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Abstract We study the tomographic problem of reconstructing particle volume
functions in experimental fluid dynamics from the general viewpoint of compressed
sensing, which is a central theme of current research in applied mathematics. The
probability of exact reconstructions from few projections is studied empirically and
shown to resemble provable results for idealized mathematical measurement setups.
Application of our reconstruction algorithm to noisy projections outperforms the
state-of-the-art both with respect to accuracy and runtime.

1 Introduction

This paper summarizes results of our project that has started two years ago. Our
research work is motivated by the work [10]. The authors introduced a new 3D tech-
nique, called Tomographic Particle Image Velocimetry (TomoPIV) for imaging tur-
bulent fluids with high speed cameras. The technique is based on the instantaneous
reconstructions of particle volume functions from few and simultaneous projections
(2D images) of the tracer particles within the fluid. The reconstruction of the 3D
image from 2D images employs a standard algebraic reconstruction algorithm [11].

Tomographical setups relevant for experimental fluid dynamics significantly dif-
fer from those of medical imaging, where projections of the object to be recon-
structed are acquired under a large range of angles, i.e. the image to be reconstructed
is highly oversampled, while reconstruction algorithms are based on the regulariza-
tion of the inverse Radon transform [15]. TomoPIV, on the other hand, employs only
few projections due to both limited optical access to wind and water tunnels and cost
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and complexity of the necessary measurement apparatus. As a consequence, the re-
construction problem becomes severely ill-posed, and both the mathematical anal-
ysis and the design of algorithms fundamentally differ from the standard scenarios
of medical imaging.

Our research work addresses two major open problems:

1. A crucial parameter for 3D fluid flow estimation from image measurements is
particle density. This parameter also largely influences the tomographical recon-
struction problem. Higher densities ease subsequent flow estimation by means of
a cross correlation technique [19] and increase the resolution and measurement
accuracy. However, higher densities also aggravate ill-posedness of the recon-
struction problem. A thorough investigation of this trade-off is lacking.

2. Another major issue concerns problem size and computation time. 3D problems
and, in particular, time-dependent 3D problems require considerable computa-
tional resources. Yet, adopting some ad hoc iterative reconstruction algorithm
and terminating after few, sometimes even after a single(!) iteration, cannot be
regarded as a solid strategy without further analysis of the setup and its essential
parameters. A study of the reconstruction problem – optimization criteria and
algorithms – helps to underpin proper design of technical systems.

The objective of our project is to address these two problems taking into account
relevant developments in applied mathematics.

2 Related Work

TomoPIV [10] adopts a simple discretized model for an image-reconstruction prob-
lem known as the algebraic image reconstruction model [6], which assumes that the
image consists of an array of unknowns (voxels), and sets up algebraic equations for
the unknowns in terms of measured projection data. The latter are the pixel entries
in the recorded 2D images that represent the integration of the 3D light intensity
distribution I(z) along the pixels line-of-sight Li obtained from a calibration pro-
cedure. We consider an alternative to the classical voxel discretization and assume
that the image I to be reconstructed can be approximated by a linear combination of
Gaussian-type basis functions B j,

I(z)≈
n

∑
j=1

x jB j(z), ∀z ∈ Ω ⊂ R3 , of the form

B j(z) = e−
‖z−p j‖2

2
2σ2 , for z ∈ R3 : ‖z− p j‖2 ≤ r ,

or value 0, if ‖z− p j‖2 > r, located at a Cartesian equidistant 3D grid p j , j = 1, . . . ,n
within the volume of interest Ω . The choice of a Gaussian-type basis function is
justified in the TomoPIV setting, since a particle projection in all directions results in
a so-called diffraction spot of approximately 3 pixel diameter. The i-th measurement
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obeys

bi :≈
∫

Li

I(z)dz ≈
n

∑
j=1

x j

∫
Li

B j(z)dz =
n

∑
j=1

x jai j ,

where ai j is the value of the i-th pixel if the object to be reconstructed is the j-th
basis function. The main task is to estimate the weights x j from the recorded 2D
images, corresponding to basis functions and solve Ax ≈ b.

The matrix A has dimensions (# pixel =: m)×(# basis functions = n). Since each
row indicates those basis functions whose support intersect with the corresponding
projection ray the projection matrix A will be sparse. Unfortunately there is no spar-
sity pattern which can be exploited.

Compressed sensing is a new measurement paradigm [3, 8] which seeks to capture
the ”essential” aspects of a high-dimensional object using as few measurements as
possible. The basic principle is that sparse or compressible signals (i.e. can be well
approximated with a small number of active basis functions) can be reconstructed
exactly from a surprisingly small number of linear measurements, provided that the
measurements satisfy an incoherence property (see, e.g. [5] for an explanation of
incoherence).

A further remarkable result of Candès and Tao [4] is that if, for example, the rows
of A are randomly chosen Gaussian distributed vectors, there is a constant C such
that for a signal x with at most k nonzero entries and m ≥Ck log( n

k ), the solution x∗

of
min‖x‖1 s.t. Ax = b (1)

will be exactly the original signal x with overwhelming probability.
Donoho and Tanner [9] have computed sharp reconstruction thresholds for Gaus-

sian measurements, such that for any choice of sparsity k and signal size n, the
required number of measurements m to recover x can be determined precisely.

Within our particular TomoPIV setting the size of x can be chosen arbitrarily
large depending on the number of gridpoints where the basis functions are located,
e.g. n = O(109). The current measurement apparatus employs 4-6 camera of 10242

pixels each. The particle density is 0.05pp (particle/pixel), thus the underlying signal
should be well approximated by O(k) Gaussian basis functions, where k = 0.05 ·
10242. For a perfectly k compressible signal k log( n

k ) = 4.3609 · 105 pixels would
suffice, which corresponds to half of the number of pixels in one camera. Why
are then still 4-6 camera currently in use? One answer is that the signal is only
approximately 27 · 0.05 · 10242 sparse when the 3D image is discretized in voxels
in view of one particle diameter of 3 voxels. This corresponds to at least 7.1089 ·
106 measurements (7 cameras) to obtain perfect recovery of the 500000 particles
within the volume. Moreover, the measurement matrix A lacks the nice properties
as incoherence which would guarantee perfect recovery, see [17] for a discussion
on both voxel- and blob-based discretization scenarios. However the blob-based
projection matrix yields considerably better reconstruction of a k-sparse vector due
to the fact that each basis function is intersected by more pixel ”rays”, a property
relevant for the deterministic measurement matrix construction from [12].



4 Stefania Petra, Andreas Schröder and Christoph Schnörr

3 Reconstruction Algorithms

3.1 Algebraic reconstruction techniques

The state-of-the-art of TomoPIV [10] is the Multiplicative Algebraic Reconstruc-
tion Technique (MART). It was first proposed in [11] and is a maximum entropy
algorithm, with a solution satisfying

min fE(x) := ∑
i

xi log(xi) s.t. Ax = b , x ≥ 0 .

It applies only to systems in which b > 0 and A has only nonnegative entries. This
applies to our scenario since all ai j > 0 and zero or negligible measurements can
be eliminated by a procedure leading to an ”equivalent” feasible set Fr of reduced
dimensionality, see [17, Prop. 2.1]. The authors in [2] proposed a further noticeable
preprocessing procedure called multiplicative line-of-sight estimation to fix possi-
ble particle positions and thus to reduce considerably the dimension of the original
system. MART converges linearly to a solution in Fr provided that it is nonempty,
compare [16] and the reference therein.

The closely related Simultaneous Multiplicative Algebraic Reconstruction Tech-
nique (SMART) minimizes the Kullback-Leibler cross entropy KL(Ax,y) over the
nonnegative orthant and converges, for consistent projection equations, to that mem-
ber of Fr for which the cross-entropy distance to the initial vector KL(x,x0) is min-
imized.

The iterative method SART (Simultaneous Algebraic Reconstruction Technique)
of Andersen and Kak, see [1], was successfully applied to tomographic particle
image reconstruction in [2]. SART writes as

xk+1 = xk +λVATW (b−Axk) ,

where λ ∈ (0,2), V and W diagonal matrices defined by

V := diag
( 1

A+1
, . . . ,

1
A+n

)
and W := diag

( 1
A1+

, . . . ,
1

Am+

)
with A+ j := ∑

m
i=1 ai j and Ai+ := ∑

n
j=1 ai j. SART was developed as a major re-

finement of the Algebraic Reconstruction Technique (ART) [11], a reincarnation of
Kaczmarz’s [14] method of alternating projections. The convergence of SART to-
wards a solution of the weighted least squares problem min‖W 1

2 (Ax−b)‖ was es-
tablished in [13]. The likewise parallelizable method due to Cimmino was recently
reconsidered by the authors [18] in the context of TomoPIV.

All the methods above have the distinctive feature that they are row action method
[6] and have demonstrated effectiveness on huge problem instances but suffer from
the slow convergence rate.

They return a sufficiently good approximation xk after few iterations [10, 2] for
sufficiently small particle densities. In practice, subsequent iterations do not improve
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the quality of the computed solution, however, but actually result in increasingly
worse approximations. This is because the iterates become completely dominated
by the errors inevitably present in the data.

3.2 `1-minimization and Linear Programming

The `1-minimization problem (1), known also as basis pursuit [7], can be recast
as a linear program and then solved by conventional linear programming solvers.
However, such solvers are not suited for large-scale matrices A arising in our ap-
plication. Usually only matrix-vector operations involving A and AT are feasible. A
recent method motivated by the compressed sensing context is the Bregman Iterative
Algorithm [20]. The name is due to the fact that it employs a Bregman iterative reg-
ularization, which gives an accurate solution after solving only a very small number
of instances of the unconstrained problem

min
x
‖x‖1 +

1
2
‖Ax−bk‖2

2

by a fast fixed-point continuation (FPC) solver that is based solely on simple opera-
tions for solving the above unconstrained subproblem. The algorithm starts with the
initialization b0 := 0, x0 := 0 and then for k = 0,1, . . . writes

bk+1 := bk +(bk−Axk),

xk+1 := argminx‖x‖1 +
1
2
‖Ax−bk+1‖2

2 .

It is equivalent to the well-known augmented Lagrangian method (also known as
the method of multipliers), thus constraints can also be included. It is shown in [20]
that the method yields a global optimum in a finite number of iterations.

4 Design and Evaluation Criteria

4.1 Design Criteria

Assuming there could be several possible solutions, the common practice is the
definition of an optimization problem of the form

min f (x) s.t. Ax = b, [x ≥ 0, ]

where f measures the quality of the candidate solutions. Possible choices for this
penalty could be:

• entropy measures as in the case of MART and SMART, respectively.
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• `p-norms for various p in the range [0,∞). Popular choices are:

– `2-minimization is the method of least squares. It finds out of all possible solu-
tions the one of least energy and can be easy carried out (e.g. ART, Cimmino).
Unfortunately, this minimizer is not guaranteed at all to be sparse. If we take
nonnegativity into account this situation may change dramatically.

– `1-minimization is convex and can be solved in reasonable time by convex
programming techniques.The important question in this connection is whether
the method actually can recover the original k-sparse signal x.

– `0-minimization enforces sparsity and selects out of all possible solutions
which match the given data selects the sparsest one. This regularization ap-
proach was considered by the authors in [18] in the context of TomoPIV, but
appears to be less practical in the real TomoPIV setting because several(!)
linear programs for one volume reconstruction have to be solved.

We discussed above (compressed sensing) that the choices p = 0 and p = 1 may
lead to the same reconstruction provided it is sparse enough. This equivalence phe-
nomenon depends on properties of the measurements matrix A. They are known for
classes of matrices none of which covers our application area, however.

Clearly, if the set of feasible solutions F := {x|Ax = b,x ≥ 0} contains only a
single element, then all the above choices of f will lead to the same solution. This
is exactly what happens when a sufficiently sparse solution exists. In this case we
can apply any efficient method designed to find the element in F .

4.2 Evaluation Criteria

We wish to inspect empirical bounds on the required sparsity that guarantee exact
reconstruction and critical parameter values that yield a performance similar to the
settings considered in compressed sensing (e.g. [9]).

These parameter values allow us to answer the question how sparse a vector
should be (particle density) such that `0 can be solved by `1-minimization, linear
programming or quadratic programming with constraints.

Consider a matrix A ∈ Rm×n, the undersampling ratio δ = m
n ∈ (0,1) and the

sparsity as a fraction of m, k = ρm, for ρ ∈ (0,1). This phase transition ρ(δ ) as
function of δ indicates the necessary undersampling ratio δ to recover a k-sparse
solution with overwhelming probability. More precisely, if ‖x‖0 ≤ ρ(δ ) ·m, then
with overwhelming probability the `0-problem of finding the k-sparsest solution
can be solved by `1-minimization. Fo Gaussian matrices there are precise values of
ρ(δ ), see [9], which can be computed analytically.

Relevant for TomoPIV is the setting as δ → 0 and n → ∞, that is severe under-
sampling. Then a strong asymptotic threshold ρS(δ ) ≈ (2e log(1/δ )−1 and weak
asymptotic threshold ρW (δ ) ≈ (2log(1/δ )−1 holds for Gaussian matrices. The
weak thresholds says that `0/`1-equivalence typically holds while for the strong
one equivalence holds for all ρS(δ ) ·m-sparse signals.
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5 Numerical Results

Although the projection matrices within the TomoPIV setting do not satisfy the nice
properties of Gaussian measurement matrices, we observed critical parameter values
similar to those for Gaussian matrices. We generated a 100×20 grid at which we lo-
cated n = 2000 Gaussian basis functions. First a big projection matrix was generated
resulting from parallel projections at angles (−60o,−55o, . . . ,0o,5,10, . . . ,600).
Then m = δn random rows were selected to compute the right hand side measure-
ment vector. The plane (δ ,ρ) = [0,0.7]× [0,1] was divided in a 20× 20 mesh,
and for each point 50 random problem instances were generated. The empirical
probability that the approaches presented above correctly recover a k = ρm-sparse
solution for each parameter combination is presented in Fig. 1 (a), (c)-(f). For the
asymptotic scenario see Fig. 1 (b), computed for the bigger value n = 200000. A
threshold-effect is clearly visible in all figures exhibiting parameter regions where
the probability of exact reconstruction is close to one.

The advantage of using blob-based volume discretizations is demonstrated in
Figure 2. Figure 3, finally, illustrates the comparison of our approach with the SART
iteration used in [2].

6 Conclusions

The reconstruction of a relatively dense particle distribution in a volume from few
projections can be modeled as finding the sparsest solution of an underdetermined
linear system of equations, because the original particle distribution can be well
approximated with only a very small number of active basis functions relative to
the number of possible particle positions in a 3D domain. In general the search for
the sparsest solution is intractable (NP-hard), however. The newly developed the-
ory of Compressed Sensing showed that one can compute via `1-minimization or
linear programming the sparsest solution for underdetermined systems of equations
provided they satisfy certain properties, which unfortunately do not hold for our
particular scenario. Still, we showed empirically in the present work that there are
thresholds on sparsity (i.e. density of the particles) depending on the numbers of
measurements (recording pixel in the CCD arrays), below which these methods will
succeed and above which they fail with high probability. When they succeed they
yield near perfect reconstructions (without any ghost-particles). Theoretically, con-
strained versions of several algebraic reconstructions techniques will also converge
to the original solution for very sparse scenarios. Due to their slow convergence they
are outperformed by an augmented Lagrangian method for `1-minimization, how-
ever, that provides considerably better particle reconstructions than the currently
used methods.
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(a) `1 (b) `1

(c) LP + (d) LP box

(e) QP + (f) QP box

Fig. 1 Probability of correct recovery of a random particle distribution that can be expressed with
exactly k basis functions as a function of δ = m

n , n = 2000 and k = ρm. The thick curve ρ(δ )
depicts a phase transition of `1-minimization (a) and linear programming (c)-(f) to find the k-
sparsest solution, but for Gaussian random matrices, see [9]. Figure (b) shows a ”zoom in” of (a):
here we have chosen n = 200000. We believe that ρ(δ ) ≈ |2log(Cδ )|−1 as δ → 0 similar to the
analytic curve for Gaussian matrices presented in [9]. The right n-dependent value of constant C is
a subject of our current research.
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Fig. 2 Empirical probability of exact reconstruction of an increasing number k of ”particles” by
means of an 3 · 322 × 323 projection matrix from 3 orthogonal projections for both voxel and
blob scenarios. Substantially more particles are reconstructed for the blobs-based discretization
matrix for all three methods of choice: `1-minimization (blue), linear programming with positivity
constraints only (red), linear programming with box constraints (black).

Fig. 3 Reconstruction experiment for 1000 particles in a small cube from 3 orthogonal projections,
using SART reconstruction after reducing the system (cf. section 3.1) and the Bregman iterative
algorithm (section 3.2). The iteration was terminated after convergence for the latter algorithm, and
after a comparable runtime for SART. Left panel. Number of reconstructed particles corresponding
to the coefficients xi exceeding a threshold ∈ [0.1,0.9] for SART (red) and our approach (blue).
SART may return far too many particles (> 200%) or too less, whereas our approach always
returned the exact reconstruction. Right panel. Choosing a threshold for which SART returns the
correct number of particles yields both missing particles (yellow) and additional ghost particles
(red).
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17. Petra S, Schröder A, Wieneke B, Schnörr C (2008) On Sparsity Maximization in Tomographic
Particle Image Reconstruction, In: Pattern Recognition – 30th DAGM Symposium, vol 5096
of LNCS, Springer Verlag
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