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Abstract. This work focuses on tomographic image reconstruction in
experimental fluid mechanics (TomoPIV), a recently established 3D par-
ticle image velocimetry technique. Corresponding 2D image sequences
(projections) and the 3D reconstruction via tomographical methods pro-
vides the basis for estimating turbulent flows and related flow patterns
through image processing. TomoPIV employs undersampling to make
the high-speed imaging process feasible, resulting in an ill-posed image
reconstruction problem. We address the corresponding basic problems in-
volved and point out promising optimization criteria for reconstruction
based on sparsity maximization, that perform favorably in comparison
to classical algebraic methods currently in use for TomoPIV.

1 Introduction

Recent developments of particle image velocimetry (PIV) techniques [14] allow
to capture the flow velocity of large and unsteady flow fields instantaneously.
Among the different 3D techniques presently available for measuring velocities
of fluids, tomographic particle image velocimetry (TomoPIV) [6] has recently
received most attention, due to its increased seeding density with respect to other
3D PIV methods. This, in turn, enables high-resolution velocity field estimates
of turbulent flows by means of a cross correlation technique [15]. TomoPIV is
based on a multiple camera-system, three-dimensional volume illumination and
subsequent 3D reconstruction, cf. [6]. In this paper we consider the essential step
of this technique, the 3D reconstruction of the particle volume functions from
few projections, which amounts to solve an underdetermined system of linear
equations of the form

Ax = b . (1)

Such systems, disregarding for the moment the inconsistent case, have infinitely
many solutions. Classical regularization approaches with strictly convex objec-
tive functions are therefore applied – cf. [6] and section 3 below – in order to
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single out a particular solution. However, commonly choices such as maximizing
entropy or minimizing the `2 norm can be problematic within the TomoPIV set-
ting, since both approaches provide much too dense “solutions”, i.e. solutions x
with most entries different from zero, resulting in blurry “ghost particles”. This
is clearly detrimental for subsequent motion estimation. The objective of this
paper is to point out better alternatives.

Organization, After sketching the imaging process in section 2, we recall
the classical solution concepts that are currently in use for TomoPIV, in section
3. Better alternatives based on sparsity-based regularization are the subject of
section 4. Our arguments are confirmed and illustrated by numerical experiments
in section 5.

2 Discretization

A basic assumption in image reconstruction is that the image I to be recon-
structed can be approximated by a linear combination of basis functions Bj ,

I(z) ≈ Î(z) =
n∑

j=1

xjBj(z), ∀z ∈ Ω ⊂ IR3 , (2)

where Ω denotes the volume of interest and Î is the digitization of I. The main
task is to estimate the weights xj from the recorded 2D images, corresponding to
basis functions located at a Cartesian equidistant 3D grid pj , j = 1, . . . , n. We
consider Gaussian-type basis functions (“blobs”), an alternative to the classical
voxels, of the form

Bj(z) = e−
‖z−pj‖

2
2

2σ2 , for z ∈ IR3 : ‖z − pj‖2 ≤ r , (3)

or value 0, if ‖z − pj‖2 > r. See Fig. 1, left, for the 2D case.
The choice of a Gaussian-type basis function is justified in the TomoPIV set-

ting, since a particle projection in all directions results in a so-called diffraction
spot. Figure 1 (right) shows a typical projection of a 3D particle distribution.

Based on geometrical optics, the recorded pixel intensity is the object inten-
sity integrated along the corresponding line of sight, obtained from a calibration
procedure. Thus the i-th measurement obeys

bi :≈
∫

Li

I(z)dz ≈
∫

Li

Î(z)dz =
n∑

j=1

xj

∫
Li

Bj(z)dz︸ ︷︷ ︸
:=aij

, (4)

where Li is a line or more realistically a thin cone of light. Compare Fig. 1, left.
Due to inaccuracies of the physical measurements the set of all projection “rays”
yields an approximate linear system (1), where A is the projection matrix and b
the measurement vector.
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Fig. 1. Left: Discretization by covering the domain Ω with compactly supported basis
functions. Right: Projection of a 3D particle distribution. The volume function has to
be reconstructed from 4–6 such measurements.

3 Classical Solution Concepts

Throughout this paper we concentrate on ill-posedness of (1). We have to handle
a underdetermined system with m << n, having a rank-deficient and very sparse
coefficient matrix A ∈ IRm×n. The sparsity structure of A is due to the fact that
only a few basis function are on the line of sight of each particular camera pixel.
By the nature of the problem, we always have aij ≥ 0 and bi ≥ 0,∀i, j. Typical
TomoPIV measurements bi are nonzero to ≈ 5%, see Fig. 1, left.

To restrict the feasible set (1) we can add nonnegativity constraints and look
for elements in the polyhedral set

F := {x : Ax = b, x ≥ 0} . (5)

If bi = 0, then we can remove all columns of A, whose i-th entry is positive,
as well as the i-th row. This procedure will lead to a ”equivalent” feasible set of
reduced dimensionality Fr := {x ∈ IRnr : Arx = br, x ≥ 0}, where Ar ∈ IRmr×nr

is the reduced projection matrix and br > 0 the new data vector. All xj variables
corresponding to removed columns in A can be set to zero.

The classical minimum energy approach for regularizing (1) computes a least-
squares solution by solving the constrained minimization

(PLS) min ‖x‖22 s.t. Ax = b , (6)

where ‖ · ‖2 denotes the Euclidean `2 norm. A common and successful class
of algorithms called row-action methods [2] exists to solve this problem and its
variants. They are well suited for parallel computation and therefore particularly
attractive for our application.

A further established approach is the linearly constrained entropy maximiza-
tion problem

(PE) min
n∑

j=1

xj log(xj) s.t. Ax = b , x ≥ 0 , (7)
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where E(x) := −
∑n

j=1 xj log(xj) , x ≥ 0, is the Boltzmann-Shannon entropy
measure. Adding the nonnegativity constraint is necessary for the maximum en-
tropy approach, since the log function is defined only for positive values and
0 log 0 := 0. After the removal of redundant equations as described at the begin-
nig of this section, the relative interior of the feasible set is typically nonempty,
and the unique solution to (PE) is strictly positive, except for those variables
corresponding to removed columns in A.

Algebraic reconstruction techniques (ART, MART) [8] are classical row-action
methods for solving (6) and (7). For details, we refer to, e.g., [2]. In connec-
tion with TomoPIV, MART (multiplicative algebraic reconstruction technique)
has been advocated in [6]. The behavior of MART in the case of inconsistent
equations, is not known. In contrast, ART converges even when applied to in-
consistent systems to the least-square solution. ART can be adapted to involve
nonnegativity constraints by including certain constraining strategies [9] in the
iterative process.

4 Regularization via Sparsity

Since the particles are sparsely spread in the 3D volume, we are interested to
look for solutions of (1) with as many components equal to zero as possible. This
leads us to the following optimization problem

(P0) min ‖x‖0 s.t. Ax = b , (8)

providing a minimal-support solution. We denote the support of a vector by
supp(x) := {i : xi 6= 0} and by ‖x‖0 := #supp(x) the sparsity measure.

Problem (P0) is nonsmooth with a highly nonconvex objective function. Thus
many local optima may occur. Moreover its complexity grows exponentially with
the number of variables n and if P 6=NP there is no polynomial time algorithm,
that for every instance A and b computes the optimal solution of (P0), see [12]
for this NP-hardness result. In addition to this negative results the regulariza-
tion attempt via sparsity may be inappropriate in case of nonuniqueness of the
sparsest solution of (P0). Fortunately previous work has shown that if a sparse
enough solution to (P0) exists than it will be necessarily unique. In what follows
we will give a flavor of this results. They involve the measure spark(A) which
equals the minimal number of linearly dependent columns of A (see [4, 5]) and
the signature of a matrix A ∈ IRm×n. This is defined as the discrete function
sigA(k) ∈ [0, 1], for k ∈ {2, . . . , n}, that equals the number of k column combina-
tions in A which are linearly dependent divided by the number of all k columns
from the n existing ones. We have

2 ≤ spark(A) ≤ rank(A) + 1,

where rank(A) is at most m. By definition sigA(k) = 0, for all k < spark(A).
In contrast to rank(A), spark(A) as well as sigA(k) is NP-hard to compute.
Fortunately bounds on this measures can be derived [4].

The following result is surprisingly elementary and can be found in [4].
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Theorem 1. (Uniqueness) Let x be a solution of (1) with ‖x‖0 < spark(A)
2 .

Then x is the unique solution of (P0).

In [5] Elad adopts a probabilistic point of view to study uniqueness of sparse
solutions of (P0) beyond the worst-case scenario.

Theorem 2. [5, Th. 6,Th. 5] Let σ := spark(A) ≤ rank(A) =: r and x be a
solution of (1). Assume the locations of the nonzero entries in x are chosen
at random with equal and independent probability. If 1/2σ ≤ ‖x‖0 =: k ≤ r,
then the probability that x is the sparsest solution of (1) is 1− sigA(k) and the
probability to find a solution of (1) of the same cardinality k is

(a)
∑k−σ

j=0 (k − j)(n− k + j)
(

k
j

)
sigA(k − j) or lower, if ‖x‖0 ≥ σ;

(b) 0, if 1/2σ ≤ ‖x‖0 < σ.

Hence uniqueness of the sparsest solution with cardinality less then spark(A)
can be claimed with probability 1. Some of our previous experiments have shown
that for projection matrices A as arising in our application, but based on voxel
distretization, rank(A) is approaching m, even though A is rank-deficient. In
contrast spark(A) remains small even for increasing m. However, in the case
of blob-based discretizations we made better experiences regarding the value of
spark(A).

An upper bound on the signature was derived via arguments from matroid
theory [1], under the assumption that the spark is known. Compare also Fig. 2,
left.

4.1 Minimum Support Solutions by Solving Polyhedral Concave
Programs

In this section we present an adaption of a general method due to Mangasarian
[11] to solve the NP-hard problem (8) and its counterpart

(P+
0 ) min

x∈F
‖x‖0 , (9)

which involves the nonnegativity constraints and amounts to find the nonnega-
tive sparsest solution of (1). The core idea is to replace for x ≥ 0, ‖x‖0 by the
exponential approximation fα(x) :=

∑n
i=1(1− e−αxi), for some α > 0. fα is also

smooth and concave. Note that fα(x) ≤ ‖x‖0 = limα→∞(x) fα(x) holds, for all
x ≥ 0. Consider now the problem

(Pα
0 ) min

x∈F
fα(x) , (10)

for some fixed parameter α > 0. This problem solves the minimal-support prob-
lem (9) exactly for a finite value of the smoothing parameter α.

Theorem 3. Under the assumption that F 6= ∅, problem (9) has a vertex of F
as a solution, which is also a vertex solution of (10) for some sufficiently large
positive but finite value α0 of α.
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The proof of the above statement rely on the fact that (Pα
0 ) has a vertex

solution, since the concave objective function fα is bounded bellow on the poly-
hedral convex set F , which contains no straight lines that go to infinity in both
directions (it contains the constraint x ≥ 0).

Note that Theorem 3 guarantees a vertex solution of F despite the noncon-
cavity of ‖ · ‖0. Moreover it states that by solving problem (Pα

0 ) for a sufficiently
large but finite α we have solved problem (P+

0 ). Similar statements can be made
for sparse solutions of polyhedral convex sets, see [11].

We stress however that there is no efficient way of computing α as long
P6=NP.

4.2 SLA

In this section we turn our attention to a computational algorithm which at
every step solves a linear program and terminates at a stationary point, i.e. a
point satisfying the minimum principle necessary optimality condition [10]. It
is a successive linear approximation method of minimizing a concave function
on a polyhedral set due to Mangasarian [11]. The method can also be seen as a
stepless Franke-Wolfe algorithm [7] with finite termination or a DC algorithm
for a particular decomposition of the concave objective function as a difference
of convex functions [13]. We state now the algorithm for problem (Pα

0 ) which
has a differentiable concave objective function.

Algorithm 1 (Successive Linearization Algorithm - SLA)

(S.0) Choose x0 ∈ IRn and set l := 0.
(S.1) Set cl = αe−αxl

and compute xl+1 as a vertex solution of the following linear
program

min
x∈F

(cl)T x . (11)

(S.2) If xl ∈ F and xl+1 = xl is satisfied within the tolerance level: STOP.
Otherwise, increase the iteration counter l← l + 1 and continue with (S.1).

Note that the finite termination criteria in step (S.2) is nothing else but the
minimal principle necessary optimality condition [10] for this particular choice
of objective function with ∇fα(xl) > 0. The additional condition xl ∈ F treats
the case of x0 not belonging to F .

Theorem 4. [10, Th. 4.2] Algorithm 1 is well defined and generates a finite se-
quence of iterates {xl} with strictly decreasing objective function values: fα(x0) >
fα(x1) > · · · > fα(xf ) such that the final iterate xf is a local optima of (Pα

0 ).

5 Some Experiments and Discussion

We demonstrate the feasibility and the typical behavior of the proposed approach
on one medium size example in order to facilitate the evaluation of the measure
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spark and to enable visualization. We consider 1 to 40 particles in a 2D volume
V = [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ]. The grid refinement was chosen d = 0.0154, resulting in

4356 gridpoints. At these gridpoints we centre a Gaussian-type basis function,
where σ = d. Particle positions were chosen randomly but at grid positions, to
avoid discretization errors. Four 50−pixel cameras are measuring the 2D volume
from angles 45o, 15o,−15o,−45o, according to a fan beam geometry. The screen
and focal length of each camera is 0.5.

For the obtained projection matrix, with about 9% nonzero entries, we ob-
tained rank(A) = 172 and a tight upper bound on spark(A) ≤ 25, by computing
a sparse kernel vector from the reduced row echelon form of A. In order to esti-
mate sigA, we assumed that spark(A) = 25, although a computed lower bound
derived via the mutual coherence [4] is by far not so optimistic.

For each number of particles k = 1, . . . , 40, we generated 1000 random dis-
tributions, yielding each time an original weighting vector of support length
‖xorig‖0 = k. The pixel intensities in the measurement vector b are computed
according to (4), integrating the particle image exactly along each line of sight.
Two randomly selected 30 and 40 particle distribution are depicted in Fig. 3.

We compared the results of SLA, see Tab. 1 and Fig. 3, to the classical alge-
braic methods. Besides ART and MART, both without relaxation, we considered
also a modification of ART, which we further call ART+, based on constraining
strategies proposed in [9]. This method amounts to project the current iter-
ate on the positive orthant after each complete sweep of the ART, through all
equations.

As a preprocessing step we reduce system Ax = b according to the methodol-
ogy proposed in section 3. The reduced dimensionalities are summarized in Tab.
1. As starting point for ART(+) and SLA we chose the all zero vector, whereas
x0 := e−1l for MART.

We terminate the iteration of the main algorithm if the appropriate termina-
tion is satisfied within tolerance level 10−4 or if the maximum number of outer
iterations was reached, i.e. 1000 complete sweeps through the rows of the reduced
matrix A in the case of (M)ART(+) or 100 linear programs solved in (S.1) of
SLA.

The linear programs we solved using the primal simplex method (since we are
interested in vertex solutions) that come along with MOSEK Version 5.0.0.45.
Having obtained with the SLA a stationary point xf0 different from our original
solution we applied a heuristic method to further reduce the support. Starting
with xf0 , we randomly chose Ti ⊂ Si = supp(xfi), with #Ti = 10, then deleted
the corresponding columns in A and restarted SLA with this reduced matrix.
Following this and increasing i ← i + 1 it often helped to recover the original
solution. The appropriate line in Tab. 1 reports the 74 restarts of SLA along
with the average number (bold) of linear programs solved.

More significant are the reconstructed particle images, depicted in Fig. 3. The
”smearing” of the particles in the lines of the projections is typical for minimum
energy reconstructions. This phenomenon is preserved by ART. The MART and
ART+ reconstructions show more distinct particles. However, additional spots
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Table 1. SLA vs. (M)ART(+) for the examples in Fig. 3

‖xorig‖0 mr × nr Method #Outer Iter. ‖xorig − xf‖2 ‖Axf − b‖∞
30 145 × 3239 SLA 2 7.21 · 10−11 2.20 · 10−10

MART 145 3.88 1.73 · 10−2

ART 145 5.18 1.12 · 10−3

ART+ 145 46.7 1.52 · 10−2

40 142 × 3352 SLA 24(74) 6.31 · 10−12 5.32 · 10−12

MART 142 5.70 2.45 · 10−3

ART 142 6.02 3.12 · 10−3

ART+ 142 68.6 5.98 · 10−3

are visible. SLA was able to reconstruct the original image, at considerably
increased costs for the 40 particles considered.

An interesting behavior of SLA is worth to mention. Very often (83% of
the 1000 test runs) it takes only two outer iteration until convergence to the
original solution. Since the last iteration is just a convergence test, this amounts
to solve a single linear program with equally weighted linear objective, in view
of our starting point x0 = 0, to obtain xorig. This phenomenon is superficially
tackled by counting those test runs with respect to an increasing particle density,
whereby SLA succeeds to find the original distribution by solving one linear
program only. The results in Fig. 2, right, complement the received opinion [3–
5] that sufficiently sparse solution to underdetermined systems can be found by
`1 norm minimization.
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Fig. 2. Left: Lower bound, derived via [5, Th. 7], on the probability that the underlying
k particle distribution is the sparsest of all those satisfying the measurements. Right:
The probability (must be read with caution) of success of the SLA performs only one
LP to find the original particle distribution, with respect to increasing density.
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(a) Orig. Image (b) MART (c) SLA

(d) LS (e) ART (f) ART+

(g) Orig. Image (h) MART (i) SLA

(j) LS (k) ART (l) ART+

Fig. 3. Top: (a)-(f) 30 particles and their reconstruction. Bottom: (g)-(l) 40 particles
and their reconstruction. (a),(g) The original particle distribution contains 30 resp. 40
particles. (b),(h) Reconstruction using MART. (c),(i) Reconstruction using SLA. (d),(j)
Minimal norm solution of (PLS) obtained via the Moore-Penrose pseudoinverse A+,
without reducing A. (e),(k) Reconstruction using ART. (f),(l) Reconstruction using
ART+.
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6 Conclusion and Further Work

A classical algebraic reconstruction approach that is currently in use, together
with closely related variants, were recently re-considered by the authors in some
detail to reveal pros and cons from the perspective of TomoPIV. While pur-
suing these goals, an regularization alternative was developed, which amounts
to find positive sparse solutions of underdetermined systems. Promising research
directions were outlined to accomplish more efficiently this task in terms of com-
putational time. Still model extensions have to be developed to the problem in
the presence of noise and discretization errors.
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