (c(s)|I,H) (1.10)

We use Bayes’ rule to obtain:

P (c(s)|I,H) =
P (I|c(s),H)P (c(s)|H)

P (I|H)
∝ P (F |c(s),HF )P (B|c(s),HB)P (G|c(s),HG)P (c(s)|HS) ,

where we have also split up the image likelihoodP (I|c(s),H) into three parts,
assuming independence of these parts, given the contourc(s). Moreover, we as-
sume independence of the various models. This assumption is appropriate in the
single object – single object class scenario considered here.

The common form of the foreground model is:

P (F |c(s),HF ) ∝ exp(−JF ) , JF (c) =
∫

Ω(F )

dF

(
F (x)

)
dx ,

where the functionalJF depends on the contourc through the domain of integra-
tion Ω(F ), anddF is any measure of homogeneity of the foreground image data
F , i.e. object appearance. Typically,dF is a parametric model, a semi-parametric
(mixture) model, or even a non-parametric model of the local spatial statistics of
the image data, or some filter outputs. Note thatdF depends onc through the
domain of integration, too. Similarly, we have:

P (B|c(s),HB) ∝ exp(−JB) , JB(c) =
∫

Ω(B)

dB

(
B(x)

)
dx ,

P (G|c(s),HG) ∝ exp(−JG) , JG(c) =
∮

c

dG

(
G(x)

)
ds
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In the following, we do not consider boundary modelsP (G|c(s),HG), but focus
in the following two sections on shape modelsP (c(s)|HS), the main topic of this
paper.

In order to solve (1.10), we minimize− log P (c(s)|I,H), which entails to
compute the derivatives of the above functionals with respect toc, that is changes
of the shape of the domainΩ(F ). Let v(x) be a small and smooth vector field
such that(I + v)(x) is a diffeomorphism of the underlying domain. Then stan-
dard calculus [30, 11] yields:

〈J ′F (c),v〉 =
∫

Ω(F )

d′F
(
F (x)

)
dx +

∮
c

dF

(
F (x)

)
(n · v)ds , (1.11)

wheren is the outer unit normal vector ofΩ(F ). Analogously, we compute the
derivative of the background functionalJB .

If dF depends onparameterswhich are estimated withinΩ(F ), then computing
d′F amounts to apply the chain rule until we have to differentiate (functions of)
image data which donotdepend on the domain (see, e.g., [16] for examples). As a
result, the right hand side of (1.11) involves boundary integrals only. If, however,
dF more generally depends onfunctionswhich, in turn, depend on the shape of
Ω(F ), e.g. through some PDE, then the domain integral in (1.11) involving the
unknown domain derivatived′F can be evaluated in terms of a boundary integral
by using an “adjoint state”. See [28] for details and a representative application.

Finally, we set the normal vector fieldvn := n·v equal to thenegativeintegrand
of the overall boundary integral resulting from the computation ofJ ′F , J ′B , and
evolve the contour:

ċ = vnn on ∂Ω(F ) (1.12)

Inserting (1.2) yields a system of ODEs which are solved numerically.
Evolution (1.12) constitutes the data-driven part of the variational segmentation

approach (1.10), conditioned on appearance models of both the foreground object
and the background. In the following two sections, we describe how this approach
is complemented in order to take into account statistical shape knowledge of ob-
ject appearance.

4.2 Kernel-based Invariant Shape Priors

Based on the shape-energy (1.9), the shape-prior takes the form:

P (c|HS) ∝ exp(−JS)

Invariance with respect to similarity transforms is achieved by restricting the
shape energy functionalJS to aligned shapeŝc = ĉ(c) with respect to the mean
shape, which result from given shapesc by applying to them the translation, rota-
tion and scaling parameters defining the invariant distance measure (1.4):

JS(c) = JS [ĉ(c)]
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To incorporate the statistical shape-knowledge into the variational segmentation
approach, we perturb the evolution (1.12) by adding a small vector field directed
towards the negative gradient ofJS :

v = −ε
dJS

dĉ
dĉ
dc

For further details, we refer to [8].

4.3 Shape Priors based on the Matching Distance

Related to the KPCA approach (Sections 3.1, 4.2), we use a non-parametric den-
sity estimate for the posterior ofc given the training samplesc1, . . . , cN :

P (c|HS) = p(c|c1, . . . , cN )

Given the Euclidean embeddingx1, . . . ,xN of the training samples (cf. Section
3.2), the kernel-estimate of the probability density evaluated atx reads:

p(x) ≈ pN (x) =
1
N

N∑
n=1

1
V

K

(
x− xn

h

)
, (1.13)

whereK(·) is a normalized non-negative smoothing kernel. A kernel with com-
pact support, favored in practice, is the Epanechnikov kernel ind-dimensions:

K(x) =

{
1
2V −1

d (d + 2)(1− x>x) if x>x < 1
0 otherwise

whereVd is the volume of thed-dimensional unit sphere. To increase the posterior
probability ofc, we have to move in the gradient direction of the density estimate:

∇p(x) =
k

NhdVd

d + 2
h2

1
k

∑
xi∈Bh(x)

xi − x


whereBh(x) is the ball with radiush centered atx, andk is the number of samples
xk in Bh(x). This leads to the well-knownmean-shiftx −→ 1

k

∑
Bh(x) xi [14, 5].

By virtue of the embedding‖xi − xj‖ = dE(ci, cj) (see Section 3.2), we may
interpret this as computing theFréchet mean[20]:

ĉ = arg min
c̃

∫
dE(c̃, c)2dµ(c)

of the empirical probability measureµ on the space of contoursc, which is
equipped with the metric (1.6). As a result, we perturb the evolution (1.12) by
adding a small vector fieldv = ε(ĉ − c) , 0 < ε ∈ R, and thus incorporate
statistical shape-knowledge into the variational segmentation approach.
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4.4 Experimental Results

Both approaches to the design of shape priors allow to encode the appearance
of objects. Applying the variational framework for segmentation, the models are
automatically invoked by the observed data and, in turn, provide missing infor-
mation due to noise, clutter, or occlusion. This bottom-up top-down behavior was
verified in our segmentation experiments.

In Figure 7 we see segmentation results for two image sequences showing a
rabbit and a head, computed with and without a shape prior. We can see that both
shape priors can handle the varying point of view and stabilize the segmentation.
Where data evidence is compromised by occlusion (a)-(d), shadows (e)-(f), or
difficult illumination (g)-(h), the shape prior can provide the missing information.
For the segmentation in Figure 8, we learned the shape prior model 4.3 using
750 human shapes. The shapes in the sequence are not part of the training set.
The obtained results encourage the use of shape-priors for the segmentation and
tracking of articulated body motion as well.

a b c d

e f g h

FIGURE 7. Top row: prior from Section 4.2, segmentation without the prior (a), with the
prior (b), two more views with the prior (c), (d). Bottom row: prior from Section 4.3,
segmentation without the prior (e), (g) and, with the prior (f), (h)

5 Conclusion and Further Work

We investigated the design of shape priors as a central topic of variational seg-
mentation. Two different approaches based on traditional shape-vectors, and on
contours as elements of a metric space defined through a matching functional,
respectively, illustrated the broad range of research issues involved. The use of
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FIGURE 8. Sample screen shots of a human walking sequence. First image is without
a shape prior, second image is result obtained with a shape prior, for each image pair
respectively.

shape priors allows for the variational segmentation of scenes where pure data-
driven approaches fail.

Future work has mainly to address the categorization of shapes according to
classes of objects, and the application of this knowledge for the interpretation of
scenes with multiple different objects.
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